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Asymptotic stability of small solitons for
one-dimensional nonlinear Schrödinger equations

Yvan Martel

Laboratoire de mathématiques de Versailles
UVSQ, Université Paris-Saclay, CNRS,

45 avenue des États-Unis, 78035 Versailles Cedex, France

Abstract

We review results from two recent articles [34, 35] on the asymptotic
completeness of small standing solitary waves for a class of one-dimensional
nonlinear Schrödinger equations. The models considered are perturbations
of the integrable cubic 1D Schrödinger equation. The notion of internal
modes plays an important role and part of the discussion concerns their
existence. In case an internal mode exists, the proof of asymptotic stability
is more delicate and relies on a nonlinear variant of the Fermi golden rule.
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1 Near cubic 1D Schrödinger equations

In these notes, we focus on the one-dimensional Schrödinger equation with a double
power, cubic and quintic, nonlinearity

{
i∂tψ + ∂2xψ + |ψ|2ψ + σ|ψ|4ψ = 0 (t, x) ∈ R× R
ψ(0) = ψ0 x ∈ R

(1)

where σ = ±1 determines the sign of the quintic perturbation and where the initial
data ψ0 is taken in the Sobolev space H1(R). The Cauchy problem for (1) is locally
well-posed in H1(R) (see for instance [3]). Moreover, for any solution ψ in H1(R),
the mass, momentum and energy

∫
|ψ|2, ℑ

∫
ψ∂yψ̄,

∫ (1
2
|∂xψ|2 −

1

4
|ψ|4 − σ

6
|ψ|6

)

are conserved, as long as ψ(t) exists. If σ = −1, or if σ = +1 and the initial data is
sufficiently small in H1, then the corresponding solution is global and bounded in
the energy space H1. We recall the invariances by Galilean transform, translation
and phase: if ψ is a solution of (1) then, for any β, x0, γ ∈ R, the function

ζ(t, x) = ei(βx−β2t+γ)ψ(t, x− 2βt− x0)

is also a solution of (1).

Let us now introduce the solitary waves. Let Ω− = (0, 3
16
) and Ω+ = (0,+∞).

For any ω ∈ Ωσ, there exists a unique even positive solution ϕω ∈ H1(R) of the
equation

ϕ′′
ω − ωϕω + ϕ3

ω + σϕ5
ω = 0 x ∈ R

given by ϕω(x) =
√
ωQω(

√
ωx), where the function Qω solves the equation

Q′′
ω −Qω +Q3

ω + σωQ5
ω = 0 x ∈ R

and is explicitly defined by

Qω(y) =

√
4

1 + aω cosh 2y
with aω =

√
1 +

16

3
σω . (2)

The formula (2) can be found, for example, in [44] and [46]. With such notation,
the function ψ(t, x) = eiωtϕω(x) is a standing wave solution of (1). Moreover, the
invariances of the equation generate a larger family of traveling waves, of the form

ψ(t, x) = ei(βx−β2t+ωt+γ)ϕω(x− 2βt− x0)
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for any parameters ω ∈ Ωσ and β, x0, γ ∈ R.

Observe that when ω → 0, one has Qω → Q, where

Q(y) =

√
4

1 + cosh 2y
=

√
2 sech(y) solves −Q′′ +Q−Q3 = 0.

More generally, for a solution ψ of (1), by changing variables

ψ(t, x) =
√
ω0ζ(s, y), s = ω0t, x =

√
ω0y,

one obtains a solution ζ of the equation

i∂sζ + ∂2yζ + |ζ|2ζ + σω0|ζ|4ζ = 0.

This means that for small solutions, which corresponds to taking ω0 small, equa-
tion (1) is a perturbation of the integrable focusing cubic Schrödinger equation

i∂tψ + ∂2xψ + |ψ|2ψ = 0 (t, x) ∈ R× R. (3)

For σ = +1, the other asymptotic problem ω → +∞, which corresponds to
ω

1
4Qω → Q∞, where

Q∞(y) =
31/4√
cosh 2y

solves −Q′′
∞ +Q∞ −Q5

∞ = 0,

is very interesting but it is an open problem not to be discussed here. For σ = −1,
the limit ω → 3/16 is also interesting.

In these notes, we shall focus on the stability properties of small solitary waves.
Of course, equation (1) is only a particular example of general semilinear pertur-
bations of the integrable equation (3) of the form

i∂tψ + ∂2xψ + |ψ|2ψ + g(|ψ|2)ψ = 0, (4)

where the function g : [0,+∞) → R is sufficiently regular and satisfies g(s) = o(s).
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2 The classical orbital stability result

The stability property of the solitary wave ψ(t, x) = eiωtϕω(x) as a solution of (1)
is a classical and well-understood question. We recall from [44] the orbital stability
result for general perturbations of the initial data in the energy space H1(R).

Theorem 1 (Orbital stability, [44, Theorem 3]). Let σ = ±1. For any ω0 ∈ Ωσ

and any ε > 0, there exists δ > 0 such that if ψ0 ∈ H1(R), ∥ψ0 − ϕω0∥H1(R) < δ
and ψ is the solution of (1) with ψ(0) = ψ0, then

sup
t∈R

inf
(γ,y)∈R2

∥ψ(t, ·+ y)− eiγϕω0∥H1(R) < ε.

Remark. Note that the stability holds for any ω0 ∈ Ωσ. In particular, for σ = +1,
solitary waves of any scale are stable. The freedom left by the infimum in the two
parameters γ and y in Theorem 1 is necessary. For example, for β ̸= 0 small, the
initial data

ψ0(x) = eiβxϕω0(x)

is close in H1(R) to ϕω0 and the corresponding solution (we use the Galilean
transform to determine it)

ψ(t, x) = ei(βx−β2t+ω0t)ϕω0(x− 2βt)

is close to eiωtϕω0(x) for all time t, but only up to time-dependent phase and
translation. If the initial data is even (which is the framework of the rest of this
paper), only the parameter γ is relevant in the stability statement.

Remark. The proof of the stability result in [44] follows from the general varia-
tional arguments of [4, 19, 56]. Moreover, the same statement holds for nonlinear
Schrödinger equations with a large class of nonlinearities, under a simple stability
property, checked in [44] for (1). Interestingly, the orbital stability result is proved
using only the conservation of mass and energy.

3 The asymptotic stability result

In the framework of the stability result, we discuss the more precise asymptotic
stability property of the family of small standing waves of (1), under even pertur-
bations of the initial data in the energy space.

Theorem 2 (Asymptotic stability of small solitary waves, [34, 35]). Let σ = ±1.
For ω0 > 0 sufficiently small, there exists δ > 0 such that if ψ0 ∈ H1(R) is even
and satisfies ∥ψ0 − ϕω0∥H1(R) < δ, then there exist ω+ > 0 and a C1 function
γ : [0,+∞) → R with lim+∞ γ′ = ω+, such that the solution ψ of (1) satisfies

lim
t→+∞

e−iγ(t)ψ(t) = ϕω+ uniformly on compact sets of R.

Yvan Martel
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Remark. The range of applicability of Theorem 2 is much more restricted than
the one of Theorem 1. It applies to sufficiently small solitary waves and under a
symmetry assumption on the initial data. We expect the symmetry assumption to
be technical, since no additional spectral difficulty appears in the non symmetric
case. In contrast, the smallness assumption is necessary in the approach, the
closeness to the integrable case being strongly used in the computations. It will
certainly require new key ingredients to deal with all the solitary waves, at least
for σ = +1. For σ = −1, Theorem 2 holds without the symmetry assumption and
for ω0 ∈ (0, 1/8] (see [34]). Thus, in this case, the question is open only for the
interval ω0 ∈ (1/8, 3/16). For reasons that will be explained below, the proof of
the result for σ = +1 is much more involved than for the case σ = −1.

Remark. The orbital stability property in Theorem 1 implies that for all time,
the solution stays close to the family of solitary waves and more precisely, close
to the initial solitary wave ϕω0 , up to a phase (for even data). In particular, in
the conclusion of Theorem 1, one can replace ϕω0 by ϕω for any ω close to ω0.
In contrast, the asymptotic stability property, as stated in Theorem 2, says that
as t → +∞, the solution converges, locally in space and up to a time-dependent
phase, to a final asymptotic solitary wave characterized by a unique frequency ω+.
It follows from the orbital stability that in the context of Theorem 2, the quantity
|ω+ − ω0| is arbitrarily small for ∥ψ0 − ϕω0∥H1(R) small. By the time reversibility
of equation (1), the same result holds for t → −∞, with a possibly different
parameter ω−.

Remark. For the integrable Schrödinger equation (3), the asymptotic stability
of solitary waves as stated in Theorem 2 is not true. Indeed, formula (2.15)
page 333 of [45] with the choice of parameters b1 = b2 = 1, ξ1 = ξ2 = 0, η1 = 1/2
and η2 = η/2 provides an explicit periodic solution of (3) with a 2-parallel-soliton
structure, which is arbitrarily close in H1(R) to the soliton

√
2 sech(x) when η,

parameter related to the size of the second soliton, is small. Recall that such ex-
plicit expressions of parallel multi-solitons were obtained by applying the Inverse
Scattering Transform theory to the integrable equation (3); see [57].

However, the notion of asymptotic stability depends on the topology used and
techniques of complete integrability were successfully applied in [16] to prove the
asymptotic stability of solitons of (3) in suitable L2 weighted spaces. Indeed,
considering initial data close to a solitary wave in a weighted space is a way to
remove the possibility of arbitrarily small solitons (which have a large weighted
norm). Another approach to asymptotic stability for solitons of (3), not based on
the integrable structure, is given in the recent preprint [30].

One can conclude from this discussion that the addition to the equation of the
nonlinear perturbative term σ|u|4u not only destroys the integrability structure
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but also drastically modifies the dynamical properties of flow of (1) in a vicinity
of the solitary waves in the energy space.

Remark. We now justify that for an initial perturbation in the energy space, the
convergence for the supremum norm on any compact set of R, as obtained in
Theorem 2, is optimal. Indeed, [38] shows the existence of solutions of general
nonlinear Schrödinger equations behaving asymptotically as the sum of decoupled
solitary waves. By decoupled, we mean that the speeds of the solitary waves are
two by two different (excluding parallel multi-solitons as discussed in the previous
remark). We state the result more precisely: for any 0 < ω < ω0 and any β > 0,
there exists an even solution ψ of (1) with the asymptotic behavior

lim
t→+∞

∥ψ(t)− (q0 + q+ + q−)(t)∥H1(R) = 0,

where q0 and q± are the solitary waves explicitly given by

q0(t, x) = eiω0tϕω0(x), q±(t, x) = ei(±βx−β2t+ωt)ϕω(x∓ 2βt).

Such a solution may be called a 3-soliton or more accurately, since equation (1)
is not completely integrable, an asymptotic 3-solitary wave. (Such a solution also
exists with any number of solitary waves.) Choosing 0 < ω ≪ ω0, the solitary
waves q+ and q− are arbitrarily small in H1 norm compared to q0. Therefore, the
existence of the solution ψ shows that the solitary wave q0 is not asymptotically
stable for the supremum norm on the whole R, for any small perturbation in the
energy space.

In the literature (see references in Section 9), stronger notions of asymptotic
stability are often considered, and explicit decay rates are obtained. Such results
hold for small perturbations of the initial data in suitable weighted spaces. Small
solitons, like q± defined above, do belong to such weighted spaces but have large
norms, and so they are not acceptable perturbations. Working in weighted spaces
thus provides more precise asymptotic results and may allow to deal with the
integrable case (as discussed above), while working in the energy space allows the
presence of any number of arbitrarily small solitary waves and to distinguish the
specific properties of the integrable versus non integrable cases.

Remark. In [48, 49], the result of Theorem 2 was generalized to equation (4) for
a large class of nonlinear perturbations g. Moreover, the case of the equation
i∂tψ + ∂2xψ + |ψ|p−1ψ = 0 is treated in [14] for p close to 3. The construction of
the internal mode in this case is due to [8]. See also [15] for some another range
of p. Interestingly, the approach in [14, 15] involves dispersive estimates of different
nature than [34, 35].

In the next sections, we give an idea of the proof of Theorem 2.

Yvan Martel
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4 Linearization around the solitary wave family

In these notes, ω0 > 0 is sufficiently small and we consider a global solution ψ(t, x)
of (1) which is close to ϕω0 for all t ≥ 0. Then, it is standard to define time-
dependent C1 functions γ : [0,+∞) → γ(s) ∈ R and ω : [0,+∞) → ω(s) ∈
(0,+∞) such that the function u = u1 + iu2 defined by

ψ(t, x) = exp(iγ(s))
√
ω(s)

(
Qω(s)(y) + u1(s, y) + iu2(s, y)

)

where s and y are the rescaled time and space variables, respectively defined by

dt =
ds

ω(s)
, x =

y√
ω(s)

,

satisfies the below orthogonality relations

∫
u2(s)ΛωQω(s) =

∫
u1(s)Qω(s) = 0 (5)

where

Λ =
1

2
+

1

2
y∂y, Λω = Λ+ ω∂ω.

In such variables, the result of Theorem 2 is equivalent to the properties u(s) → 0
uniformly on bounded intervals of R and ω(s) → ω+ as s→ +∞.

Setting
fω(ψ) = |ψ|2ψ + σω|ψ|4ψ,

and

L+ = −∂2y + 1− f ′
ω(Qω) = −∂2y + 1− 3Q2

ω − 5σωQ4
ω ,

L− = −∂2y + 1− fω(Qω)/Qω = −∂2y + 1−Q2
ω − σωQ4

ω ,

the functions γ(s), ω(s) and u(s, y) satisfy

{
u̇1 = L−u2 + µ2 + p2 − q2

u̇2 = −L+u1 − µ1 − p1 + q1
(6)

where µk and pk are related to the time variation of the parameters

µ1 = (γ̇ − 1)Qω, µ2 = − ω̇
ω
ΛωQω,

p1 = (γ̇ − 1)u1 +
ω̇

ω
Λu2, p2 = (γ̇ − 1)u2 −

ω̇

ω
Λu1,
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while qk are related to the nonlinearity

q1 = ℜ{fω(Qω + u)− fω(Qω)− f ′
ω(Qω)u1} ,

q2 = ℑ{fω(Qω + u)− i(fω(Qω)/Qω)u2} .

Note that (5)-(6) is a differential system for (γ, ω, u). Indeed, differentiating (5)
and using (6), one find expressions for (γ̇ − 1) and ω̇ (we do not give them here),
which are sufficient to prove the bounds

|γ̇ − 1|+ |ω̇| ≲ ∥u∥2loc. (7)

(In these notes, we will use the notation ∥v∥loc for an L2 weighted norm of v of
the form ∥e−ω0/2v∥L2 , without giving more details.) We point out that the above
quadratic estimate in u is due to the specific choice of orthogonality conditions (5).
Looking back to the system (6), we see that the terms in µk are quadratic in u,
while the terms in pk are cubic and the terms in qk are at least quadratic. Thus,
even taking into account the modulation parameters γ and ω, the linearization
of (1) around a soliton involves the simple linear system

{
U̇1 = L−U2

U̇2 = −L+U1

(8)

complemented with the orthogonality conditions (5). We study this system in the
next section.

5 The spectral problem

Recall that by explicit computations, one has L−Qω = 0 and L+(ΛωQω) = −Qω.
In particular, the linear system has some simple explicit solutions, of the form

U(s, y) = aΛωQω(y) + i(as+ b)Qω(y)

for real constants a, b ∈ R. However, since
∫
QωΛωQω ̸= 0 (this property is related

to the stability of the solitary wave Qω), the orthogonality conditions (5) imply
a = b = 0. In other words, the orthogonality relations (5) rules out the even
solutions related to the invariances of the equation.

More generally, the spectral problem

{
L+V1 = λV2

L−V2 = λV1
(9)

Yvan Martel
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is relevant for the dynamics of (8). Indeed, if there exists a solution (λ, V1, V2) of
the system (9), then (U1, U2) defined by

U1(s, y) = sin(λs)V1(y) and U2(s, y) = cos(λs)V2(y) (10)

solves the linear evolution system (8). At the linear level, the possible existence of
such a time periodic solution (U1, U2) represents a serious difficulty to prove the
asymptotic stability property. Understanding the spectral problem (9) is thus a
key step. This is also where the analysis diverges between the cases σ = −1 and
σ = +1 since according to the formal arguments in [46], the problem (9) admits
an eigenvalue for σ = +1 and no eigenvalue for σ = −1 (up to the invariances).
For the threshold integrable case, there exists a resonance, but we will not discuss
further this delicate issue. To study rigorously the eigenvalue problem (9) and then
the evolution problem (8), it is convenient to use an auxiliary problem, introduced
for the first time in [34] in the context of the nonlinear Schrödinger equation and
called the transformed problem. Note that similar ideas were previously developed
for wave-type and KdV-type equations in [26, 33].

We define the operators

M+ = −∂2y + 1 + σ
ω

3
Q4

ω, M− = −∂2y + 1− σωQ4
ω, (11)

and

S = ∂y −
Q′

ω

Qω

, S∗ = −∂y −
Q′

ω

Qω

.

The introduction of M+ and M− is motivated by the below identity

S2L+L− =M+M−S
2. (12)

The proof of (12) follows from a direct computation, see [5, §3.4], [34, Lemma 7].

Remark. The above identity is inspired by the elementary conjugaison relation

SL− =M+S

which is simply deduced from L− = S∗S and M+ = SS∗. The interest of such
identities lies on the properties of the transformed operators M+ and M−, which
are more favorable than the ones of L+ and L− from the spectral point of view.
Indeed, from (11), we observe that the potentials involved inM+ andM− are small
for ω small. Moreover, since these potentials of M+ and M− have opposite signs,
depending on the value of σ, one of these potentiels is repulsive. Concretely, by the
identity (12), one factorises the operator S2 on the right, which removes the null
directions of L+L− related to the invariances. Note that the introduction of such
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an identity for linearized Schrödinger problems is reminiscent of the mechanism of
reduction of eigenvalues (see [12, 17, 26]).

For ω0 small, it is proved in [34] that the operator M+M− has no eigenvalue
for σ = −1, while an eigenvalue for M+M− is constructed in [35] for σ = +1.
Below, we present precise results which provide a justification to the claims in [46]
for ω0 small. Interestingly, for the threshold case σ = 0, which corresponds to
the integrable pure cubic case, one has M+ = M− = −∂2y + 1, and then +1 is
a resonance for the operator M+M−, associated to the constant function. Such
a simple expression for M+ and M− for σ = 0 has been a strong motivation for
working close to the integrable case, i.e. by perturbation theory, for the class of
equations (4) for small solitary waves.

We start with the result for σ = −1.

Proposition 1 (Non existence of internal mode for σ = −1, [34]). Let σ = −1.
For all ω > 0 sufficient small, if (λ,W1,W2) satisfies

{
M+W1 = λW2

M−W2 = λW1

(13)

then W1 = W2 = 0.
As a consequence, if (λ, V1, V2) satisfies (9), then V1 = V2 = 0, or V1 ∈

span(Qω), V2 ∈ span(Q′
ω) and λ = 0.

In fact, from [34], the above lemma holds for the range 0 < ω ≤ 1
8
. Moreover,

we note that the result holds without symmetry assumption.

Now, we turn to the case σ = +1. A key observation is that if λ ̸= 0 and
(W1,W2) satisfy (13) then by the identity (12),

L−L+(S
∗)2W1 = (S∗)2M−M+W1 = λ2(S∗)2W1.

Thus, setting V1 = (S∗)2W1 and V2 = λ−1L+V1, the pair (V1, V2) solves (9) with
the same λ.

Proposition 2 (Construction of the internal mode for σ = +1, [35]). Let σ = +1.
For all ω > 0 sufficiently small, there exist

λ = 1− 64

81
ω2 +O(ω3),

and non zero even functions W1,W2 satisfying (13). Moreover, setting V1 =
(S∗)2W1 and V2 = λ−1L+V1, (λ, V1, V2) solves (9). Finally, on R,

∣∣V1 − (1−Q2
0)e

−α|y|∣∣+
∣∣V2 − e−α|y|∣∣ ≲ ωe−α|y|.

where α =
√
1− λ.

Yvan Martel
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The construction of the internal mode in [35] is based on the fact that for ω
small, the transformed system (13) can be rewritten as a weakly coupled eigenvalue
problem, entering the theory developed in [40] (extending arguments of [47, 52] for
the scalar case). In practice, after some reformulations, the existence of λ follows
from the Implicit Function Theorem.

Remark. From the construction, one obtains expansions V1 = 1−Q2
0+ωR1+O(ω

2)
and V2 = 1+ ωR2 +O(ω2), where R1, R2 are explicit functions independent of ω.
This means that (λ, V1, V2) bifurcates from the resonance (1, 1 − Q2

0, 1) of the
integrable case, which corresponds in the present setting to ω = 0.

6 The Fermi golden rule

This section concerns only the case σ = +1. Indeed, in the case where σ = −1, i.e.
in the absence of internal mode, one can directly apply the dispersive estimates
of Section 7 to (u1, u2). For σ = +1, to prove the asymptotic stability property,
one has to extract and study the component related to the internal mode by
decomposition, introducing v = v1 + iv2,

u1(s, y) = v1(s, y) + b1(s)V1(s, y), u2(s, y) = v2(s, y) + b2(s)V2(s, y)

(note that V1 and V2 are functions of y but do also depend on s through the
parameter ω) where b1 and b2 are chosen so that

∫
v1V2 =

∫
v2V1 = 0.

Then, (v1, v2) satisfies the linearised system

{
v̇1 = L−v2 + µ2 + p⊥2 − q⊥2 − r⊥2
v̇2 = −L+v1 − µ1 − p⊤1 + q⊤1 + r⊤1

(14)

where the error terms are mainly projections of the error terms of the system for
(u1, u2). Moreover, the time-dependent function b = b1 + ib2 satisfies

{
ḃ1 = λb2 +B2

ḃ2 = −λb1 −B1

(15)

where B1 and B2 are error terms. Once the component (b1, b2) of the solution is
identified, the strategy to prove that it converges to 0 is specific and different from
the treatment of the infinite-dimensional residual component (v1, v2) by dispersive
estimates in Section 7. Indeed, while the dispersive estimates for (v1, v2) are linear
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by nature and based on the properties of the operators L+, L−, but not on the
expressions of the nonlinear error terms in (14), the linear part of the system in b is
not sufficient to understand the behavior of (b1, b2). One needs to use a nonlinear
variant of the Fermi golden rule, i.e. a specific property of the nonlinear terms
involved in the systems (14) and (15). The pioneering approach in [1, 53, 54]
consisted in solving formally the system (14), taking into account the terms of the
form bkbj in the second member and in putting them back into the equation of b.
Then, in the equation of b, there are quadratic terms in b, which are oscillatory,
and cubic terms in b, either directly present in the equation, or coming from
terms of the form bjvk and the previous formal resolution of (14). Formally, up to
oscillatory and higher order terms (both unimportant to determine the long time
behavior at the main order), one finds the ODE

ḃ = iλb− Γ2|b|2b
where the property Γ ̸= 0, called the Fermi golden rule, implies nonlinear damping
of b. Following exactly this methodology requires rather strong estimates on v to be
able to justify the above equation of b, which do not seem accessible by virial-type
identities. Therefore, we rely on a slightly different strategy, which is formally
equivalent but less demanding to be made rigorous. We identify the quadratic
terms in b in the equation of v, writing

{
v̇1 = L−v2 − b1b2F +O(|bv|+ |v|2)
v̇2 = −L+v1 + b21G+ b22H +O(|bv|+ |v|2)

where F , G and H are explicit functions

F = 2V1V2(Qω + 2ωQ3
ω), G = V 2

1 (3Qω + 10ωQ3
ω), H = V 2

2 (Qω + 2ωQ3
ω).

This is simply deduced from the explicit expressions of q1 and q2. From the system
in b, we will only need the linear part. In particular, setting d1 = b21−b22, d2 = 2b1b2,
we find at the main order {

ḋ1 = 2λd2

ḋ2 = −2λd1

Then, we consider non trivial even bounded functions g1, g2 such that
{
L+g1 = 2λg2

L−g2 = 2λg1

(the existence of such functions is standard, but the proof is easier using again the
identity (12)) and we define the new quantity

J = d1

∫
v2g1χA − d2

∫
v1g2χA
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where χ : R → R is a smooth even cut-off function such that

χ = 1 on [0, 1], χ = 0 on [2,+∞), χ′ ≤ 0 on [0,+∞)

and χA(y) = χ(y/A) for A large. (Observe that without the cut-off χA, the
integrals

∫
vjgk would not be well-defined.) Then, using (14) and (15), up to

oscillatory terms and higher order terms, one finds

J̇ = Γ|b|4

where Γ :=
∫
(G−H)g1 +

∫
Fg2.

As in the other approach, we are reduced to proving that Γ ̸= 0 for ω > 0 small.
In a situation where Γ = 0 for ω = 0 (the integrable case), we use the explicit
expansions of Qω and (V1, V2) for ω > 0 close to 0, to find Γ = Γ0ω + O(ω2) for
some explicit Γ0 > 0 independent of ω. Taking into account all the error terms,
the final rigorous estimate states that for ω > 0 small, A large, for any s > 0,

∫ s

0

|b|4 ≲ 1 +
1

A

∫ s

0

∥v∥2loc (16)

where ∥v∥loc is an L2 weighted norm of v. Note that this part is inspired by the
treatment of the internal mode for Klein-Gordon type equation in [23] and [24].
The main new points in [35] are to extend the strategy of [23] to Schrödinger-type
equations and to prove the fact that Γ ̸= 0 for ω > 0 close to 0.

The next step is to prove dispersive estimates for (u1, u2) in the case σ = −1
where there is no internal mode, and for (v1, v2) in the case σ = +1 where there
exists an internal mode.

7 Dispersive estimates

We first illustrate on a simple Schrödinger-type linear system how to apply (local-
ized) virial identities to prove dispersive estimates. Assume that (w1, w2) satisfies
the linear system {

ẇ1 = −∂2yw2 + w2 + P2w2

ẇ2 = ∂2yw1 − w1 − P1w1

where P1 and P2 are functions of y, say, in the Schwartz class. A simple formal
computation gives

d

ds

∫
(2y∂yw2 + w2)w1 = 2

∫
(∂yw1)

2 −
∫
yP ′

1w
2
1 + 2

∫
(∂yw2)

2 −
∫
yP ′

2w
2
2 .
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Thus, if the quantity
∫
(2y∂yw2 + w2)w1 is defined and bounded, and yP ′

k ≤ 0
on R (such a potential will be called repulsive), then

∫
|∂yw|2 is time-integrable.

In practice,
∫
(2y∂yw2 + w2)w1 is not defined for H1 solutions, and one needs to

define a localized virial functional of the form

I =

∫
(ΘAw2)w1, ΘA = 2ΦA∂y + Φ′

A

where ΦA is a bounded, increasing, approximation of y on R at a scale A ≫ 1.
Then,

d

ds
I = 2

∫
(∂yw1)

2Φ′
A − 1

2

∫
w2

1Φ
′′′
A −

∫
ΦAP

′
1w

2
1

+ 2

∫
(∂yw2)

2Φ′
A − 1

2

∫
w2

2Φ
′′′
A −

∫
ΦAP

′
2w

2
2.

Without giving any detail, let us say that there is a relatively simple way to esti-
mate the terms

∫
w2

1Φ
′′′
A and to approximate ΦAP

′
2 by yP ′

2. Thus, if w is globally
bounded in H1, provided that yP ′

k ≤ 0, it is possible to prove that the time-

dependent quantity
∫
(|∂yw|2 + |w|2)e− |y|

A is time-integrable, which is a local dis-
persive estimate on w.

For the systems (6) or (14), the potentials of L+ and L− are not repulsive, and
this is natural since there are special solutions of the linear system (8) for which
an unconditional dispersive estimate would be impossible. One possibility would
be to put the orthogonality conditions (5) into play, but this does not seem easy
for our model (see [41] for the mass critical case). This is where we need to rely
on the identity (12) and on the transformed problem (13). Following [34, 35], we
set (replace v by u in the case σ = −1)

w1 = X2
θM−S

2v2, w2 = −X2
θS

2L+v1,

where Xθ = (1−θ∂2y)−1 is a smoothing operator, close to the identity (0 < θ ≪ 1).
Such a regularization is necessary to have w1, w2 ∈ H1, but we will not insist on
this point in these notes. The pair of functions (w1, w2) then satisfies a nonlinear
system which is perturbative (quadratic terms and error terms are omitted here)
of the form {

ẇ1 =M−w2

ẇ2 = −M+w1

(17)

In the case σ = −1, this is sufficient to conclude by a virial identity in w. Indeed,
M+ does not have a repulsive potential, but M− has a repulsive potential, which
is larger in absolute value than the one of M+. A slight modification of the above
virial functional then proves the dispersive estimate for small ω.
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In the case σ = +1, the situation is more involved, because of the existence
of the internal mode. Not only we need to use the decomposition (v, b) and to
control b by the Fermi golden rule as described in the previous section, but the
dispersive estimates are also more complicated to get on w. Technically, now the
potential ofM+ is repulsive, but it is smaller in absolute value than the one ofM−,
which is not repulsive. Actually, once reduced to understanding the dispersion for
the equation of w, we need to take into account the periodic solution (10). It rules
out the possibility of proving a simple dispersive estimate as before. Our strategy
is to establish another operator identity

UM+M− = KU where U = ∂y −
W ′

2

W2

and where K is an explicit fourth order differential operator of the form

K = ∂4y − 2∂2y +K2∂
2
y +K1∂y +K0 + 1

for small Schwartz functions Kj. Note that UW2 = 0, thus it is again a factor-
ization procedure used to eliminate the remaining eigenfunction W2. The above
identity leads us to introduce a second transformation (0 < ϑ≪ 1)

z1 = XϑUw2, z2 = −XϑUM+w1.

Here, z1 ∈ H2 and z2 ∈ L2. Again, we do not comment on regularity issues and
on the necessity to define z using Xϑ. Formally, the couple (Uw2, UM+w1) is the
new unknown, which satisfies the transformed system

{
ż1 = z2

ż2 = −Kz1

at the linear order (quadratic terms and error terms are omitted). The operator K
has two remarkable properties. It is a perturbation of (−∂2y +1)2 for ω0 small and
its potential K0 is repulsive (in some sense) which makes it possible to prove the
dispersive estimate via a virial argument on K, i.e. on the variable z. The fact
that K does not factorize as two simple second order operators is not an issue
here. The exact repulsivity property of K0 to be used is given by [52], relating
the absence of eigenvalue for a second order differential operator to the sign of the
integral of its potential, provided it is sufficiently small. Here, this sign of

∫
K0

is checked by using again the expansion of (λ,W1,W2) around the (transformed)
resonance (1, 1, 1) of the integrable case.
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8 Outline of the proof of asymptotic stability

Two virial arguments. The introduction of transformed problems and of the neces-
sary regularisation arguments breaks the structure of the nonlinear terms, which is
usually required to treat them by a virial argument. Thus, to make the argument
complete and rigorous, one has to localize the virial argument on the transformed
problem. This provides estimates on (z1, z2) only on compacts sets in space, with
error terms outside this compact set. These errors need to be controlled using
other estimates. The strategy designed in [26] for the nonlinear Klein-Gordon
equation, and extended to the nonlinear Schrödinger equation in [34, 35], is to use
a first localized virial argument to estimate the functions (v1, v2) at a large spacial
scale A, in terms of local norms and in terms of the internal mode component b.
At the level of (v1, v2), the structure of the nonlinear terms is preserved and only
the spectral argument is missing, which justifies the large error term in local norm.
The estimate obtained at this point is

∫ s

0

(
∥e−|y|/A∂yv∥2 +

1

A2
∥e−|y|/Av∥2

)
≲ 1 +

∫ s

0

(
∥v∥2loc + |b|4

)
. (18)

Another localized virial argument on the second transformed problem z is then
used at a scale B, with 1 ≪ B ≪ A. It proves

∫ s

0

(
∥∂2yz1∥2loc + ∥∂yz1∥2loc + ∥z1∥2loc + ∥z2∥2loc

)
≲ 1 +

1√
A

∫ s

0

∥v∥2loc. (19)

Here, spectral properties (as discussed in the previous section) are essential.

The last step is to exchange information between the functions (v1, v2) and
(z1, z2) by suitable estimates. The most delicate ones being the so-called coercivity
estimates (reminiscent of coercivity properties proved in [56]), of the form

∥v∥loc ≲ ∥∂2yz1∥loc + ∥∂yz1∥loc + ∥z1∥loc + ∥z2∥loc. (20)

The set of orthogonality relations for (v1, v2) is required in this step. We skip
technical details on the choice of the weight functions in the definition of the
different definitions of norms ∥ · ∥loc used in this step.

End of the proof of Theorem 2. Using first (20) and then (19), we obtain for s > 0,
∫ s

0

∥v∥2loc ≲
∫ s

0

(
∥∂2yz1∥2loc + ∥∂yz1∥2loc + ∥z1∥2loc + ∥z2∥2loc

)
≲ 1 +

1√
A

∫ s

0

∥v∥2loc.

Therefore, taking A sufficiently large (depending on ω0), then passing to the limit
as s→ +∞, and taking ε sufficiently small, we have proved the key estimate

∫ +∞

0

∥v∥2loc ≲ 1.
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By (18) and (16), passing to the limit s→ ∞ it follows that

∫ +∞

0

(
|b|4+∥∂yv∥2loc+∥v∥2loc

)
≲

∫ +∞

0

(
|b|4+∥e−|y|/A∂yv∥2+∥e−|y|/Av∥2

)
≲ 1 (21)

(at this point, A is fixed). In particular, there exists a sequence sn → +∞ such
that

lim
n→+∞

|b(sn)|4 + ∥∂yv(sn)∥2loc + ∥v(sn)∥2loc = 0.

We have obtained the asymptotic completeness on a subsequence of times and
using (21) again, it is not difficult to obtain a convergence property for the whole
sequence of time.

Indeed, setting M = |b|4+∥v∥2loc, by simple computations using (14) and (15),
one obtains the estimate |Ṁ| ≲ |b|4 + ∥∂yv∥2loc + ∥v∥2loc. Let s > 0. Integrating
this on (s, sn) for n such that sn > s, we obtain

M(s) ≤ M(sn) +

∫ sn

s

|Ṁ| ≲ M(sn) +

∫ sn

s

(
|b|4 + ∥∂yv∥2loc + ∥v∥2loc

)
,

and so M(s) ≲
∫ +∞
s

(|b|4 + ∥∂yv∥2loc + ∥v∥2loc) by passing to the limit n → +∞.
Thus, using (21), lims→+∞ M(s) = 0.

Finally, by the equation of ω̇ and (21), it is possible to prove that ω(s) has
a finite limit ω+ as s → +∞. One obtains lim+∞ γ̇ = 1 by (7), which implies
limt→+∞ dγ/dt = ω+ by the change of variable.

9 Some related articles

Classical references. The study of the asymptotic stability of solitary waves started
with a few pioneering articles published in the Nineties: [1, 53, 54] in the absence
of internal mode and [2, 46, 51, 55] in the presence of internal mode, with the
emergence of the nonlinear Fermi golden rule. The survey [22] describes several
relevant models perturbative of (3).

Closely related articles. As mentioned in the previous sections, the proof of Theo-
rem 2 in [34, 35] relies on virial techniques developed for one-dimensional wave-type
equations, such as the ϕ4 model in [24], the nonlinear Klein-Gordon equation in [26]
and general scalar fields models [23, 27]. Before being used for wave equations,
localized virial techniques were introduced to study blowup and asymptotic stabil-
ity of solitons for nonlinear dispersive equations, like the generalized Korteweg-de
Vries equation [33, 36, 37] and the critical nonlinear Schrödinger equation [41].
The specific strategy of using a transformed problem and two virial arguments was
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introduced in [26] and then extended to the nonlinear Schrödinger equation (1)
in [34]. The argument in [35] to treat the presence of an internal mode is adapted
from [23, 24].

Other related works. The literature on asymptotic stability is abondant. For
wave-type equations, we refer to [13, 18, 29, 31, 32, 39], which contain some of the
most advanced results in different directions. Restricting now to Schrödinger-type
models, we quote a few surveys [10, 11, 25, 50] and some of the most recent articles
in various settings [6, 9, 20, 21, 28, 42]. Some other articles [7, 12, 20, 43] concern
nonlinear Schrödinger equations with a potential.

References

[1] V.S. Buslaev and G. Perelman, On nonlinear scattering of states which are
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