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Small scale creation in the long time behavior of 2d perfect fluids

Ayman Rimah Said

Abstract

The main issue of this note is the study of the long time behavior of 2d perfect fluids on
the 2-torus governed by the incompressible Euler equations and the genericity of small scale
creation in said limit. Its aim is twofold: first introduce non specialists to some key conjectures
in the field today due to Shnirelman, Šverák and Yudovich respectively as well as some results
towards those conjectures. Second we present a recent result by the author [19] on the generic
character of small creation for the Lagrangian flow which is build upon a pioneering Lyapunov
construction due to Shnirelman [20].

1 Introduction

We study 2d inviscid flows on T2 = [−1
2 ,

1
2)2 governed by the Euler equations in vorticity form

∂tω + u · ∇ω = 0, (1.1)

u = ∇⊥ψ and ∆ψ = ω. (1.2)

Here, the scalar vorticity ω : T2×R → R is transported by the velocity field u : T2×R → R2 which
is uniquely determined at each time t ∈ R from ω using the Newtonian potential:

u(x) =
1

2π

∑

n∈Z2

∫

[−1,1)2

(x2 − y2 − 2n2,−x1 + y1 + 2n1)

|x− y − 2n|2 ω(y)dy, thus ω = ∇× u = ∂1u2 − ∂2u1.

(1.3)
We adopt the standard notation v⊥ = (−v2, v1) for v = (v1, v2) ∈ R2. Without loss of generality we
will work with 0 average vorticity, which is a conserved quantity. We define the Lagrangian flow

d

dt
Φt = u ◦ Φt with Φ0(·) = Id.

It is well known that sufficiently smooth solutions of the 2d Euler equation (1.1)-(1.2) retain
their smoothness for all finite times. Much less is known in the infinite time limit. Since the
Euler equation is fundamentally a (non-linear and non-local) transport equation, there is a strong
possibility that despite the plethora of possible initial states, most solutions ”relax” in infinite time
to simpler states. This a fact often observed experimentally and numerically see Figure 1 below.

We now give 2 natural conjectures that give a rigorous mathematical framework in which
one might quantify the previous observations, see [23] and [22] respectively and also the review
articles [5, 12]. For this we recall the standard well-posedness theory for 2d Euler equations.
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Figure 1: Emergence of a vortex dipole in the long time in a simulation of the Euler equations.
For the full simulation by Theo Drivas: https://www.youtube.com/watch?v=-YdEYumSSJ0

.

Theorem 1.1 (Yudovich [26]). For all initial zero average vorticity ω0 ∈ L∞(T2) there exists a
unique global solution ω ∈ C∗(R, L∞(T2)) to the 2d Euler equations. Furthermore for all s > 1,
there exists a universal constant Cs such that we have following estimate

∥ω(t)∥Hs + ∥Φt − Id∥Hs+1 ≤ Cs ∥ω0∥Hs exp (exp (Cs ∥ω0∥L∞ t)) .

Hence we can define the orbit and omega limit sets for bounded periodic vorticity

Oω0 = {ω(t), t ∈ R} ⊂ L∞(T2) and Ω+(ω0) = ∩s≥0{ ω(t), t ≥ s}∗

Observe that Ωω0 is non empty as a decreasing intersection of non empty compact sets (in the weak
topology). The conjecture then reads

Conjecture 1.2 (Šverák [23] and Shnirelman [22]).

• Generically for ω0 ∈ L∞(T2), Oω0 is not pre-compact in L2(T2).

• Consider ω∗ ∈ Ω+(ω0) ⊂ L∞(T2) for some ω0 ∈ L∞(T2) then Oω∗ is pre-compact in L2(T2).

This conjecture states that most solutions should, on the one hand, ”relax” in infinite time in
that they should lose L2 mass, due to mixing [3]. Note that this is the only way that compactness
can be lost on compact domains since the L2 norm of the vorticity is conserved for all finite times.
On the other hand, these limiting states are conjectured to have compact orbits; i.e. they must be
very special, such as steady states, time-periodic solutions, etc.

This has been established in perturbative regimes in the ground breaking work of Bedrossian
and Masmoudi [1] and later extensions by Ionescu and Jia [9,10] and Masmoudi and Zhao [16]. The
conjecture is completely open in the large data setting. Under scaling and symmetry hypothesis
the conjecture has been established in the large data setting for scale invariant solutions [7] and
logarithmic spirals [11].

From the previous conjecture the long time behavior seems to consistently show some type of
small scale creation for smooth solutions [5, 12]. From Figure 1, we see that this is necessary for a
change of topology of the vorticity streamlines to occur. This can be summarized in the following
conjecture by Yudovich.
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Conjecture 1.3 (Yudovich (1974), [24,25], quote from [17]). There is a “substantial set” of inviscid
incompressible flows whose vorticity gradients grow without bound. At least this set is dense enough
to provide the loss of smoothness for some arbitrarily small disturbance of every steady flow.

The literature towards this conjecture is rich. Of note is the result of Koch [14] in which
strong growth of Hölder and Sobolev norms of the vorticity is established near any background
solution (stationary or time-dependent) for which the gradient of the flow map is unbounded in
time. Yudovich also established (boundary induced) growth results under some mild assumption
on the data near the boundary of the domain [25] (see also [17] for an extension of [25]). The
conjecture was established within m-fold symmetry for m ≥ 3 by Elgindi, Murray and the author
in [7]. There are also numerous important results on growth of solutions in the neighborhood of
stable steady states [4, 5, 13, 18, 27]. In the case of open neighborhoods of shearing stable steady
states a finer version of the conjecture including generic fluid aging has been recently established
by Drivas, Elgindi and Jeong [6].

The main result we want to present in this note from [19] can be stated informally as follows.

Theorem 1.4. Consider the 2d Euler equation on T2. Then for ω0 ∈ Hs(T2) \Hs+ε(T2) for some
s > 1 and all ε > 0, then roughly the s+1 derivative of the Lagrangian flow blows up in infinite
time at least like t

1
3 .

1.1 Propagation of exact smoothness in 2d Euler

One of the key quantitative observations in [19] is to describe a maximal propagation of smoothness
result for the 2d Euler equation. First we set, for ω0 ∈ L2, ε ≥ 0

drω0(ε) =

( ∑

|n|+|m|≥1/ε

(ω0)
2
n,m

)1/2

,

where (ω0)n,m are the Fourier coefficients of ω0. We note that drω0 is an increasing function of ε
with limε→0 drω0(ε) = 0 and limε→+∞ drω0(ε) = ∥ω0∥L2(T2). For f ∈ C∞(T2) such that drf vanishes
at 0 at least like drω0 , we define

∥f∥ω0
= sup

ε≥0

drf (ε)

drω0(ε)
.

Note that by construction ∥ω0∥ω0
= 1.

Theorem 1.5. Consider s > 1 and ω0 ∈ Hs
(
T2

)
and ω ∈ C

(
R, Hs

(
T2

))
the unique solution of

(1.1)–(1.2) with initial data ω0. Suppose that for all λ < 1

Cω0(λ)drω0(ε) ≤ drω0(λε), (1.4)

for some function Cω0 independent of ε. Then there exists a constant C ′
ω0

such that

∥ω(t)∥ω0
+ ∥DΦt − Id∥ω0

≤ exp
(
exp

(
C ′
ω0
t
))
.

The proof of the of the previous theorem, [19], relies essentially on the observation that condition
(1.4) is equivalent to the fact that ω0’s Fourier transform decays at most algebraically fast at infinity,
in particular the previous theorem applies for all ω0 ∈ Hs1(T2)\Hs2(T2) for a pair 1 < s1 < s2. This
then implies all of the standard calculus holds in the Banach space defined through the norm ∥·∥ω0

.
We believe that this type of exact smoothness propagation holds more generally for hyperbolic
evolution PDEs. For example the proof here works in verbatim to give an analogous result (locally
in time) for the SQG equation.
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1.2 The para-pull back flow

One of the key observation of Shnirelman in [20] is an explicit identity of the flow of the para-pull
backed velocity field. In order to make this statement precise we give a short intuitive summary of
the para-differential notions needed for this.

1.2.1 Heuristic representation of paradifferential calculus

• Paraproducts

For the sake of this discussion let us pretend that ∂x is left-invertible with a choice of ∂−1
x that acts

continuously from Hs to Hs+1. We follow here analogous ideas to the ones presented by Shnirelman
in [21]. One way to define the paraproduct of two functions f, g ∈ Hs with s sufficiently large is:
we differentiate fg k times, using the Leibniz formula, and then restore the function fg by the k-th
power of ∂−1

x :

fg = ∂−k
x ∂kx(fg)

= ∂−k
x

(
g∂kxf + k∂xg∂

k−1
x f + · · · + k∂xf∂

k−1
x g + g∂kxf

)

= Tgf + Tfg +R,

where
Tgf = ∂−k

x

(
g∂kxf

)
, Tfg = ∂−k

x

(
f∂kxg

)
,

and R is the sum of all remaining terms. The key observation is that if s > 1
2 + k, then g 7→ Tfg

is a continuous operator in Hs for f ∈ Hs−k. The remainder R is a continuous bilinear operator
from Hs to Hs+1. The operator Tfg is called the paraproduct of g and f and can be interpreted as
follows. The term Tfg takes into play high frequencies of g compared to those of f and demands
more regularity in g ∈ Hs than f ∈ Hs−k thus the term Tfg bears the “singularities” brought
on by g in the product fg. Symmetrically Tgf bears the ”singularities” brought on by f in the
product fg and the remainder R is a smoother function (Hs+1) and does not contribute to the
main singularities of the product.

• Paradifferential operators

To get a good intuition of a paradifferential operator Tp(x,ξ) with symbol p(x, ξ) ∈ Γβ
ρ (T2), as a

first gross approximation, one can think of p(x, ξ) ≈ f(x)m(ξ) and Tp(x,ξ) as the composition of a
paraproduct Tf with a Fourier multiplier m(D), that is:

Tp(x,ξ) ≈ Tfm(D), with f ∈W ρ,∞ and m is of order β.

Indeed following Coifman and Meyer’s symbol reduction given in Proposition 5 of [2], one can show
that linear combinations of composition of a paraproduct with a Fourier multiplier are dense in the
space of paradifferential operators.

• Paracomposition

We again work with f ∈ Hs and g ∈ Cs with s large and consider the composition of two functions
f ◦ g which bears the singularities of both f and g, and our goal is to separate them. We proceed
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as before by differentiating f ◦ g k times, using the Faá di Bruno’s formula, and then restore the
function fg by the k-th power of ∂−1

x :

f ◦ g = ∂−k
x ∂kx(f ◦ g)

= ∂−k
x

(
(∂kxf ◦ g) · (∂xg)k + · · · + (∂xf ◦ g) · ∂kxg

)

= g∗f + T∂xf◦gg +R,

where
g∗f = ∂−k

x

(
(∂kxf ◦ g) · (∂xg)k

)
is the paracomposition of f by g

and R is the sum of all remaining terms. Again the key observation is that if s > 1
2+k, then f 7→ g∗f

is a continuous operator in Hs for g ∈ Cs−k. Thus this term bears essentially the singularities of f
in f ◦ g. As before T∂xf◦gg bears essentially the singularities of g in f ◦ g. The remainder R is
a continuous bilinear operator from Hs to Hs+1. Thus we have separated the singularities of the
composition f ◦ g.

1.2.2 The underlining ODE system

The key algebraic identity observed by Shnirelman is the following (see Section 4.1 of [19])

∂t

(
T[DΦt]

−1Φt

)
= T[DΦt]

−1Φ∗
tu+R,

now recall that the pull back of u by Φt is given by [DΦt]
−1u ◦ Φt, then the right hand side in the

previous identity can be interpreted as a paradifferential version of this pull-back which “selects”
the high frequencies of u compared to Φt.

Another interpretation of T[DΦt]
−1Φt comes from the following observation. Starting from the

identity
Φ−1
t ◦ Φt = x =⇒ Φ∗

tΦ
−1
t + T[DΦt]

−1Φt +R = x

hence
T[DΦt]

−1Φt = −Φ∗
tΦ

−1
t +R,

geometrically Φ∗
tΦ

−1
t can be interpreted as the ”selection” of the high frequencies introduced by

the flow when brought back to a frame in a neighberhood of the identity.

1.3 The forward frequency cascade

We are now in position to state the main theorem summarizing the Lyapunov construction from [19].

Theorem 1.6. Consider χ(ξ) ∈ C∞
0 (R2 \ B(0, 1)) and ω0 ∈ Hs with s > 1 verifying (1.4) then

there exists a universal constant C and a constant Cω0 such that for ε ≥ 0

d

dt

(
∇× T[DΦt]−1Φt, χ(εD)ω0

)
L2

=
∥∥∥T|ξ|/|[DΦt]−1ξ| χ(εD)ω0

∥∥∥
2

L2
+O

(
Cδe

CeCω0 t

εmin(s−1−δ,1)drω0(ε)2
)
,

for all 0 < δ < s− 1 and Cδ > 0 is constant depending only on δ.
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Remark 1.7. In [20] Shnirelman proved the previous theorem in the case drω0(ε) = O(εs), s > 2.
Theorem 1.6 generalises this result to the exact regularity of ω0 whatever it is and gives the optimal
control in ε.

In particular the leading order decay in ε of
(
∇× T[DΦt]−1Φt, χ(εD)ω0

)
is

∫ t

0

∥∥∥T|ξ|/|[DΦτ ]−1ξ| χ(εD)ω0

∥∥∥
2

L2
dτ ∼

ε→0
c(t)drω0(ε)2

where c(t) is an increasing function of time. The explicit estimate on the residual term allows for
the following interpretation of the previous result. Fixing an outer frequency region {|ξ| ≥ R} then
there exists TR > 0 increasing in R such that for |t| ≤ TR there is an averaged forward frequency
cascade of Φt in the signed measure F (ω0)(ξ)dξ into the region {|ξ| ≥ R}. Thus there is always
a positive flux of frequency at “infinity” (R → ∞) and the growth of that rate gives the desired
Lyapunov function. Using drω0 , it is given explicitly by a re-normalised version of the semi-classical
measure first introduced in [8] and independently as the Wigner measure in [15] which is the so
called microlocal scalar product introduced by Shnirelman in [20]

Lχ,ω0(Φt) = lim sup
ε→0

(
χ(εD)∇× T[DΦt]−1Φt, χ(εD)ω0

)
L2

drω0(ε)2
.

2 An explicit example

We give an example where the Lyapunov function can be computed explicitly. We work with
odd-odd data and consider the shear steady state on T2 = [−π, π)2, ω(y) = sin(y)α, for y > 0
α > 0, α /∈ N. Then the stream function solves

∂2yψ(y) = sin(y)α with ψ(0) = ψ(π) = 0,

thus

u(x, y) =

(
−∂yψ(y)

0

)
=⇒ Φt =

(
x− t∂yψ(y)

y

)
=⇒ DΦt =

(
1 −t∂2yψ(y)

0 1

)
=

(
1 −tω(y)
0 1

)
,

hence

[DΦt]
−1 =

(
1 tω(y)
0 1

)
=⇒ T[DΦt]−1 =

(
T1 tTω(y)
0 T1

)
.

Thus we compute explicitly

T[DΦt]−1Φt =

(
T1x− tT1∂yψ(y) + tTω(y)y

T1y

)
=

(
−t∂yψ(y)

0

)
+R, R ∈ Cω(T2),

hence
∇× T[DΦt]−1Φt = tω +R′, R′ ∈ Cω(T2).

Consider ∆k the k-th Littlewood-Paley projector then

(∇× T[DΦt]−1Φt,∆kω)L2 = 2t ∥∆kω∥2L2 + (R,∆kω)L2 ,

and now we see that the hypothesis α /∈ N (i.e finite smoothness) is crucial to guarantee

|(R,∆kω)L2 | ≪ t ∥∆kω∥2L2 =⇒ (∇× T[DΦt]−1Φt,∆kω)L2 ≳ t ∥∆kω∥2L2 .
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