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TRAJECTORIAL HYPOCOERCIVITY AND APPLICATION TO

CONTROL THEORY

HELGE DIETERT, FRÉDÉRIC HÉRAU, HARSHA HUTRIDURGA,

AND CLÉMENT MOUHOT

Abstract. We present the quantitative method of the recent work [6] in a simple
setting, together with a compactness argument that was not included in [6] and

has interest per se. We are concerned with the exponential stabilisation (spectral
gap) for linear kinetic equations with degenerate thermalisation, i.e. when the

collision operator vanishes on parts of the spatial domain. The method in [6]

covers both scattering and Fokker-Planck type operators, and deals with external
potential and boundary conditions, but in these notes we present only its core

argument and restrict ourselves to the kinetic Fokker-Planck in the periodic torus

with unit velocities and a thermalisation degeneracy (this equation is not covered
by the previous results [2, 9, 7]).
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1. Introduction

1.1. The setting. Let us consider the linear kinetic equation

(1.1) ∂tf + v · ∇xf = σ∆LBf

for a time-dependent probability density f(t, x, v) = ft(x, v) over the phase space
(x, v) ∈ Td × Sd−1, where Td is the unit torus and Sd−1 = {v ∈ Rd : |v| = 1},
modelling massless or nearly massless particles with unit velocities. The right hand
side ∆LB is the Laplace-Beltrami operator and corresponds to the classical Fokker-
Planck operator when velocities are restricted to the sphere. Finally, σ = σ(x) ∈
L∞(Td; [0,∞)) is a weight that can vanish in part of the spatial domain and models
the thermalisation degeneracy.
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93C20.
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The evolution (1.1) has the stationary state f∞ = 1 and conserves the mass∫
f dx dv. When σ ≡ 1, it is one of the simplest examples of hypocoercive equation:

any solution ft associated to the initial data fin ∈ L2 with zero mass
∫
fin dx dv = 0

will converge exponentially to zero. A natural question arises then, inspired from
control theory: under what conditions on σ, will the evolution (1.1) yield exponential
relaxation to equilibrium?

When the right hand side in (1.1) is a bounded integral scattering operator (lin-
ear Boltzmann or relaxation operator), this question has been answered by [2, 9] by
compactness arguments when σ satisfies a geometric control condition borrowed from
control theory of wave equations [1]. However these works crucially rely on the facts
that (1) the right hand side operator is bounded, and (2) writes as a non-negative
integral operator minus a local part. The case we consider here is conceptually dif-
ferent, and requires new methods. Another direction for bounded operators is given
in [7] who answered quantitatively by Harris theorem from probability theory.

1.2. The geometric control condition. The transport equation on the left hand
side of (1.1) is solved by the characteristics

Zt(x, v) := (Xt(x, v), Vt(x, v)) := (x+ tv, v).

The (uniform) geometric control condition (GCC) intuitively means that, in a given
fixed time, all trajectories spends a positive time (bounded below) in a region where
σ ≳ 1 (where thermalisation truly occurs), see Figure 1. The non-uniform version of
this condition intuitively means that all trajectories eventually enter the support of
σ (without restricting the time horizon or asking that the trajectories spend time in
a region where σ remains strictly away from zero).

We adopt the following precise definition:

Hypothesis 1 (Geometric control condition). The (uniform) GCC writes

(1.2) ∃T ∗, c > 0 such that ∀ (x, v) ∈ Td × Sd−1 :

∫ T∗

0

σ(Xt(x, v)) dt ≥ c.

We also assume σ ∈ C1, and therefore (1.2) implies that there is Σ ⊂ Td open with
C1 boundary and a smooth χ : Td → [0,∞), so that 1Σ ≲ σ, suppχ ⊂ Σ and

(1.3) ∀ (x, v) ∈ Td × Sd−1 :

∫ T∗

0

χ(Xt(x, v)) dt ≥ 1.

Remark 1. In this control condition, we assume slightly more regularity on σ than
in the literature: [2] only needs σ ∈ L∞ while [9] assumes that σ continuous. The
regularity is only used to conclude (1.3) and we did not try to optimise this assumption.

Our main result is:

Theorem 2 (Exponential stabilization). Assume σ is bounded and satisfies (H1)
with Σ having finitely many connected components. Then there are C ≥ 1 and Λ > 0
such that for any initial data fin ∈ L2 the corresponding solution ft to (1.1) satisfies
∥∥∥∥ft −

(∫

Td×Sd−1

fin

)∥∥∥∥
L2(Td×Sd−1)

≤ Ce−Λt

∥∥∥∥fin −
(∫

Td×Sd−1

fin

)∥∥∥∥
L2(Td×Sd−1)

.

Such C,Λ can be computed from the proof and only depend on T ∗, c,Σ, ∥χ∥W 1,∞ , ∥σ∥∞.
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Remark 3. The non-uniform GCC means that for almost every (x, v) ∈ Td × Sd−1

(1.4) ∃T = T (x, v) > 0 such that

∫ T (x,v)

0

σ(Xt(x, v)) dt > 0.

When one replaces (1.2) by the non-uniform condition (1.4), our method can be used
to prove the convergence ft → f∞ = (

∫
Td×Sd−1 fin), although without a rate.

Ω

σ ≡ 1

σ ≡ 0

Ω

σ ≡ 1

σ ≡ 0

Figure 1. Illustration of (H1). On the left, all lines hit and spend a
controlled fraction of time in the thermalisation set Σ = suppσ on a
time interval [0, T ], yielding GCC and exponential convergence. On
the right, there is a set of configurations with zero measure whose
trajectories never hit Σ, and around this set the time to hit Σ can be
arbitrarily large: only the non-uniform GCC holds, and one typically
expects polynomial rate of convergence.

2. Trajectorial approach to hypocoercivity

2.1. Fixing the global average. Consider fin ∈ L2 and its associated solution ft.
Since the mass is conserved and the equation is linear, gt := ft − (

∫
fin(x, v) dx dv) is

solution to (1.1) with zero mass

(2.1)

∫

Td×Sd−1

gin(z) dz = 0,

and therefore its associated equilibrium is zero.

2.2. The local projection. The local equilibrium isM(v) = |Sd−1|−1 and we define
the spatial density (velocity average)

(2.2) ⟨g⟩(t, x) :=
∫

Sd−1

g(t, x, v) dv.

2.3. The energy estimate. The L2 norm is the natural entropy for this linear
model, and the H theorem takes the form of the energy estimate

(2.3) D(gt) := − d

dt
∥gt∥2L2(Td×Sd−1) =

∫

Td×Sd−1

σ|∇vgt|2 dxdv ≥ 0

where the gradient in v is the differential tangential to the unit sphere.
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2.4. Integral criterion for exponential stabilization. We first prove a simple
sufficient time-integrated entropy production inequality that implies exponential con-
vergence. Such criterion is standard in kinetic theory, and (at least) already appears
in a compactness argument in [8]. Exponential decay holds if and only if there are
T > 0, λ > 1 such that

(2.4) ∥gin∥2L2(Td×Sd−1) ≤ λ

∫ T

0

D(gt) dt.

More precisely: when (2.4) holds, then

∥gt∥L2(Td×Sd−1) ≤
√

λ

λ− 1
exp

(
− 1

T
log

(
λ

λ− 1

)
t

)
∥gin∥L2(Td×Sd−1).

2.5. Micro-coercivity. The Poincaré inequality holds in the compact smooth man-
ifold Sd−1: there is CP > 0 so that for any x ∈ Td

(2.5)

∫

Sd−1

|gt − ⟨gt⟩M |2 dv ≤ CP

∫

Sd−1

σ|∇vgt|2 dv.

This provides control over (g−⟨g⟩M) on suppσ×Sd−1 hence on the good set Σ×Sd−1.

2.6. Following the characteristics to transfer the control. The next step is to
transfer the control of (g − ⟨g⟩M) on the good set to the whole domain, by following
trajectories. Let us prove that there are C1, C2 > 0 so that

(2.6) ∥gin∥2L2(Td×Sd−1) ≤ C1

∫ T∗

0

D(gt) dt+ C2

∫ T∗

0

∫

Σ

⟨gt⟩2 dxdt.

To prove this first write the evolution equation for g2:

∂t
(
g2t
)
+ v · ∇x

(
g2t
)
= 2 (∆LBgt) gt

and second write it in Duhamel form along the transport flow (writing z := (x, v))

gt(z)
2 = gin(Z−t(z))

2 + 2

∫ t

0

σ(Zt−s(z)) (∆LBgs)(Zt−s(z)) gs(Zt−s(z)) ds

and third integrate it against χ from (H1) on [0, T ∗]× Td × Sd−1:

∫ T∗

0

∫

Td×Sd−1

g2t (z)χ(z) dtdz =

∫

Td×Sd−1

gin(z)
2

(∫ T∗

0

χ(Zt(z)) dt

)
dz

+ 2

∫ T∗

0

∫ t

0

∫

Td×Sd−1

σ(z) (∆LBgs)(z) gs(z)χ(Zt−s(z)) dz dsdt

where we have used the unitary change of variables z 7→ Zt(z) and z 7→ Zt−s(z).
Now observe that (1.3) in (H1) implies

∫

Td×Sd−1

gin(z)
2

(∫ T∗

0

χ(Zt(z)) dt

)
dz ≥ ∥gin∥2L2(Td×Sd−1)

and suppσ ⊂ Σ implies
∫ T∗

0

∫

Td×Sd−1

g2t (z)χ(z) dtdz ≤ ∥χ∥∞
∫ T∗

0

∥gt∥2L2(Σ×Sd−1) dt.
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As for the last term we perform an integration by parts:

2

∫ T∗

0

∫ t

0

∫

Td×Sd−1

σ(z) (∆LBgs) (z)gs(z)χ(Zt−s(z)) dz dsdt =

− 2

∫ T∗

0

∫ t

0

∫

Td×Sd−1

σ(z) |∇vgs(z)|2 χ(Zt−s(z)) dz dsdt

− 2

∫ T∗

0

∫ t

0

(t− s)

∫

Td×Sd−1

σ(z)∇vgs(z) · (∇χ)(Zt−s(z))gs(z) dz dsdt

≥ −T ∗
(
2∥χ∥∞ +

1

ε
∥∇χ∥2∞∥σ∥∞

)∫ T∗

0

D(gs) ds− εT ∗
∫ T∗

0

∥gs∥2L2(Td×Sd−1) ds

≥ −T ∗
(
2∥χ∥∞ +

1

ε
∥∇χ∥2∞∥σ∥∞

)∫ T∗

0

D(gs) ds− ε (T ∗)2 ∥gin∥2L2(Td×Sd−1)

where in the last line we have used that the L2 norm is non-increasing. Therefore we
deduce

∥gin∥2L2(Td×Sd−1) ≤ ∥χ∥∞
∫ T∗

0

∥gt∥2L2(Σ×Sd−1) dt

+ T ∗
(
2∥χ∥∞ +

1

ε
∥∇χ∥∞

)∫ T∗

0

D(gs) ds+ ε (T ∗)2 ∥∇χ∥∞∥gin∥2L2(Td×Sd−1).

We now use the micro-coercivity (2.5):
∫ T∗

0

∥gt∥2L2(Σ×Sd−1) dt ≤
2

|Sd−1|

∫ T∗

0

∥⟨gt⟩∥2L2(Σ) dt+ 2

∫ T∗

0

∥gt − ⟨gt⟩M∥2L2(Σ×Sd−1) dt

≤ 2

|Sd−1|

∫ T∗

0

∥⟨gt⟩∥2L2(Σ) dt+ 2CP

∫ T∗

0

D(gt) dt.

Taking ε = (T ∗)−2∥∇χ∥−1
∞ /2, we finally deduce

∥gin∥2L2(Td×Sd−1) ≤
4∥χ∥∞
|Sd−1|

∫ T∗

0

∥⟨gt⟩∥2L2(Σ) dt

+
[
4CP ∥χ∥∞ + 4T ∗∥χ∥∞ + 4 (T ∗)3 ∥∇χ∥2∞∥σ∥∞

] ∫ T∗

0

D(gt) dt

which proves (2.6). We are left with the control of the local projection on the good
set, which is the object of the next two sections.

3. The compactness argument

Assume (2.4) to be false with T = T ∗: there is a contradiction sequence (gn)n∈N
of solutions with initial data gnin such that ∥gnin∥ = 1 (normalised by linearity) and

∫ T∗

0

D(gnt ) dt→ 0.

By weak compactness we then find a subsequence such that

gn
′
⇀ g∗ in L2([0, T ∗]× Td × Sd−1) and gn

′
in ⇀ g∗in in L2(Td × Sd−1).
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Moreover the velocity averaging lemma ensures that ⟨gn⟩ is relatively compact for the
strong topology in L2([0, T ∗] × Td). Therefore, we can furthermore assume that our

subsequence satisfies ⟨gn′⟩ → ⟨g∗⟩ strongly in L2([0, T ∗]× Td).

The limit then satisfies ∂tg
∗+v ·∇xg

∗ = 0 in the weak sense and
∫ T∗

0
D(g∗t ) dt = 0.

This implies that g∗ is constant in Σ × Sd−1 since it has to be constant along the
transport flow and equal to its velocity average. By connecting any point to a point
in Σ×Sd−1 (using the GCC), we deduce that g∗ is constant in Td×Sd−1. The weak L2

convergence implies that
∫
[0,T∗]×Td×Sd−1 g

∗ = limn′→∞
∫
[0,T∗]×Td×Sd−1 g

n′
= 0 (recall

that we have set the total mass of each gn to zero). Therefore g∗ ≡ 0.
Using the strong convergence of the velocity average ⟨g⟩ → ⟨g∗⟩ in L2([0, T ∗] ×

Td × Sd−1) and taking the limit in (2.6), we deduce that ∥⟨g∗⟩∥L2([0,T∗×Σ×Sd−1) ≳ 1.
This contradicts g∗ ≡ 0 proved in the previous paragraph, and (2.4) is proved.

4. Getting quantitative: the divergence inequality

We now replace the previous non-constructive argument based on compactness and
contradiction by a quantitative one. For the sake of readability, we first assume that
the Σ from (H1) is connected and explain how this can be relaxed at the end.

In view of (2.4) and (2.6) and the fact that the L2 norm is non-increasing, to close
a complete quantitative argument it is enough to prove that for any δ > 0 there is
Cδ > 0 so that

(4.1)

∫ T∗

0

∫

Σ

⟨gt⟩2 dx dt ≤ Cδ

∫ T∗

0

D(gt) dt+ δ

∫ T∗

0

∥gt∥2L2(Td×Sd−1) dt.

We then define the global average over the good set as

⟨⟨g⟩⟩ := 1

m

∫

[0,T∗]×Σ

⟨g⟩(t, x) dtdx with m := |[0, T ∗]× Σ|

and then split the term to estimate as

∫ T∗

0

∫

Σ

⟨gt⟩2 dxdt ≤
∫ T∗

0

∫

Σ

(⟨gt⟩ − ⟨⟨g⟩⟩)2 dxdt+m⟨⟨g⟩⟩2 =: I1 + I2.

To control I1 we use the following result that goes back to [3, 4, 5]:

Lemma 4 (Divergence inequality). Given U ⊂ Rn, n ≥ 1, an open connected bounded
C1 domain, there is CD > 0 and a linear map D mapping any h ∈ L2(U) with

∫
U
h = 0

to a F : U → Rn in H1(U) that satisfies




∇ · F = h in U,

F = 0 on ∂U,

∥F∥H1(U) ≤ CD∥h∥L2(U).

(4.2)

This is proved constructively in [3, 4, 5], and we refer to our full paper [6] for
extensions of this result to general domains with external potentials and boundary
conditions.
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We apply Lemma 4 to h := ⟨gt⟩− ⟨⟨g⟩⟩ on U := (0, T ∗)×Σ (with zero mass): there
is F ∈ H1(U) so that (4.2) holds, and we write (using the Dirichlet conditions)

∫ T∗

0

∫

Σ

(⟨gt⟩ − ⟨⟨g⟩⟩)2 dxdt =

∫

U

(⟨gt⟩ − ⟨⟨g⟩⟩) (∇t,x · F) dxdt

= −
∫

U

F · ∇t,x⟨gt⟩dxdt.(4.3)

Denote ∂0 = ∂t and ∂i = ∂xi for i = 1, . . . , d. Then there is C3 > 0 so that

∀ i = 0, . . . , d, ∂i⟨gt⟩ = Ki +

d∑

j=0

∂jJij with(4.4)

d∑

i=0

∥Ki∥2L2(U) +

d∑

i,j=0

∥Jij∥2L2(U) ≤ C3

∫ T∗

0

D(gt) dt.(4.5)

Indeed define φi ∈ C2(Sd−1), i = 0, . . . , d so that, denoting v0 = 1,

∫

Sd−1

φi(v)vj dv = δij , i, j = 0, . . . , d, and so

∫

Sd−1

{
(∂t + v · ∇x)

[
⟨gt⟩

]}
φi dv = ∂i⟨gt⟩.

The evolution equation on g then implies

∂i⟨gt⟩ = σ

∫

Sd−1

(∆LBgt)φi dv +

∫

Sd−1

{
(∂t + v · ∇x)

[
⟨gt⟩M − gt

]}
φi dv

= Ki +

d∑

j=0

∂jJij

with





Ki(t, x) := σ

∫

Sd−1

(gt − ⟨gt⟩) (∆LBφi) dv, i = 0. . . . , d,

Jij(t, x) :=

∫

Sd−1

[⟨gt⟩ − gt] vjφi dv, i = 0, . . . , d, j = 0, . . . , d,

which proves (4.4)-(4.5). Going back to (4.3) we compute

∫ T∗

0

∫

Σ

(⟨gt⟩ − ⟨⟨g⟩⟩)2 dxdt = −
d∑

i=0

∫

U

FiKi dxdt−
d∑

i,j=0

∫

U

Fi∂jJij dxdt

= −
d∑

i=0

∫

U

FiKi dxdt+

d∑

i,j=0

∫

U

∂jFiJij dxdt

Exp. no VIII— Trajectorial hypocoercivity and application to control theory
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where we have used the Dirichlet conditions again. Using the H1(U) bound on F
in (4.2) and (4.5) we deduce

∫ T∗

0

∫

Σ

(⟨gt⟩ − ⟨⟨g⟩⟩)2 dxdt ≤
√
d2 + d ∥F∥H1(U)




d∑

i=0

∥Ki∥2L2(U) +

d∑

i,j=0

∥Jij∥2L2(U)




1/2

≤
√
d2 + dCD

√
C3 ∥⟨gt⟩ − ⟨⟨g⟩⟩∥L2(U)

(∫ T∗

0

D(gt) dt

)1/2

which implies by splitting the square

(4.6)

∫ T∗

0

∫

Σ

(⟨gt⟩ − ⟨⟨g⟩⟩)2 dxdt ≤ Cδ

∫ T∗

0

D(gt) dt+ δ

∫ T∗

0

∥gt∥2L2(Td×Sd−1) dt

for all δ > 0 and some corresponding constant Cδ.
To finish the proof of (4.1), we need to estimate the global average ⟨⟨g⟩⟩ which we

compare to the zero mass condition up to error terms controlled by the dissipation.
To relate it to the zero mass condition (2.1) introduce

(4.7) ∀ (t, z) ∈ [0, T ∗]× Td × Sd−1, ψ(t, z) = ψt(z) :=
χ(z)

∫ T∗

0
χ(Zs−t(z)) ds

.

which is well-defined since the denominator is uniformly positive thanks to (1.3). The
function ψ is bounded in C1([0, T ∗]×Td×Sd−1), and satisfies suppψ = [0, T ∗]×suppσ,
and, most importantly,

(4.8) ∀ z ∈ Td × Sd−1,

∫ T∗

0

ψt(Zt(z)) dt = 1.

By the conservation of mass, we find that h = 1 − 1
T∗ ⟨ψ⟩ has mass zero over U.

Hence we can apply Lemma 4 to find F with the properties of the lemma. We then
find

⟨⟨g⟩⟩ − 1

T ∗

∫

[0,T∗]×Td

⟨g⟩(t, x) ⟨ψ⟩(t, x) dtdx =

∫

U

⟨g⟩(t, x)∇ · Fdtdx.

Hence we can use (4.4)-(4.5) as before to find a constant C4 so that

(4.9)

∣∣∣∣∣⟨⟨g⟩⟩ −
1

T ∗

∫

[0,T∗]×Td

⟨g⟩(t, x) ⟨ψ⟩(t, x) dtdx
∣∣∣∣∣ ≤ C4

(∫ T∗

0

D(gt) dt

)1/2

.

We now estimate the ψ-weighted average as

1

T ∗

∫

[0,T∗]×Td

⟨g⟩(t, x) ⟨ψ⟩(t, x) dtdx

=

∫

[0,T∗]×Td×Sd−1

⟨g⟩(t, x)ψ(t, x, v) dtdx dv

=

∫

[0,T∗]×Td×Sd−1

[M⟨gt⟩(x)− gt(x, v)]ψ(t, x, v) dtdxdv

+

∫

[0,T∗]×Td×Sd−1

g(t, x, v)ψ(t, x, v) dtdxdv =: J1 + J2.

Helge Dietert, Frédéric Hérau, Harsha Hutridurga and Clément Mouhot

VIII–8



The first term J1 is controlled by the micro-coercivity (2.5) and ψ ≲ σ for a
constant C5 as
(4.10)

J1 ≤ C5

(∫

[0,T∗]×Td×Sd−1

σ [M⟨gt⟩ − gt]
2
dtdxdv

)1/2

≤ C5CP

(∫ T∗

0

D(gt) dt

)1/2

.

We rewrite the second term J2 by Duhamel’s principle along the transport flow as

J2 =

∫

[0,T∗]×Td×Sd−1

gin(Z−t(z))ψt(z) dtdz

+

∫

[0,T∗]×Td×Sd−1

∫ t

0

σ(X−(t−s)(z))∆LBgs(Z−(t−s)(z))ψt(z) dsdtdz

=

∫

Td×Sd−1

gin(z)

(∫ T∗

0

ψt(Zt(z)) dt

)
dz

+

∫

[0,T∗]×Td×Sd−1

∫ t

0

σ(x)∆LBgs(z)ψt(Zt−s(z)) dsdtdz =: J21 + J22

and J21 = 0 because of (4.8) and (2.1), and the second term is estimated by integration
by parts:

|J22| =
∣∣∣∣∣

∫

[0,T∗]×Td×Sd−1

∫ t

0

σ(x)∇vgs(z) · ∇v [ψt(x+ (t− s)v, v)] dsdtdz

∣∣∣∣∣

≤ C6

(∫ T∗

0

D(gt) dt

)1/2

for some constant C6 > 0. Together with (4.6) and (4.10) it concludes the proof
of (4.1).

Let us finally extend the argument when Σ has finitely many connected components
Σ1, . . . ,Σk. For each i = 1, . . . , k, we define Ui = (0, T ∗)× Σi and

⟨⟨g⟩⟩i :=
1

mi

∫

[0,T∗]×Σi

⟨g⟩(t, x) dtdx with mi := |[0, T ∗]× Σ|.

Arguing on each component as we did in the estimate (4.6), we get

(4.11)

∫ T∗

0

∫

Σi

(⟨gt⟩ − ⟨⟨g⟩⟩i)
2
dxdt ≤ Cδ

∫ T∗

0

D(gt) dt+ δ

∫ T∗

0

∥gt∥2L2(Td×Sd−1) dt.

We then prove, for each pair i ̸= j ∈ {1, . . . , k}, that |⟨⟨g⟩⟩i−⟨⟨g⟩⟩j |2 is controlled by
∫ T∗

0
D(gt) dt. Indeed, all components are connected by the transport flow provided T ∗

is chosen large enough (without loss of generality) so that there are smooth weights
wi ≥ 0 over (0, T ∗)×Td×Sd−1 with unit masses and suppwi ⊂ Ui×Sd−1, and smooth
compactly supported ψij = ψij(t, x, v) solutions to ∂tψij − v ·∇xψij = wi−wj . Then
integrating the equation on g against ψij and using (2.5) shows that

∣∣∣∣∣

∫

[0,T∗]×Td

⟨g⟩ ⟨wi⟩dtdx−
∫

[0,T∗]×Td

⟨g⟩ ⟨wj⟩dt dx
∣∣∣∣∣ ≲

(∫ T∗

0

D(gt) dt

)1/2

,
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and arguing as in the proof of (4.9) we can prove that each
∫
[0,T∗]×Td⟨g⟩ ⟨wi⟩dtdx is

close to ⟨⟨g⟩⟩i up to an error of order
(∫ T∗

0
D(gt) dt

)1/2
.

We then construct ψ as in (4.7) and, using the zero mass condition (2.1), we can
argue as above to prove, for some constants α1, . . . , αk > 0,

α1⟨⟨g⟩⟩1 + · · ·+ αk⟨⟨g⟩⟩k ≲
(∫ T∗

0

D(gt) dt

)1/2

.

Together with the control on the differences between the ⟨⟨g⟩⟩i’s this implies the result.
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