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STRONG HARNACK INEQUALITY FOR THE BOLTZMANN EQUATION

AMÉLIE LOHER

Abstract. We review local regularity properties of the non-cutoff Boltzmann equation for mod-

erately soft potentials. We explain how to view the Boltzmann equation as a non-local hypoelliptic

equation. We show that despite its non-locality, we can derive a Strong Harnack inequality. To
this end, we establish a linear First De Giorgi Lemma, which relates the local supremum to the

local L2 norm without non-local tail terms.
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1. Introduction

1.1. Boltzmann equation. The Boltzmann equation models the dynamics of a dilute gas. It is
given by

(1.1) ∂tf + v · ∇xf = Q(f, f),

where f : R× Rd × Rd → [0,∞) encodes the density of the gas particles, which at any given time
t ∈ R have location x ∈ Rd and velocity v ∈ Rd. The left hand side of (1.1) is the transport
operator, which describes the trajectories of the particles. The right hand side takes into account
the fluctuations in velocity that result from particle interactions. We denote with Q the Boltzmann
collision operator, whose explicit form is given by

(1.2) Q(f, f) =

ˆ

Rd

ˆ

Sd−1

[f(v′∗)f(v
′)− f(v∗)f(v)]B(|v − v∗| , cos θ) dσ dv∗,

where v, v∗ are the post-collisional velocities, and v′, v′∗ the pre-collisional velocities, so that

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ.

The rate of change in velocities is determined through the cross-section B, which reads

B(r, cos θ) = rγb(cos θ), b(cos θ) ≈ |sin (θ/2)|−(d−1)−2s
,
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with parameters γ ∈ (−d, 1] and s ∈ (0, 1), and where cos θ is defined as

cos θ :=
v − v∗
|v − v∗|

· σ, sin (θ/2) :=
v′ − v

|v′ − v| · σ.

Note that here and in the sequel we will often omit to write out the dependency of f and of Kf

on time and space, if there is no risk of confusion. By a change of coordinates to so-called Carle-
man coordinates, and using the well-known cancellation lemma [16], we can rephrase the collision
operator as

(1.3) Q(f, f) =

ˆ [
f(v′)− f(v)

]
Kf (v, v

′) dv′ + c (f ∗ |·|γ) f,

where c > 0 (see [15, Lemma 5.1]) and where the kernel Kf depends implicitly on the solution f
and is given by

(1.4) Kf (v, v
′) = 2d−1 |v′ − v|−1

ˆ

w⊥v′−v

f(v + w)B(r, cos θ)r−d+2 dw,

with r2 = |v′ − v|2+ |w|2 and cos θ = w−(v−v′)
|w−(v−v′)| ·

w+(v′−v)
|w+(v′−v)| . Our aim is to derive interior regularity

properties on the solution of the Boltzmann equation (1.1). In particular, we are interested in
a bound on the local supremum in terms of the local infimum, an estimate known as the Strong
Harnack inequality. From this, one can potentially deduce further consequences, such as heat kernel
estimates, a powerful tool to understand the long time behaviour of the solution.

In order to discuss the behaviour of solutions to the Boltzmann equation (1.1), we need to classify the
kernel Kf . We would like to introduce a notion of ellipticity suitable to the non-local coefficients
encoded through Kf . It seems out of reach to treat the quasi-linearity in Kf without further
restrictions. A meaningful setting is reached, however, by working in a regime conditional to
certain hydrodynamic bounds. Thus we define the following macroscopic quantities associated
to (1.1)

(1.5)

M(t, x) :=

ˆ

f(t, x, v) dv,

E(t, x) :=

ˆ

f(t, x, v) |v|2 dv,

H(t, x) :=

ˆ

f(t, x, v) ln f(t, x, v) dv.

They describe the mass density, the energy and the entropy respectively. In 2016, Silvestre [15]
determined a conditional regime, in which he was able to derive a-priori L∞ bounds on the solution
to (1.1) in case of moderately soft potentials, that is 0 ≤ γ + 2s ≤ 2. He showed that it suffices to
assume that for all (t, x) ∈ R× Rd, there is m0,M0, E0, H0 such that

(1.6) 0 < m0 ≤M(t, x) ≤M0, E(t, x) ≤ E0, H(t, x) ≤ H0.

Then f ∈ L∞(R×Rd ×Rd), see [15, Theorem 7.3]. Therefore, the quasi-linearity in the kernel Kf

is treated through this a-priori boundedness of f , and in particular, a suitable notion of ellipticity
can be introduced. Moreover, the second term of the right hand side in (1.3) can be understood as
a lower order term compared to the first term, as the a-priori boundedness of the solution permits
to view it as a non-negative source term in L∞, [15, Section 5]. Thus we focus the next section on
the classification of the ellipticity of Kf .
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1.2. Ellipticity class. The conditional setting prescribed by (1.5) implies conditions on the ker-
nel Kf . We refer the reader to Section 4 of [15, Section 4] and [12, Appendix A]. One can prove
that there exists 0 < λ0 < Λ0 and γ0 > 0 depending on s, d,m0,M0, E0, H0, such that for any
R > 0 and any φ : Rd → R+ supported in BR there holds:

i. the kernel Kf is coercive:

(1.7)

ˆ

B2R

ˆ

B2R

(
φ(v)− φ(v′)

)2
Kf (v, v

′) dv′ dv ≥ λ0

ˆ

BR

ˆ

BR

|φ(v)− φ(v′)|2

|v − v′|d+2s
dv dv′.

ii. it satisfies an upper bound: for any r > 0

(1.8) ∀v ∈ Rd

ˆ

Br(v)

Kf (v, v
′) |v − v′|2 dw ≤ Λ0r

2−2s.

iii. the cancellation

(1.9) ∀v ∈ Rd

∣∣∣∣PV
ˆ

Rd

(
Kf (v, v

′)−Kf (v
′, v)

)
dw

∣∣∣∣ ≤ Λ0,

and if s ≥ 1/2 there holds for all r > 0

(1.10) ∀v ∈ Rd

∣∣∣∣PV
ˆ

Br(v)

(v − v′)
(
Kf (v, v

′)−Kf (v
′, v)

)
dv′
∣∣∣∣ ≤ Λ0r

1−2s.

iv. a bound on the oscillation of the jumps: for any r > 0

(1.11) sup
v∈Br/2

ˆ

Rd\Br

Kf (v, v
′) dv′ ≤ γ0

 

Br/2

ˆ

Rd\Br

Kf (v, v
′) dv′ dv.

We emphasise that the implicit dependency ofKf on the solution f itself is absorbed in the constants
λ0,Λ0 and γ0 through the a-priori boundedness of f . Therefore, we may omit the subscript in the
sequel and write instead K = Kf .

We thus justified the viewpoint on the Boltzmann equation (1.1) for moderately soft potentials as
a kinetic integro-differential equation

(1.12) ∂tf(t, x, v) + v · ∇xf(t, x, v) =

ˆ

Rd

[
f(t, x, v′)− f(t, x, v)

]
K(t, x, v, v′) dv′ + h(t, x, v),

where K : R × Rd × Rd × Rd → R+ is a non-negative kernel satisfying (1.7)-(1.11), and h ∈
L∞(R × Rd × Rd) is a bounded non-negative source term. We understand the regularity of (1.1)
if we understand it for (1.12). Since we are interested in deriving local properties for (1.12), we
introduce a notion of solution domains that respects the invariances of (1.12).

1.3. Local domain. On the one hand, equation (1.12) is scaling-invariant. Specifically, for any
r ∈ [0, 1] the scaled function fr(t, x, v) = f(r2st, r1+2sx, rv) satisfies

∂tfr + v · ∇xfr =

ˆ [
fr(v

′)− fr(v)
]
Kr(v, v

′) dv′ + hr,

where the kernel and the source scale as

Kr(t, x, v, v
′) = rd+2sK(r2st, r1+2sx, rv, rv′), hr(t, x, v) = r2sh(r2st, r1+2sx, rv).

Exp. no I— Strong Harnack inequality for the Boltzmann equation
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For r ∈ [0, 1] the scaled kernel Kr satisfies (1.7)-(1.11) in the larger radius R/r instead of R.
Moreover, hr is bounded provided that h is.

On the other hand, (1.12) is invariant under Galilean transformations

z → z0 ◦ z = (t0 + t, x0 + x+ tv0, v0 + v)

with z0 = (t0, x0, v0) ∈ R1+2d. If f is a solution of (1.12), then its Galilean transformation
fz0(z) = f(z0 ◦ z) solves

∂tfz0 + v · ∇xfz0 =

ˆ [
fz0(v

′)− fz0(v)
]
Kz0(v, v

′) dv′ + hz0 ,

where the translated kernel and source are given by

Kz0(t, x, v, v
′) = K(z0 ◦ z, v0 + v′), hz0(t, x, v) = h(z0 ◦ z).

Again the modified kernel Kz0 satisfies (1.7)-(1.11) provided that K does, and hz0 is bounded
provided that h is.

In view of these invariances we define kinetic cylinders

Qr(z0) :=
{
(t, x, v) : −r2s ≤ t− t0 ≤ 0, |v − v0| < r, |x− x0 − (t− t0)v0| < r1+2s

}
,

for r > 0 and z0 = (t0, x0, v0) ∈ R1+2d. For later reference, we also introduce the cylinder shifted
to the past

Q−
r (z0) := Qr

(
z0 − (2r2s, 2r2sv0, 0)

)
,

and shifted to the future

Q+
r (z0) := Qr

(
z0 + (2r2s, 2r2sv0, 0)

)
.

In particular for z0 = 0

Q−
r := Qr(−2r2s, 0, 0) = (−3r2s,−2r2s]×Br1+2s ×Br.

and

Q+
r := Qr(2r

2s, 0, 0) = (r2s, 2r2s]×Br1+2s ×Br.

Figure 1 illustrates these domains.

Given a solution of (1.12) in some kinetic cylinder QR(z0), what can we say about its behaviour in
the interior?

2. Harnack inequalities

In a series of works by Imbert-Silvestre(-Mouhot) [6–9], they showed first that any solution of (1.12)
satisfies the Weak Harnack inequality, and is thus Hölder continuous [7], then that the regularity
of the kernel K can be transferred onto the solution in the sense of Schauder estimates [9], and
finally that these local results can be globalised via a change of variables [8, Section 5] due to the
decay properties of the solution [6], so that eventually the Schauder estimates can be bootstrapped
to obtain smooth solutions [8]. Later a constructive proof of the Weak Harnack inequality and
the Schauder estimates appeared in [11, 13]. One of the difficulties posed by (1.12) is its non-local
operator, which means that the behaviour of the solution inside a given domain is affected by
the values attained in the whole velocity space, especially also outside the domain in which we
assume the equation to be satisfied. This is the reason why we have to assume that the solution is
essentially bounded for almost every v ∈ Rd to make sense of the equation. Then we can deduce
Hölder continuity with a constant depending on the essential bound of f in the whole domain.

Amélie Loher
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Q+
r

Qr

Q−
r

t

2r2s

r2s

0

−r2s

−2r2s

−3r2s

Figure 1. The kinetic cylinder Qr, its future cylinder Q+
r and its past cylinder

Q−
r for some r > 0. The dashed vertical line represents the timeline.

However, in contrast to equations with a local diffusion operator, we cannot deduce from these
Hölder estimates a bound on the local supremum of the solution in terms of the local infimum.
Such a bound is known as the Strong Harnack inequality. The problem is that the behaviour of
the tail is encoded in the constant depending on the essential bound of f in the whole domain.
Intuitively, it might not even be clear that we should expect a fully local bound on a solution to a
non-local equation. However, from the literature on parabolic non-local equations, it is known that
such a local bound does hold, a result that was derived via probabilistic methods [2, 17], and only
recently has been proven analytically [10]. The key is to capture the behaviour of the tail.

We will therefore first try to understand the part of the proof of the Weak Harnack inequality that
makes the appearance of the tail explicit. Then we try to relate the tail to local quantities in order
to derive the Strong Harnack inequality.

2.1. Previous result. The derivation of the Strong Harnack inequality relies on the Weak Harnack
inequality.

Theorem 2.1 (Weak Harnack Inequality [7, Thm. 1.6], [11, Thm. 1.1]). Let f be a non-negative
super-solution to (1.12) in [−3, 0]×Qt

1 := [−3, 0]×B1×B1 with a non-negative kernel K satisfying
(1.7)-(1.10) for R = 2. Then there is C > 0 and ζ > 0 depending on s, d, λ,Λ such that for any
0 < r0 < 1/3 the Weak Harnack Inequality is satisfied:

(2.1)

(
ˆ

Q̃−
r0/2

fζ dz

)1/ζ

≤ C
(

inf
Qr0/2

f + ∥h∥L∞(Q1)

)
,

where Q̃−
r0/2

:= Qr0/2

(
(− 5

2r
2s
0 + 1

2 (r0/2)
2s, 0, 0)

)
, see Figure 2.

Exp. no I— Strong Harnack inequality for the Boltzmann equation
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The proof of the Weak Harnack Inequality follows the De Giorgi method: in a first step one shows
the local gain of regularity from L2 to L∞, then in a second step from L∞ to Cα. The Weak Harnack
Inequality follows in the end from the Cα regularity by using a covering argument. Figuratively,
this can be visualised as

L2 First De Giorgi Lemma−−−−−−−−−−−−−−−→ L∞ Second De Giorgi Lemma−−−−−−−−−−−−−−−−→ Cα

︸ ︷︷ ︸
=⇒ Weak Harnack (2.1).

.

To obtain the Strong Harnack inequality, one could be led to think that it now suffices to combine
the Weak Harnack (2.1) with the First De Giorgi Lemma, since

(2.2) inf
Weak Harnack (2.1)−−−−−−−−−−−−→ Lζ Young’s−−−−−→ L2 First De Giorgi Lemma−−−−−−−−−−−−−−−→ L∞

︸ ︷︷ ︸
=⇒ Strong Harnack.

.

This is also true for local equations. However, we have to take into account the tail term arising
from the non-local operator. It is hidden in the fact that the First De Giorgi Lemma, as derived
in [11, Lemma 4.1], states a non-linear L2-L∞ bound, which can be linearised at the cost of a
non-local tail term [11, Remark 4.2]. So in reality, what has been done in [7, 11] was

L2+ Tail
First De Giorgi Lemma−−−−−−−−−−−−−−−→ L∞ Second De Giorgi Lemma−−−−−−−−−−−−−−−−→ Cα

︸ ︷︷ ︸
=⇒ Weak Harnack (2.1).

,

so that reapplying the First De Giorgi Lemma gives a Harnack inequality with tail term

inf + Tail
Weak Harnack (2.1)−−−−−−−−−−−−→ Lζ+ Tail

Young’s−−−−−→ L2+ Tail
First De Giorgi Lemma−−−−−−−−−−−−−−−→ L∞

︸ ︷︷ ︸
=⇒ ”Not-so-Strong” Harnack.

,

denoted as ”Not-so-Strong Harnack” in [11, Theorem 1.3].

Thus our aim is to linearise the L2-L∞ bound from [11, Lemma 4.1] by capturing the behaviour
of the tail. This yields the Strong Harnack inequality for the Boltzmann equation with moderately
soft potentials.

2.2. Main result.

Theorem 2.2 (Strong Harnack Inequality for Boltzmann). Let s ∈ (0, 1) and γ ∈ (−d, 1] be
such that 0 < γ + 2s ≤ 2. Let f be a non-negative solution of the Boltzmann equation (1.1) in
[−3, 0]×B1×B1. Assume for all (t, x) ∈ [−3, 0]×B1 there exists m0,M0, E0, H0 > 0 such that (1.6)
is satisfied. Then, there is C > 0 depending on s, d,m0,M0, E0, H0, such that for any 0 < r0 < 1/6
the Strong Harnack inequality is satisfied:

(2.3) sup
Q̃−

r0/4

f ≤ C inf
Qr0/4

f,

where

Q̃−
r0/4

:=

[
−5

2
r2s0 +

1

2

(r0
2

)2s
−
(r0
4

)2s
,−5

2
r2s0 +

1

2

(r0
2

)2s]
×B(r0/4)

1+2s ×Br0/4

and
Qr0/4 :=

[
− (r0/4)

2s
, 0
]
×B(r0/4)

1+2s ×Br0/4,

see Figure 2.
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Qr

Q r
2

Qr/4

Q−
r

Q̃−
r
2

Q̃−
r/4

t

0

−
(
r
4

)2s

−
(
r
2

)2s

−r2s

−2r2s

− 5
2r

2s + 1
2

(
r
2

)2s

− 5
2r

2s + 1
2

(
r
2

)2s −
(
r
4

)2s

− 5
2r

2s − 1
2

(
r
2

)2s

−3r2s

Figure 2. The kinetic cylinder Qr and its past cylinder Q−
r for some r > 0.

The dashed vertical line represents the timeline. The blue cylinder Q r
2
and its

corresponding past Q̃−
r
2

represent the domains appearing in the Weak Harnack

inequality, Theorem 2.1. The red cylinder Qr/4 and its correpsonding past Q̃−
r/4

illustrates the domains appearing in the Strong Harnack inequality, Theorem 2.2.

3. Conceptual proof ideas

The proof relies on the linearisation of the L2-L∞ bound, resulting in the following proposi-
tion.

Proposition 3.1 (First De Giorgi Lemma). Let s ∈ (0, 1) and γ ∈ (−d, 1] be such that 0 < γ+2s ≤
2. Let 0 < r < R and let f be a non-negative solution of the Boltzmann equation (1.1) in QR.
Assume for all (t, x) ∈ [−R2s, 0]×BR1+2s there exists m0,M0, E0, H0 > 0 such that (1.6) is satisfied.
Then there is C > 0 depending on s, d,m0,M0, E0, H0 such that

∥f∥L∞(Qr)
≤ C(R− r)−(2d(1+s)+2s) ∥f∥L2(QR) .

Visually, this corresponds to showing

L2+ Tail
First De Giorgi Lemma−−−−−−−−−−−−−−−→ L∞

for a non-local equation, from which we derive Theorem 2.2 as a consequence of the chain of relations
depicted in (2.2).

Exp. no I— Strong Harnack inequality for the Boltzmann equation
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Concretely, we set up a De Giorgi iteration in the same vein as originally conceived by De Giorgi [4].
We define increasing levels lk and decreasing cylinders Qk by introducing for some L > 0

lk = L(1− 2−k), rk = r + 2−k(R− r), tk = −r2s − 2−k
(
R2s − r2s

)
,

so that

Qk = (tk, 0]×Br1+2s
k

×Brk .

Then we take the L2 norm as control quantity

(3.1) Ak =

ˆ

Qk

(f − lk)
2
+ dz.

The aim is to show that Ak → 0 as k → ∞, for this implies f ≤ L almost everywhere in Qr. To
this end, it suffices to derive a nonlinear recurrence relation

(3.2) Ak+1 ≤ CA1+β
k ,

for some β > 0. De Giorgi’s argument relies on three steps. First, we use the equation to relate
the energy to the control quantity, here the L2 norm, via an energy estimate. This is done by
testing (1.1) with the solution itself and some suitable cutoff. Second, we extract some gain of
integrability. For elliptic or parabolic equations, one would use Sobolev’s embedding. However, for
kinetic equations, since we deal with a degenerate diffusion operator, in the sense that the diffusion
only acts on velocity, we have to combine Sobolev’s embedding with averaging lemmas, as was done
in [5]. Alternatively, we can compare our equation to the fractional Kolmogorov equation, and
exploit the gain of integrability known for this constant coefficient equation for (1.1). The gain of
integrability relates the Lp norm for some p > 2 to the energy of (1.1). Due to the non-locality of
(1.1), we naturally have a tail quantity that appears not only in the energy estimate, but also in
the gain of integrability. Schematically, these two steps can be visualised as

L2 +Tail
Energy estimate−−−−−−−−−−→ Energy + Tail

Gain of integrability−−−−−−−−−−−−−→ Lp.

Third, to extract a nonlinear relation from a linear equation, we use Chebyshev’s inequality that
relates the measure of a level set function to the control quantity on the next level set.

So far the setup for the De Giorgi argument is rather standard. What remains to be understood, is
how to relate the tail to a local quantity. If we manage to derive a local tail bound, then we can treat
the tail as we would treat a bounded source term. The fact that we work with level set functions
means that any source or tail quantity is multiplied by an indicator function, which by Chebyshev
is related to the control quantity. We obtain such a local tail bound by testing the equation with
the solution itself to some inverse power. The non-local operator is then estimated by separating
the singular from the non-singular part. The non-singular part gives on the one hand the tail, on
the other hand some local Lebesgue norm of the solution. The singular part is localised due to the
cutoff function. Moreover, we split the singular part into the symmetric and the anti-symmetric
part of our kernel. The symmetric part has a good sign, and the anti-symmetric part is bounded by
(1.9), so that it gives again a local Lebesgue norm on the solution. The transport term is dealt with
using integration by parts. Combined with the fact that f solves (1.1), we end up with a bound in
Lq
t,x on the tail for any 1 ≤ q <∞.

Incorporating the local bound tail bound in the De Giorgi iteration yields a linear L2-L∞ bound
for (1.1). The next section demonstrates the local tail bound. Then we perform the De Giorgi
iteration.

Amélie Loher
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3.1. Local tail bound. For any 0 < r < R and v0 ∈ Rd we define the non-local tail term, a
quantity that measures the non-singular part of the non-local operator in (1.1), which takes into
account function values that lie beyond the solution domain. It is given by

(3.3) T(f ; r,R, v0) := sup
v∈Br(v0)

ˆ

Rd\BR(v0)

f(w)K(v, w) dw.

Proposition 3.2. For given 0 < r < R/2 and any non-negative super-solution f of (1.12) in QR

with a non-negative, essentially bounded source term h ≥ 0, and such that the non-negative kernel
satisfies (1.8)-(1.11), there holds for any 1 ≤ q < +∞ and any δ > 0

(3.4)

{
 0

−r2s

 

Br1+2s

[
T(f ; r,R, 0)

]q
dxdt

}1/q

≤ CR−2s+d sup
QR

f.

For the details of the proof we refer the reader to [12, Proposition 3.1]. The main idea is to test
against some inverse power of the solution itself.

Proof Sketch. Let η : Rd → [0, 1] be a smooth cutoff such that η = 1 in BR/2 and η = 0 outside

B3R/4. We consider fε := f + ε for some ε > 0, and test (1.12) with f
−1/2
ε η2. Then we split the

non-local operator into its singular and non-singular part for fixed (t, x) ∈ [−R2s, 0]×BR1+2s

(3.5)

E(f, ηf−1/2
ε ) :=

ˆ

BR

ˆ

Rd

(
f(v)− f(w)

)
η2(v)f−1/2

ε (v)K(v, w) dw dv

=

ˆ

BR

ˆ

Rd\BR

. . . dw dv

︸ ︷︷ ︸
=:E1

+

ˆ

BR

ˆ

BR

. . . dw dv

︸ ︷︷ ︸
=:E2

.

Step 1. It is easy to see that

(3.6)

E1
(
f, η2f−1/2

ε

)
=

ˆ

BR

ˆ

Rd\BR

(
f(v)− f(w)

)
η2(v)f−1/2

ε (v)K(v, w) dw dv

≤ CR−2s
∥∥∥f1/2ε

∥∥∥
L1

v(BR)
−
ˆ

BR/2

ˆ

Rd\BR

f−1/2
ε (v)f(w)K(v, w) dw dv,

due to the support of η and the upper bound (1.8).

Step 2. On the other hand, we claim

(3.7)

E2(f, η2f−1/2
ε ) ≤CR−2s

∥∥∥f1/2ε

∥∥∥
L1(BR)

− C

ˆ

BR

ˆ

BR

[(
ηf1/4

)
(w)−

(
ηf1/4

)
(v)
]2
K(v, w) dw dv.

This claim relies on first rewriting E2 in such a way as to be able to distinguish between the
symmetric and the anti-symmetric part of K. The symmetric part has a sign. The anti-symmetric
part is of lower order due to the cancellation assumptions (1.9), (1.10), and thus yields the L1 norm
of f1/2.
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Step 3. We then combine (3.5) with (3.6) from Step 1 and (3.7) from Step 2, so that for every
(t, x) ∈ [−R2s, 0]×BR1+2s :

(3.8) −E(f, η2f−1/2
ε ) ≥ −CR−2s

∥∥∥f1/2ε

∥∥∥
L1(BR)

+ C

ˆ

BR/2

f−1/2
ε (v)

(
ˆ

Rd\BR

f(w)K(v, w) dw

)
dv.

Step 4. In a last step we use the equation (1.12). We take a cutoff ϕ : R1+d → [0, 1] in time
and space, such that ϕ = 1 in a compact subset of [−(R/2)2s, 0] × B(R/2)1+2s , ϕ = 0 outside

[−R2s, 0]×BR1+2s , and ϕ(0, ·) = 0, as well as |∂tϕ| ∼ R−2s and |v · ∇xϕ| ∼ R−2s. Then the support
of ϕ coincides with supp ϕ = [−R2s, 0]×BR1+2s , and there holds for almost every t, x

−
ˆ

Rd

T ff−1/2
ε η2ϕ2 dv − E

(
f, f−1/2

ε η2
)
ϕ2 ≤ 0,

since f is a super-solution of (1.12) and h ≥ 0. We then take the supremum over time and space,
and we use that sup(−g) = − inf g and inf ≤

ffl

, so that

0 ≥ −
 

supp ϕ

ˆ

Rd

T ff−1/2
ε η2ϕ2 dv dxdt− E

(
f, f−1/2

ε η2
)
ϕ2.

For the transport term we integrate by parts, and for the non-local operator we use (3.8), to obtain
for almost every t, x

[
ˆ

BR/2

f−1/2
ε (v)

(
ˆ

Rd\BR

f(w)K(v, w) dw

)
dv

]
ϕ2(t, x)

≤ CR−2s
∥∥∥f1/2ε

∥∥∥
L1(BR)

ϕ2(t, x) + CR−2s

 

supp ϕ

ˆ

BR

f1/2ε dv dxdt.

This implies (3.3) after we integrate over time and space, and take out the infimum of f
−1/2
ε on the

left hand side so that using 1/inf g = sup g−1 for any g > 0

{
ˆ 0

−(R/2)2s

ˆ

B(R/2)1+2s

[
ˆ

BR/2

(
ˆ

Rd\BR

f(w)K(v, w) dw

)
dv

]q
dxdt

}1/q

≤ CR−2s+d(1−1/q)
(
sup
QR/2

f1/2ε

)∥∥∥f1/2ε

∥∥∥
Lq(QR)

+ CR−2s+((2s+1)d+2s)((1/q)−1)
(
sup
QR/2

f1/2ε

)∥∥∥f1/2ε

∥∥∥
L1(QR)

≤ CR−2s+d sup
QR

f. □

3.2. De Giorgi iteration. Let 0 < r < R/4. Define a cutoff in time and space ψ ∈ C∞
c (R1+d)

and a cutoff in velocity η ∈ C∞
c (Rd) such that 0 ≤ ψ, η ≤ 1, with ψ(t, x) = 1, η(v) = 1 for

(t, x, v) ∈ Qr/2, and ψ(t, x) = 0, η(v) = 0 for z = (t, x, v) ∈ R1+2d \QR/4.
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3.2.1. Energy estimate. Let l ∈ R. We test (1.12) with (f − l)+(z)ψ
2(t, x)η2(v). Writing z =

(t, x, v), we get

(3.9)

ˆ

R1+2d

hψ2(t, x)η2(v)(f − l)+(z) dz

≥
ˆ

R1+2d

T f(z)ψ2(t, x)η2(v)(f − l)+(z) dz

+

ˆ

R1+2d

ˆ

Rd

[
f(z)− f(t, x, w)

]
K(z, w)(f − l)+(z)η

2(v)ψ2(t, x) dw dz

≥ 1

2

ˆ

R1+2d

T (f − l)2+(z)ψ
2(t, x)η2(v) dz

+

ˆ

R1+2d

ˆ

Rd

[
f(z)− f(t, x, w)

]
K(z, w)(f − l)+(z)η

2(v)ψ2(t, x) dw dz.

The core of the energy estimate rests in extracting the relation of the local energy of the equation
to the non-local tail term. By local energy we refer to the symmetric part of the non-local operator,
which due to the coercivity assumption (1.7) is related to the Hs

v norm of the solution, and in
particular has a sign. It is rather standard in the non-local literature to check that there holds the
following relation:

(3.10)

ˆ

Br

ˆ

Br

[(
fl+η

)
(v)−

(
fl+η

)
(w)
]2
K(v, w) dw dv

≤ 4

ˆ

Rd

ˆ

Rd

[
f(v)− f(w)

]
fl+(v)η

2(v)K(v, w) dw dv

+ C(R− r)−2s
∥∥fl2+

∥∥
L1(BR/4)

+ C1

∥∥fl+
∥∥
L1(BR/4)

T
(
fl+; r/2, R/4, 0

)
,

where fl+ = (f − l)+ and T is the non-local tail term defined in (3.3). All details can be found
in [12, Lemma 4.1]. Thus we obtain

(3.11)

sup
t∈[−r2s,0]

ˆ

Qt
r

(f − l)2+(z) dv dx+

ˆ

Qr

ˆ

Br

[(
(f − l)+η

)
(v)−

(
(f − l)+η

)
(w)
]2
K(v, w) dw dz

≤ C(R− r)−2s

ˆ

QR/4

(f − l)2+(z) dz + C(R− r)2s
ˆ

QR/4

h2χf>l dz

+ C(R− r)2s
ˆ

QR/4

T2(f ; r/2, R/4, 0)χf>l dz.

3.2.2. Gain of integrability. We obtain the gain of integrability by comparing a solution of (1.12)
to the fractional Kolmogorov equation, which is written as

(3.12) (∂t + v · ∇x) f = (−∆v)
sf + h :=

ˆ

Rd

|f(w)− f(v)|
|v − w|d+2s

dw + h, (t, x, v) ∈ R+ × Rd × Rd,

with source term h ∈ L2(R+×Rd, H−s(Rd)) and initial datum f0 ∈ L2(R2d). This equation admits
a fundamental solution, implicitly given through the Fourier transform. In particular, one can
extract a gain of integrability from the fundamental solution: any sub-solution f of (3.12) satisfies
for any 2 ≤ p < 2 + 2s/d(1 + s)

(3.13) ∥f∥Lp(R+×R2d) ≤ C
(
∥f0∥L2(R2d) + ∥h∥L2(R+×Rd;H−s(Rd))

)
,
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with a constant depending only on s, d. This results from [7, Proposition 2.2] or [11, Proposition
3.4].

For our purposes, we can check that for any 0 < ρ and for η̃ ∈ C∞
c (Rd) such that η̃ = 0 outside

Br+2ρ and η̃ = 1 in Br+ρ there holds on R1+2d

(3.14)

T
[
(f − l)+ηψ

]
+ (−∆v)

s
[
(f − l)+ηψ

]

≤ L
[
(f − l)+ηψ

]
+ (−∆v)

s
[
(f − l)+ηψ

]
+ hχf>lηψ + (f − l)+ηT ψ

+

(
ˆ

Rd\Bρ(v)

(
f(w)− l

)
+
K(v, w) dw

)
χf>lψη

+

(
ˆ

Rd\Bρ(v)

(
f(w)− l

)
+
K(v, w) dw

)
χf>lψ

(
1− η̃

)

+

(
ˆ

Bρ(v)

(f(w)− l)+K(v, w)
(
η(v)− η(w)

)
dw

)
χf>lη̃ψ

=: H,

that is f̃ := (f − l)+ηψ is a sub-solution of (3.12) with source H. In particular, due to the
boundedness result of the non-local operator L ∈ H−s

v (Rd), as derived in [7, Theorem 4.1] and [11,
Theorem 2.1], we see that H ∈ L2(R+ × Rd;H−s(Rd)), and the first two terms in (3.14) are
bounded by the L2

t,xH
s
v norm of (f − l)+, localised due to the cutoffs. Moreover, the term involving

the source h, and the transport operator T ψ are bounded by the localised L2
t,x,v norm of h and

of (f − l)+, respectively. Finally, from the three integral quantities appearing in (3.14), the only
truly non-local one is the first one, on the third line from above. This is indeed nothing else but
the localised L2

t,x,v norm of the tail on the set where f > l. The other two integral quantities can

be shown to be bounded by the localised L2
t,x,v and L2

t,xH
s
v norm of (f − l)+, by using a non-local

analogue of the product rule, as obtained in [7, Lemma 4.10, 4.11] and [12, Lemma 2.3]. Overall,
if we choose ρ ∼ R− r, we obtain for any 0 < r ≤ R/4

∥H∥L2(R+×Rd,H−s
v (Rd)) ≲ ∥(f − l)+∥L2

t,xH
s
v(QR/4)

+ (R− r)−s ∥(f − l)+∥L2(QR/2)
+ ∥hχf>l∥L2(QR/4)

+

∥∥∥∥
(
ˆ

Rd\Bρ(v)

f(w)K(v, w) dw

)
χf>lη

∥∥∥∥
L2(Qr+2ρ)

+ ρ−2s ∥(f − l)+∥L2(QR/4)

+ ρ−2s ∥(f − l)+∥L2(Qr+2ρ)
+ ρ−s ∥(f − l)+∥L2

t,xH
s
v(Qr+2ρ)

≲ (R− r)−2s ∥(f − l)+∥L2(QR) + ∥hχf>l∥L2(QR) +
∥∥∥T(f ; r,R/2, 0)χf>l

∥∥∥
L2(QR)

.

where the second inequality uses the energy estimate (3.11) from the previous step to relate
the Hs

v norm to the L2
v norm up to the tail. Combined with the gain of integrability (3.13)

stemming from the fractional Kolmogorov equation (3.12), we thus find for any p such that
2 ≤ p < 2 + 2s/d(1 + s)

(3.15)

∥(f − l)+ηψ∥Lp([0,T ]×R2d) ≲
∥∥[(f − l)+ηψ

]
(0, ·, ·)

∥∥
L2(R2d)

+ (R− r)−2s ∥(f − l)+∥L2(QR)

+ ∥hχf>l∥L2(QR) +
∥∥∥T(f ; r,R/2, 0)χf>l

∥∥∥
L2(QR)

.

3.2.3. Non-linear recurrence relation. This is the final step of the De Giorgi iteration. We recall
that our goal is to show that the control quantity Ak, defined in (3.1), converges to zero as k → ∞.
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We achieve our aim by deriving a non-linear recurrence relation of the form given in (3.2) for some
β > 0. To obtain such a non-linear relation from a linear equation, we use Chebyshev’s inequality,
which relates the measure of the set {f > lk} ∩ Qk to the control quantity Ak: since Qk+1 ⊂ Qk,
there holds

(3.16) |{f > lk+1} ∩Qk+1| =
∣∣{(f − lk)+ > 2−k−2L

}
∩Qk+1

∣∣ ≤ 22k+4L−2Ak.

We now use Hölder’s inequality for some 2 ≤ p ≤ ∞

Ak+1 ≤
(
ˆ

Qk+1

(f − lk+1)
p
+ dz

)2/p

|{f > lk+1} ∩Qk+1|1−2/p
.

We then bound the measure of the indicator function with Chebyshev (3.16), so that for some
tk+1/2 ∈ [tk, tk+1] to be determined, there holds

(3.17) Ak+1 ≤
(
22k+4L−2Ak

)(p−2)/p

(
ˆ

[tk+1/2,0]×Qt
k+1)

(f − lk+1)
p
+ dz

)2/p

.

The Lp norm is then bounded using the gain of integrability from the previous step. We pick
p ∈

[
2, 2s/d(1 + s)

)
, so that (3.15) implies

(3.18)

∥(f − lk+1)+∥Lp([tk+1/2,0]×Qt
k+1)

≲
∥∥[(f − lk+1)+

]
(tk+1/2, ·, ·)

∥∥
L2(Qt

k)

+ 22s(k+1)(R− r)−2s ∥(f − lk+1)+∥L2(Qk)

+ 2s(k+1)
∥∥hχf>lk+1

∥∥
L2(Qk)

+ 2s(k+1)
∥∥∥T(f ; r,R/2, 0)χf>lk+1

∥∥∥
L2(Qk)

.

We now bound term by term. First, we pick tk+1/2 ∈ [tk, tk+1] such that

(3.19)
∥∥[(f − lk+1)+

]
(tk+1/2, ·, ·)

∥∥2
L2(Qt

k)
≤ 1

tk+1 − tk

ˆ

Qk

(f − lk+1)
2
+ dz ≤ 2k(R2s − r2s)−1Ak.

Second, we notice that f − lk+1 ≤ f − lk so that

(3.20) ∥(f − lk+1)+∥2L2(Qk)
≤ Ak.

Third, we use h ∈ L∞(QR), so that by Chebyshev (3.16)

(3.21)
∥∥hχf>lk+1

∥∥2
L2(Qk)

≤ 22k+4L−2 ∥h∥2L∞(QR)Ak.

Fourth, for the tail, we use Hölder’s inequality for some 1 ≤ q < ∞, Chebyshev (3.16) and we
exploit the local tail bound derived in Proposition 3.2, to find

(3.22)

∥∥T(f ; r,R, 0)χf>lk+1

∥∥2
L2(Qk)

≤
{
ˆ

Qk

(
T(f ; r,R, 0)

)2q
dz

}1/q{ ˆ

Qk

χf>lk+1
dz

}1−1/q

≤ C(R− r)−4s ∥f∥2L∞(QR)

(
22k+4L−2Ak

)1−1/q
.

We combine (3.19), (3.20), (3.21), (3.22) with (3.18) so that

∥(f − lk+1)+∥2Lp([tk+1/2,0]×Qt
k+1)

≲k (R− r)−4sAk + L−2 ∥h∥2L∞(QR)Ak

+ (R− r)−4s ∥f∥2L∞(QR) L
−(2q−2)/qA

(q−1)/q
k .
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Then (3.17) implies for any p such that 2 < p < 2 + 2s/d(1 + s) and some 1 ≤ q <∞

Ak+1 ≲ 24kL−(2p−4)/pA
(p−2)/p
k

·
[
(R− r)−4sAk + L−2 ∥h∥2L∞(QR)Ak + (R− r)−4s ∥f∥2L∞(QR) L

−(2q−2)/qA
(q−1)/q
k

]
.

In order to obtain the non-linear recurrence (3.2), we need to ensure that (q − 1)/q > 2/p. Thus,
for any 0 < ε0 < (p/2)− 1 < s/d(1 + s), we pick q = (1 + ε0)/ε0.

Finally, we determine how large we can pick L > 0 using a barrier argument. We consider A∗
k :=

A0Q
−k for k ≥ 0 and for some Q > 1 to be determined. Then, we enforce that A∗

k satisfies the
reverse recurrence, that is

(3.23)
A∗

k+1 ≳24kL−(2p−4)/p(A∗
k)

1+(p−2)/p
[
(R− r)−4sA∗

k + L−2 ∥h∥2L∞(QR)A
∗
k

]

+ 24k(R− r)−4sL−(2p−4)/p−(q−2)/q(A∗
k)

2−1/q−2/p ∥f∥2L∞(QR) .

We choose Q sufficiently large, and for any δ0 ∈ (0, 1), we pick L as

(3.24)
L = δ0 ∥f∥L∞(QR) + C(δ0, Q)(R− r)−2spq/(pq−p−2q)A

1/2
0

+ C(Q)(R− r)−2sp/(p−2)A
1/2
0 + δ0 ∥h∥L∞(QR) ,

so that, using Young’s inequality, one can check that (3.23) is satisfied. Since, moreover,

A0 ≤ (R− r)4sp/(p−2)Q−p/(p−2)L2,

we deduce inductively

Ak ≤ Q−kp/(p−2)A0,

so that Ak → 0 as k → +∞. In particular, for almost every z ∈ Qr there holds

f ≤ L = δ0 ∥f∥L∞(QR) + C(δ0, Q)(R− r)−2spq/(pq−p−2q)A
1/2
0

+ C(Q)(R− r)−2sp/(p−2)A
1/2
0 + δ0 ∥h∥L∞(QR) .

Recalling that for (1.1), the source is bounded by ∥h∥L∞(QR) ≤ C(m0,M0, E0, H0) ∥f∥L∞(QR),

we can use a standard covering argument to absorb the source, as well as the first term, on the
left hand side, and we recall that A0 = ∥f∥2L2(QR), so that since the result holds for any ε0 and p

satisfying 0 < ε0 < (p/2)− 1 < s/d(1 + s), we conclude the proof of Proposition 3.1.

3.3. Proof of the Strong Harnack inequality. Theorem 2.2 follows from the chain of inequal-
ities depicted in (2.2). Concretely, as a consequence of Proposition 3.1, Young’s inequality, the
non-negativity of f and the Weak Harnack (2.1) for (1.1), where we recall that, due to the non-
negativity of h, the function f is a super-solution of (1.1) with zero source term, so that we obtain
for any δ1 ∈ (0, 1)

sup
Q̃−

r0/4

f ≤ C ∥f∥L2(Q̃−
r0/2

) ≤ δ1 ∥f∥L∞(Q̃−
r0/2

) + C(δ1) ∥f∥Lζ(Q̃−
r0/2

) ≤ δ1 ∥f∥L∞(Q̃−
r0/2

) + C(δ1) inf
Qr0/4

f.

A standard covering argument permits to absorb the first term on the right hand side, and we
conclude

sup
Q̃−

r0/4

f ≤ C inf
Qr0/4

f.
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3.3.1. Consequences. As a consequence of the Strong Harnack inequality one can derive heat kernel
estimates, which in turn give information on the long time behaviour and decay properties of
solutions to the equation. The connection between Harnack inequalities and heat kernel bounds
has first been discovered by Nash [14] for parabolic equations, and further been developed by Fabes-
Stroock [3], and Aronson [1]. For kinetic integro-differential equations, a first result is discussed
in [12].
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