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Leading-order term expansion for the Teukolsky equation on

subextremal Kerr black holes

Pascal Millet

Université Sorbonne Paris Nord, LAGA, France
millet@math.univ-paris13.fr

Abstract

In this note, we present a result based on [47] providing the large time leading-order term
for initially localized solutions of the Teukolsky equation on a general subextremal Kerr black
hole. This equation is important in the study of Maxwell’s equations and Einstein’s equations
on a Kerr background. The method used is based on a careful analysis of the resolvent operator
permitted by recent advances in microlocal analysis including non elliptic Fredholm theory,
radial point estimates and semiclassical analysis near the trapped set together with a result
about the absence of modes for the Teukolsky equation.

1 Introduction

1.1 Einstein’s equations

Let (M, g) be a smooth Lorentzian manifold with signature (+,−,−,−) and let∇ be the associated
Levi-Civita connection. The Riemann tensor of the metric is defined by:

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

where X,Y, Z are any smooth vector fields on M. Since for fixed vector fields Y and Z, R(·, Y )Z
is a smooth section of End(TM) we can define its trace:

Ric(Y,Z) = tr(R(·, Y )Z)

which is called the Ricci tensor. Taking again the trace with respect to the metric g, we obtain the
scalar curvature S. Einstein’s equations are then written as:

Ric− 1

2
Sg − Λg = T

where Λ is a constant called the cosmological constant, T is (up to a constant1) the stress-energy
tensor which describes the matter content of the spacetime. We focus here on the simplest case of
Einstein vacuum equations with vanishing cosmological constant:

Ric = 0. (1)
1For simplicity, we choose the physical units such that the speed of light is equal to 1 and the gravitational

constant G is equal to 1/8π so that the constant in the Einstein equation is exactly 1.
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1.2 Black hole solutions

The simplest solution to (1) is the Minkowski spacetime:

M = Rt × (R3)x

g = (dt)2 − (dx1)2 − (dx2)2 − (dx3)2

which has a vanishing curvature.

More interesting solutions are given by the family of subextremal Kerr black holes. The family is
indexed by two parameters M > 0 (mass of the black hole) and a ∈ R (angular momentum per unit
of mass) with |a| < M . The exterior region is described by the manifold M := Rt× (r+,+∞)r×S2

with r+ := M +
√
M2 − a2 and the metric:

gM,a :=
∆r − a2 sin2 θ

ρ2
dt2 +

4Mar sin2 θ

ρ2
dtdϕ− ρ2

∆r
dr2 (2)

− ρ2dθ2 − sin2 θ

ρ2
((a2 + r2)2 − a2∆r sin

2 θ)dϕ2 (3)

∆r := a2 + r2 − 2Mr

ρ2 := r2 + a2 cos2 θ.

The value r+ is the largest root of ∆r.

In the case a = 0, we obtained the Schwarzschild solution:

gM :=

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
.

We record some important geometric observations about the Kerr solution:

• The metric gM,a is stationary (T := ∂t is a Killing vector field) and invariant by rotation of
angle ϕ (∂ϕ is a Killing vector field).

• The vector field ∂t is timelike for large r but becomes spacelike2 inside the region

E :=
{
∆r − a2 sin2 θ < 0

}
.

Moreover, there is no global choice of a Killing vector field which is globally timelike on M.

• The metric gM,a is asymptotically flat, meaning that as r → +∞:

gM,a = dt2 − dr2 − r2(dθ2 + sin2 θdϕ2) +O(r−1)t,r,θ,ϕ.

• There exists a non-empty set of null3 geodesics K such that for all γ ∈ K, r(γ) is contained
in a compact subset of (r+,+∞). We say that K is the set of trapped null geodesics.

2A vector is called spacelike if it has negative Lorentz norm.
3A vector is called null if it has zero Lorentz norm.
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Based on (2), there is a coordinate singularity at r = r+. The metric can in fact be extended
to a strictly larger spacetime if we make the change of coordinate:

t∗ = t+ T (r)

ϕ∗ = ϕ+A(r)

with

T ′(r) =
a2 + r2

∆r

A′(r) =
a

∆r
.

In these new coordinates, gM,a extends analytically to a solution of the Einstein vacuum equations
on the slightly larger manifold Mext := Rt∗ × (M,+∞)r × S2

θ,ϕ∗ . In particular, this region includes

the null hypersurface H+ := {r = r+} which is called the future event horizon of the black hole.

We finally add a hypersurface I + diffeomorphic to R× S2 called null infinity corresponding to
the point at infinity of outgoing null geodesics. More concretely, we define the manifold with bound-
aries M̃ := Mext

⊔
R × S2 using the local chart defined on M⊔

R × S2 (which is a neighborhood
of the boundary):

ϕ :

{
x ∈ M 7→ (t(x)− T (r(x)), 1/r(x), ω(x))

(u, ω) ∈ R× S2 7→ (u, 0, ω)

To be able to set up a Cauchy problem on M, we define the initial hypersurface Σ0 to be a
spacelike hypersurface of Mext equal to the zero level set of t for large r and transverse to H+.
Finally, we introduce a function t whose level sets are transverse both to H+ and to I+ (see
Figure 1). It is not necessary that t is timelike but we require t = t∗ + h(r) for some smooth
function h. In practice, we interpolate between t = t∗ near the horizon and t = t − T (r) + C
(where C is some constant) near infinity but other choices are possible.

H+

r = +∞

I +
level sets

of t

Figure 1: Penrose diagram of the future exterior region of a Kerr black hole.

1.3 Black hole stability problem

Let (M, g) be a Lorentzian metric and let Σ0 ⊂ M be a spacelike hypersurface with unit normal
n. We say that Σ0 is a Cauchy surface of (M, g) if every causal4 curve intersects Σ0 exactly
once. We call Cauchy data of g on Σ0 the couple (h, k) of symmetric 2-tensors on Σ0 such that

4timelike or null
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h = g|TΣ0⊗TΣ0
is the induced metric on Σ0 and k is the second fundamental form of Σ0. If (x

i) are
local coordinates on Σ0, we have ki,j = −g(∇∂in, ∂j).

The Cauchy problem for the Einstein vacuum equations is as follows: Given (Σ0, h) a (negative
definite) Riemannian manifold and a symmetric 2-tensor k on Σ0, find a solution of the Einstein
vacuum equations (M, g) endowed with an inclusion Σ0 ⊂ M such that Σ0 is a Cauchy hypersurface
of M and the Cauchy data of g on Σ0 is precisely (h, k). The equation Ric(g) = 0 imposes
constraints on the Cauchy data (h, k). This constraints are therefore necessary conditions for the
existence of a solution.

The fact that the constraint equations are also sufficient for the existence of a solution has been
proved in the foundational work of Choquet-Bruhat [15]

Theorem 1.1. The Cauchy problem with initial data (Σ0, h, k) has a solution if and only if (h, k)
satisfy the constraint equations.

The question of uniqueness is more delicate since the Einstein equation are invariant under
diffeomorphisms: Ric(ϕ∗g) = ϕ∗Ric(g) and of course there exists a lot of non trivial diffeomorphisms
from M to M which are the identity near Σ0. Therefore, g is not unique but all other solutions
obtained by this process are isometric to one another. The other problem is that from our definition
of solution there is no requirement for a solution to be the largest possible, we can restrict g to
any subset of M containing Σ0 as a Cauchy hypersurface and still get a solution. The situation is
clarified by Choquet-Bruhat-Geroch [8]:

Theorem 1.2. If (Σ0, h, k) satisfy the constraint equations, there exists a solution (M, g) (unique
up to isometry) called the maximal globally hyperbolic development (MGHD) of (Σ0, h, k) such that
every other solution can be isometrically embedded into (M, g).

We can now state an informal version of the Kerr black hole stability conjecture. Let (Σ0, h, k)
be Cauchy data of a black hole solution (M, gM,a).

Conjecture 1.3. If (h̃, k̃) is sufficiently close to (h, k) (in some suitable functional norm) and
satisfy the constraint equations, then denoting by (M̃, g̃) the solution of the Cauchy problem with
data (Σ0, h̃, k̃), there exists a diffeomorphism ϕ : M → M̃ and black hole parameters (M ′, a′) close
to (M,a) such that ϕ∗g̃ is close to gM ′,a′ and

∣∣ϕ∗g̃ − gM ′,a′
∣∣ ≲ t−α for α > 0.

The first fully nonlinear result about the stability of slowly rotating Kerr black holes has been
obtained by Hintz-Vasy [25] in the case of positive cosmological constant Λ > 0 and |a| ≪ M,Λ (see
also [23] for the extension to slowly rotating charged black hole). For Λ = 0, Klainerman-Szeftel
[29] proved the stability of a Schwarzschild solution for a particular class of initial data (polarized
perturbations) for which a′ = 0. The stability of Schwarzschild for the largest set of initial data
imposing a′ = 0 (which is codimension 3 in the set of all admissible initial data) was established
by Dafermos-Holzegel-Rodnianski-Taylor in [10]. Finally, the stability of the slowly rotating Kerr
family (|a| ≪ M) was obtained in a series of works [30, 16, 54]. The problem remains open for a
not slowly rotating subextremal black hole.

A necessary step to address the black hole stability problem is to understand the linearized
problem at a fixed subextremal Kerr solution gM,a. This yields to the linearized Einstein vacuum
equations:

DgM,aRic(ġ) = 0 (4)

Pascal Millet
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Where ġ is a symmetric two tensor on M representing the linear metric perturbation. The gauge
freedom arising from the diffeomorphism invariance of the Einstein vacuum equations provides an
infinite dimensional space of solutions. In particular, for any smooth compactly supported vector
field X on M, ġX := LXgM,a is a solution of (4).

1.4 The Teukolsky equation

We now define the Teukolsky scalars which are quantities built from ġ which decouple from the
rest of the system. We need some additional geometric definitions first. Let W (g) denote the Weyl
tensor of g which is the trace-free part of the Riemann curvature tensor. In local coordinates:

W (g)αβµν := Rαβµν −
1

2
(Ricβνgαµ −Ricανgβµ +Ricαµgβν −Ricβµgαν) +

1

6
S (gαµgβν − gβµgαν)

Note that for g a solution of (1), W (g) = R(g) and at the linear level, if ġ is solution of (4),
DgM,aW (ġ) = DgM,aR(ġ). As a consequence, we can equivalently use the Riemann curvature
tensor to define the Teukolsky scalars in this case.

Definition 1.4. A null vector vector v ∈ TxM is said to be a principal null vector if for all
v1, v2 ∈ v⊥:

W (g)(v, v1, v, v2) = 0

The vector v is said to be a double principal null vector if the same is true for a general v2 ∈ TxM.

The key geometric feature of the Kerr spacetime which allows to partially decouple (4) is stated
in the following lemma (see for example [50] for a proof):

Lemma 1.5. There exist l and n smooth null vector fields such that, for all x ∈ M, l(x) and n(x)
are independent double principal null vectors of the background metric gM,a.

Given such (l, n), we can assume that g(l, n) = 1 and construct locally a tetrad (l, n,m,m) such
that m is a complex vector field on M satisfying:

g(m,m) = −1

g(m,m) = g(l,m) = g(n,m) = 0.

Definition 1.6 (Teukolsky scalars). We define the following scalars:5

Ψ2 = DgM,aW (ġ)(l,m, l,m)

Ψ−2 = (r − ia cos θ)4DgM,aW (ġ)(n,m, n,m)

The key result of [58] is:

Theorem 1.7 (Teukolsky). There exists two scalar second order linear differential operators T2

and T−2 with principal symbol ρ2gµνξµξν (where we used the Einstein summation convention for
repeated indices) such that:

T2Ψ2 = 0

T−2Ψ−2 = 0
5For completeness, we mention that the above tetrad cannot be defined globally on the Kerr exterior. Therefore,

Teukolsky scalars are defined globally as section of a nontrivial complex line bundle over M. For keeping the
exposition simple, we do not develop this point in this note, see [46] for details.
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The following proposition provides a second motivation for considering Teukolsky scalars as
significant quantities.

Proposition 1.8 (Gauge invariance). The Teukolsky scalar are gauge invariant, namely for any
smooth compactly supported vector field X:

Ψ2(ġ) = Ψ2(ġ + LXgM,a)

Ψ−2(ġ) = Ψ−2(ġ + LXgM,a)

Proof. We need to prove:

DgM,aW (LXgM,a)(l,m, l,m) = 0

DgM,aW (LXgM,a)(n,m, n,m) = 0

We focus on the first equality, the second one being similar. We define ϕs the flow at time s of X.

DgM,aW (LXgM,a) =
d

ds |s=0
W ((ϕs)∗gM,a)

=
d

ds |s=0
(ϕs)∗W (gM,a)

= LXW (gM,a)

We deduce:

DgM,aW (LXgM,a)(l,m, l,m)

= X(W (gM,a)(l,m, l,m))− 2W (gM,a)([X, l],m, l,m)− 2W (gM,a)(l, [X,m], l,m)

Using that l is double principal null, we get:

DgM,aW (LXgM,a)(l,m, l,m) = −2W (gM,a)([X, l],m, l,m)

Since the tetrad is normalized, we have:

[X, l] = gM,a(n, [X, l])l + gM,a(l, [X, l])n− gM,a(m, [X, l])m− gM,a(m, [X, l])m

DgM,aW (LXgM,a)(l,m, l,m) = gM,a(l, [X, l])R(gM,a)(n,m, l,m)− g(m, [X, l])R(gM,a)(m,m, l,m).

On the other hand we have:

0 = Ric(l,m) = R(n, l, l,m) +R(l, l, n,m)−R(m, l,m,m)−R(m, l,m,m)

0 = Ric(m,m) = R(n,m, l,m) +R(l,m, n,m)−R(m,m,m,m)−R(m,m,m,m)

leading to

R(n,m, l,m) = R(m,m, l,m) = 0.

A remarkable fact is that a similar decoupling also occurs in the Maxwell system. Let F denote
a 2-form on M (the electromagnetic tensor) solution to the Maxwell vacuum equations:

dF = 0

d ⋆ F = 0

where ⋆ is the Hodge operator associated to gM,a.

Pascal Millet
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Definition 1.9 (Teukolsky scalars for Maxwell).

Ψ1 := F (l,m)

Ψ−1 := (r − ia cos θ)2F (m,n)

Theorem 1.10 (Teukolsky). There exists two scalar second order linear differential operators T1

and T−1 with principal symbol ρ2gµνξµξν (where we used the Einstein summation convention for
repeated indices) such that:

T1Ψ1 = 0

T−1Ψ−1 = 0

In fact, it turns out that the Teukolsky operator Ts can be defined for every s ∈ 1
2Z and the

operators T± 1
2
are obtained when decoupling the massless neutrino equation (see [58] for details).

In Boyer-Lindquist coordinates and in the tetrad:6

l := (r2 + a2)∂t +∆r∂r + a∂ϕ

n :=
r2 + a2

2ρ2∆r
∂t −

1

2ρ2
∂r +

a

2ρ2∆r
∂ϕ

m :=
ia sin θ√

2(r + ia cos θ)
∂t +

1√
2(r + ia cos θ)

∂θ +
i√

2(r + ia cos θ) sin θ
∂ϕ

the Teukolsky operator is7

Ts = ρ2□gM,a + 2s(r −M)∂r − 2s

(
a(r −M)

∆r
+

i cos θ

sin2 θ

)
∂ϕ

− 2s

(
M(r2 − a2)

∆r
− r − ia cos θ

)
∂t +

(
s2 cot2 θ + s

)

2 Main result

2.1 Related works about polynomial tails for waves on black hole spacetimes

The question of characterizing the precise polynomial rate of decay for wave equations on black hole
spacetimes was first addressed in the physics literature. The optimal rate for linear perturbations
on a Schwarzschild spacetime was conjectured by Price [51, 52], later clarified by Price-Burko [53]
and generalized to Kerr spacetimes in [26, 17]. In the mathematical literature, the wave equa-
tion s = 0 has been the focus of extensive study starting with the pioneer contributions by Wald
and Kay-Wald [62, 28]. The question of optimal decay on subextremal Kerr black holes in this
case is now well understood. Tataru [57] (see also [44] for a generalization) obtained the optimal
decay rate for a family of stationary spacetimes including the subextremal Kerr family assuming
a local integrated energy estimate (this estimate holds for the full subextremal range of parame-
ters as proved by Dafermos–Rodnianski–Shlapentokh-Rothman [11]). Using a different approach
Donninger-Schlag-Soffer [12, 13] obtained the optimal local decay rate on Schwarzschild black holes.

6It is a renormalized version of the so called Kinnersley tetrad.
7Despite the apparent singularity of Ts on the rotation axis, it is smooth as a differential operator acting on the

suitable complex line bundle as indicated in a previous footnote.
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The global optimal decay (by global we mean uniform up to null infinity) was obtained for spher-
ically symmetric backgrounds by Angelopoulos-Aretakis-Gajic [3, 2] where they also compute the
leading order term. The global optimal decay and leading order term are obtained by Hintz [24]
for subextremal Kerr black holes using spectral methods. A similar expansion including the case of
initial data with non zero Newman-Penrose charges was later obtained by Angelopoulos-Aretakis-
Gajic [4] using a physical space approach.

For higher spin, Donninger-Schlag-Soffer [13] (later refined by Metcalfe-Tataru-Tohaneanu [45]
in the case s = ±1 under an integrated local energy decay assumption) obtained an explicit but
sub optimal polynomial decay rate for Teukolsky solutions with spin ±1,±2 on a Schwarzschild
background. On a slowly rotating Kerr black hole, integrated local energy decay was proved for the
Teukolsky equation for spin s = ±1 by Ma [36] and for spin s = ±2 by Ma [37] and independently
by Dafermos-Holzegel-Rodnianski [9]. On the Schwarzschild background, Price’s law was obtained
by Ma-Zhang for spin s = ±1

2 ,±1,±2 in [39, 40]. Ma-Zhang [38] further generalized their result to
the Price’s law (with computation of the leading order term) for spin s = ±1,±2 on the exterior
region of a slowly rotating Kerr black hole |a| ≪ M (and under an integrated local energy decay
assumption in the case |a| < M). The result of [47] uses a different approach to make the leading
order development unconditional for |a| < M and it also extends to all spins s ∈ 1

2Z. Independently,
a boundedness of the energy and integrated local energy decay result in the full subextremal range
has been obtained by Shlapentokh-Rothman-Teixeira da Costa [55, 56].

On more general asymptotically flat background, the recent works by Morgan and Morgan-
Wunsch [48, 49] which establish a connection between the rate of convergence of a stationary
Lorentzian metric towards the Minkowski metric, the regularity of the resolvent near zero energy
and the pointwise decay rate of solutions of the wave equation using techniques closely related to the
ones we present here. For a different approach on this problem including the non-stationary case,
see also the work of Looi [33]. Finally, we highlight the new framework developed by Luk-Oh [35]
to obtain leading-order expansions from weaker a priori bounds in a very general context (including
for dynamical backgrounds and non linear equations) and the work Looi-Xiong [34] which employs
a generalized low resolvent expansion to obtain the leading order term for semilinear wave equations
on an asymptotically flat background building upon previous works by Looi [32, 31].

2.2 Large time asymptotics for solutions of the Teukolsky equation

The main result of [47] is the following:

Theorem 2.1. We consider a subextremal Kerr spacetime (|a| < M). We fix s ∈ 1
2Z. Let u0, u1

smooth and compactly supported on Σ0and let u be the solution of the Cauchy problem





Tsu = 0

u|Σ0
= u0

∂
∂tu|Σ0

= u1

Then there exists ε > 0 such that:

|u(r, t, θ, ϕ)− pu0,u1(r, t, θ, ϕ)| ≤ Cr−1+t−2−|s|+s−ε

(
t

r
+ 1

)−1−s−|s|

Pascal Millet
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with

p = t−3−2|s| (2 |s|+ 2)
(
t
r

)2+|s|+s
+ 2(|s| − s+ 1)

(
t
r

)1+|s|+s

(
t
r + 2

)2+|s|+s
Fu0,u1

where Fu0,u1(r, θ, ϕ) can be expressed with hypergeometric functions and spin weighted spherical
harmonics.

Remark 2.2. Instead of smoothness, we can require a finite (high) order of Sobolev regularity.
Denoting by /∂ any smooth vector field on S2, we can consider the following decay assumption
instead of compact support:

r1+α(r∂r)
k1 /∂

k2u0 ∈ L2

(
(M,+∞)× S2,

dr

r
dvolS2

)

r2+α(r∂r)
k1 /∂

k2u1 ∈ L2

(
(M,+∞)× S2,

dr

r
dvolS2

)

for all k1, k2 ≥ 0 with k1 + k2 ≤ N where N is sufficiently large and α ∈ (0, 1). In this case, the
result is a polynomial decay for the solution namely, for any ε > 0:

|u| ≲ 1

r1−εtα−ε
. (5)

We refer the reader to [47] for a more precise statement (including a better time decay in (5) at
the cost of a worst r weight) and bounds on derivatives of u.

3 Overview of the proof

3.1 General strategy

The proof relies on microlocal and spectral methods (and in particular on works by Vasy [59, 60, 61],
Wunsch-Zworski [64] and Dyatlov [14]). It uses the b and scattering pseudodifferential algebras
introduced by Melrose [43, 42] and Vasy’s formulation of radial point estimates first introduced
by Melrose [41]. A crucial point in the proof of our result is the analysis of the low energy limit
of the resolvent which has been initiated in the Euclidean context by the work of Jensen-Kato
[27]. Although we adopt Vasy’s point of view [61] for the low energy analysis, we mention [6, 5,
7, 18, 19, 20] for a different perspective on this problem. The spectral and microlocal methods
have recently led to a linear stability result for Einstein’s equations on Kerr black holes with small
angular momentum by Häfner-Hintz-Vasy [21], a linear stability result for weakly charged and
slowly rotating Kerr-Newman black hole by He [22] and to the sharp asymptotic description of
scalar waves by Hintz [24] for |a| < M .

The first step is to translate the Cauchy problem to a forcing problem. Let t0 ∈ R, χ be a
smooth function such that supp(χ) ⊂ [t0,+∞) and χ = 1 on [t0 + η,+∞) with η > 0. Choosing t0
and η correctly, we can assume that supp(u) ∩ {t0 ≤ t ≤ t0 + η} is compact. We define:

v := χ(t)u

f := Tsv = [Ts, χ(t)]u ∈ C∞
c (M)

Exp. no VII— Leading-order term expansion for the Teukolsky equation on subextremal Kerr black holes
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Since u = v for large t, we are reduced to study the forward forcing problem:

Tsv = f.

Since Ts commutes with t-translation, we take the Fourier-Laplace transform with respect to t:

f̂(σ) :=

∫
eiσtf(t)dt

v̂(σ) :=

∫
eiσtv(t)dt

T̂s(σ) := eiσtTse
−iσt

T̂s(σ)v̂ = f̂

For this to make sense, we take ℑ(σ) > C where C is the constant in some crude Gronwall
exponential bound that we have on v. A crucial step is then to prove that the resolvent operator
R(σ) exists in order to write the following integral representation formula for v:

v(t) =

∫

R+i(C+1)
e−iσtR(σ)f̂(σ)dσ

The next goal is to prove that the family R(σ) is in fact holomorphic on {ℑ(σ) > 0} and continuous
up to the real axis. A contour deformation argument will then lead to:

v(t) =

∫

R
e−iσtR(σ)f̂(σ)dσ.

Formal integration by part provides:

∥v(t)∥X ≤ t−k

∫

R

∥∥∥∂k
σR(σ)f̂(σ)

∥∥∥
X
dσ

where X is a weighted Sobolev space on (M,+∞)r × S2. In view of this informal argument, we
need to understand the regularity of R(σ) on the real axis to quantify the decay of v. The contour
deformation argument and the polynomial bound in time also require decay estimates for R(σ)f̂(σ)
and ∂σR(σ)f̂(σ) as |ℜ(σ)| → +∞ (high frequency estimate). The leading-order expansion of v for
large t then corresponds to the inverse Fourier transform of the most singular part of R(σ)f̂(σ).

3.2 Existence of the resolvent

To obtain the existence of the resolvent, we prove that T̂s(σ) is Fredholm of index zero between
suitable weighted Sobolev spaces and that it has a trivial kernel. The Fredholm property is proved
through Fredholm estimates. A possible general statement is given in the following lemma (see [59,
Section 2.6] or [47, Lemma 6.23] for a proof):

Lemma 3.1. Let X0 ⊂ X1 ⊂ X2 and Y0 ⊂ Y1 ⊂ Y2 be Banach spaces (with continuous dense
inclusions). Let P : X1 → Y2 be a bounded operator such that P|X0

is bounded from X0 to Y1.
We assume that both inclusions X1 ⊂ X2 and Y0 ⊂ Y1 are compact and that there exists C > 0
such that for all u ∈ X1 and all v ∈ Y ∗

1 :

∥u∥X1
≤ C

(
∥Pu∥Y1

+ ∥u∥X2

)
(6)

∥v∥Y ∗
1
≤ C

(
∥P ∗v∥X∗

1
+ ∥v∥Y ∗

0

)
. (7)
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where the right hand side may be infinite (in which case the estimate is empty). Under these
assumptions, P is Fredholm as an operator between the Banach spaces X := {u ∈ X1 : Pu ∈ Y1}
(endowed with the norm ∥u∥2X = ∥u∥2X1

+ ∥Pu∥2Y1
) and Y1.

In the setting of weighted Sobolev spaces, the inclusion X1 ⊂ X2 is compact if the norm on X1

is stronger than the norm on X2 both in terms of regularity and in terms of decay and similarly for
the inclusion Y0 ⊂ Y1. The usual principal symbol provides some indication about the behavior of
a differential operator with respect to regularity and there is an analog for decay that we call here
the principal scattering symbol near infinity.

Definition 3.2. Let ρ = 1
r be the boundary defining function of infinity (the structure of manifold

with boundary being defined by X := (M,+∞)r × S2
⊔
[0, 1)ρ × S2/(r, ω) ∼ (ρ−1, ω)).

The scattering differential algebra is the C∞(X)-algebra generated by 1, ρ2∂ρ and ρ/∂ for all
smooth vector fields /∂ on S2.

The key property of this algebra allowing us to define a notion of principal symbol is the
commutator inclusion:

[Diffsc,Diffsc] ⊂ ρDiffsc

In other words, Diffsc is commutative at first order in ρ. Abstractly, the principal symbol map
can be defined as the projection in the quotient Diffsc/ρDiffsc. The main obstacle for obtaining
Fredholm estimates for T̂s(σ) is the lack of ellipticity both in the usual differential sense near the
horizon and in the scattering sense near r = +∞. The principal symbol of T̂s(σ) in the usual
differential sense is

p : ξ ∈ T ∗(M,+∞)× S2 7→ ρ2g−1
M,a(ξ̃, ξ̃)

where ξ̃ = π∗ξ with π : Rt × (M,+∞)r × S2 → (M,+∞)r × S2 being the projection. Therefore,
p vanishes on a conical subset of T ∗(M,+∞) × S2 \ {0} if and only if there exists a null covector
ξ̃ ∈ T ∗M with ξ̃(∂t) = 0. Such a ξ̃ ∈ T ∗

xM exists if and only if ∂t is not timelike at x which is
the case for x ∈ E as we have seen before (we remind that ∂t = ∂t = T ). We can check that the
scattering principal symbol at infinity of T̂s(σ) is also not invertible in the commutative algebra
Diffsc/ρDiffsc.

To overcome the difficulty posed by this lack of ellipticity, we need to complement estimates on
elliptic phase-space regions with:

• Propagation of singularities estimates.

• Radial points estimates at the horizon following [59].

• Estimates near r = +∞ based on [60, 61, 41].

The precise spaces where we can prove the Fredholm estimates are dictated by the regularity and
decay thresholds in the radial point estimates. These thresholds are sensitive to the subprincipal
term of T̂s(σ) leading ultimately to different mapping properties for the resolvent R(σ).

Remark 3.3. An important difficulty in the Fredholm estimates is due to the degeneration8 of
T̂s(σ) at σ = 0. This difficulty is treated in [61].

8In the sense that the scattering characteristic set collapses at σ = 0 and this collapse has to be resolved to get
uniform estimates.
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The index zero property is obtained by a continuity argument from the high frequency estimates
(which provides actual invertibility estimates instead of Fredholm ones). It then remains to prove
that T̂s(σ) has no kernel for σ ∈ C with ℑ(σ) ≥ 0. The key result in this direction is due to Whiting
in [63] proving the absence of mode solutions for ℑ(σ) > 0, later extended to the real axis in [1].

We introduce the weighted Sobolev spaces:

Proposition 3.4. Let s ∈ N and l ∈ R. The space Hs,l is obtained by the completion of the space
of smooth compactly supported functions in the norm:

∥u∥2
Hs,l

b

:=
∑

α+β≤s

∫ +∞

M

∥∥∥rl(r∂r)αu
∥∥∥
2

Hβ
b (S

2)
r2dr

where Hβ(S2) is the usual Sobolev norm of order β on S2.

The outcome of the Fredholm estimates and absence of mode is summarized in the following
propositions:9

Proposition 3.5. Let K be a compact subset of the closed upper half-plane such that 0 /∈ K. Let
l < −3/2. There exists N ∈ N such that for all r̃ ≥ N and for all σ ∈ K: R(σ) : H r̃,l

b → H r̃,l+1
b is

uniformly bounded.

As previously mentioned, the bound in the previous proposition blows up as σ → 0 and the
uniform analysis following [61] enables to show that the blow up is of order |σ|−1 and provides a
uniform (up to σ = 0) bound for the resolvent and its derivatives in modified functional spaces:

Proposition 3.6. Let K ⊂ {ℑ(σ) ≥ 0} be a sufficiently small neighborhood of 0 in {ℑ(σ) ≥ 0}.
Let l ∈ (−(3/2)− s− |s| ,−1/2), ε ∈ [0, 1]. There exists N ∈ N such that for all r̃ ≥ N and for all
σ ∈ K \ {0}:

∥R(σ)∥L(H r̃,l−ε
b ,H r̃,l

b )
≤ C |σ|−ε

Crucially, the interval of allowed weights in Proposition 3.6 depends on s (this dependence
comes from the subprincipal term in the operator T̂s).

To simplify the discussion, since we are not focusing on regularity, we introduce the Fréchet
spaces:

Al := H∞,l = ∩s∈NH
s,l

whose seminorms are the Sobolev norms (∥·∥Hs,l)s∈N.

3.3 High frequency estimate

Proposition (3.5) does not specify how the resolvent estimate behaves as |σ| → +∞. This is the
purpose of the high frequency estimate. Since f̂(σ) has Schwartz bounds with respect to σ, it
is enough to obtain polynomially growing bounds for R(σ) and its derivatives near |σ| = +∞.

9In this note, we do not aim to provide optimal or even precise statements regarding regularity.
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We introduce the semiclassical parameter h = 1/|σ|, the rescaled spectral parameter z = hσ and
the rescaled operator:

T̂s,h(z) := h2T̂s(h
−1z).

Since we are interested in the the behavior of T̂s(σ) for 0 ≤ ℑ(σ) ≤ C, we assume z = z0 + O(h)
with z0 ∈ {−1, 1}. The semiclassical differential operator T̂s,h(z) is non elliptic. The semiclassical
characteristic set has a more complex structure than the classical characteristic set. To illustrate
this point, we consider the case of trapped null geodesics.

Let X := (M,+∞) × S2 and let π : Rt ×X → X be the second projection. The semiclassical
principal symbol of T̂s,h(z) at ξ ∈ T ∗

xX is

ph(ξ) := ρ2G(−z0dt+ π∗ξ)

where the right-hand side is evaluated at any point of the form (t, x) (since ∂t = T is Killing,
it does not depend on the particular choice of t). Let µ : T ∗(Rt×X) → T ∗X be the projection on10

T ∗X parallel to dt (in particular we have µ(−z0dt + π∗ξ) = ξ). Let ξ̃ ∈ T ∗
(t,x)(Rt × X) such that

G(ξ̃, ξ̃) = 0 and ξ̃(∂t) = −z0. We have:

ph(µ(ξ̃)) = ρ2G(ξ̃, ξ̃) = 0

Hph(µ(ξ̃)) = ρ2dξ̃µ(HG(ξ̃))

where HG is the Hamiltonian flow of G (generator of the geodesic flow on T ∗(Rt × X)) and Hph

is the Hamiltonian vector field associated to ph. Denoting by Φs
h the Hamiltonian flow of ph and

denoting by Φs the geodesic flow on T ∗(Rt ×X), we deduce:

Φs
h(µ(ξ̃)) = µΦf(s)(ξ̃)

where f is a reparametrization function11 (necessary because of the factor ρ2 > 0). As a con-
sequence, we see that if ξ̃ with ξ̃(∂t) = −z0 is a point in phase space belonging to the lift of a
trapped null geodesic, the corresponding point µ(ξ̃) belongs to the characteristic set of ph and the
corresponding semiclassical Hamiltonian trajectory has a projection onto X which remains in a
compact subset of (r+,+∞)×S2. The set of such points in phase space is called the trapped set K
and is stable by the flow and compact. The estimate of T̂s,h(z) requires an estimate near K in
addition to the semiclassical version of propagation of singularities, radial point estimates at the
horizon (see [59]), semiclassical radial point estimates near r = +∞ (see [60]). The trapped set K is
normally hyperbolic which means in this context that there exists Γ+ and Γ− smooth codimension
one orientable submanifolds stable by the Hamiltonian flow of ph such that:

• Γ+ and Γ− intersect transversally and the intersection

K̃ := Γ+ ∩ Γ−.

satisfies

K = K̃ ∩ p−1({0})
10Using implicitly the identification between T ∗X and ker(∂t) provided by dπ
11with f(0) = 0. The function f depends on ξ̃.
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• There exist smooth one-dimensional sub-bundles V± ⊂ T (T ∗X) over K stable by the flow
of ph such that:

TK̃Γ± = V± ⊕ TK̃

• There exists ν > 0 and C > 0 such that for all s > 0:

sup
ξ∈K

∥∥∥(dξe∓sHph )|V±

∥∥∥ ≤ Ce−νs (8)

where the norm in (8) comes from an arbitrary metric on V±.

This normal hyperbolicity is the principal ingredient leading to the estimate near the trapped set
which can be deduced from [64, 14].

trapped trajectory

stable trajectory

unstable trajectory

Figure 2: Representation of the normally hyperbolic trapped set.

3.4 Regularity of the resolvent on the real axis

To prove the regularity of the resolvent, we use extensively the resolvent identity:

R(σ)−R(σ′) = R(σ)(T̂s(σ
′)− T̂s(σ))R(σ′)

Let r, l ∈ R. The operator T̂s(σ′)−T̂s(σ)
σ−σ′ is uniformly bounded from Al to Al+1 for σ ∈ K where

K ⊂ {ℑ(σ) ≥ 0} is compact and 0 /∈ K. We deduce that:

R(σ)−R(σ′)
σ − σ′

is locally bounded from R \ {0} to L(Al,Al+1) and therefore R(σ) is locally Lipschitz. Iterations of
this procedure provide an arbitrarily high amount of regularity for R(σ) from R\{0} to L(Al,Al+1).

The regularity at zero is more delicate. Indeed, if we want the resolvent to be uniformly bounded
as |σ| → 0, we have to take ε = 0 in Proposition 3.6 but then the resolvent does not provide any
extra spatial decay and cannot compensate for the loss due to (T̂s(0)− T̂s(σ))/σ. Considering the
fact that we must have l ∈ (−(3/2) − s − |s| ,−1/2) in Proposition 3.6, this explains why the
resolvent has a limited regularity at σ = 0. To formalize, this argument, we introduce the sequence
defined by:

• w0 = f̂(σ).
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• While wk ∈ C∞((−1, 1)σ,Al) with l > −(3/2)− s− |s|, we define

wk+1 =
T̂s(0)− T̂s(σ)

σ
R(0)wk.

Let N be the index of the last element in the sequence (i.e. the first integer such that ∀l >
−(3/2)− s− |s| , wN /∈ C∞((−1, 1)σ,Al)). By induction, we get:

σk+1R(σ)wk+1 = σk (R(σ)−R(0))wk

R(σ)f̂(σ) = σNR(σ)wN +

N−1∑

k=0

σkR(0)wk (9)

where the second term of the right-hand side of (9) is smooth with respect to σ. Since we are
only interested in the most singular part of R(σ)f̂(σ), we can neglect it as well as12 the term
σNR(σ)(wN (σ)− wN (0)).

The analysis of R(0) provides a development for each wk as r → +∞ and we deduce that
wN (0) ∼ rs+|s|c for some function on the sphere c. It can then be proved that since wN (0)− rs+|s|c
has a better decay with respect to r, R(σ)f̂(σ) = σNR(σ)rs+|s|c modulo more regular term. A last
step involving singular analysis is needed to further simplify this last expression and obtain an
explicit description of the singularity. We refer the reader to [47] for details on this last part.
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partielles non linéaires. Acta Math., 88:141–225, 1952.

[16] Elena Giorgi, Sergiu Klainerman, and Jérémie Szeftel. A general formalism for the stability of
Kerr, 2020. arXiv:2002.02740.

[17] Reinaldo J. Gleiser, Richard H. Price, and Jorge Pullin. Late-time tails in the Kerr spacetime.
Classical Quantum Gravity, 25(7):6, 2008. Id/No 072001.

[18] Colin Guillarmou and Andrew Hassell. Resolvent at low energy and Riesz transform for
Schrödinger operators on asymptotically conic manifolds. I. Math. Ann., 341(4):859–896, 2008.

[19] Colin Guillarmou and Andrew Hassell. Resolvent at low energy and Riesz transform for
Schrödinger operators on asymptotically conic manifolds. II. Ann. Inst. Fourier, 59(4):1553–
1610, 2009.

[20] Colin Guillarmou, Andrew Hassell, and Adam Sikora. Resolvent at low energy. III: The spectral
measure. Trans. Am. Math. Soc., 365(11):6103–6148, 2013.
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