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Decompositions of high-frequency Helmholtz solutions and

application to the finite element method

D. Lafontaine∗

(based on joint works with J. Galkowski, E. Spence, and J. Wunsch)

Abstract

This paper presents joint works with Jeffrey Galkowski, Euan Spence, and Jared Wunsch
[16, 12]. It corresponds to the talk the author gave at IHES for the Séminaire Laurent
Schwartz in April 2022.

Over the last ten years, results of Melenk and Sauter [20, 21] decomposing high-frequency
Helmholtz solutions into an analytic part and a well-behaved in frequency part have had
a large impact in the numerical analysis of the Helmholtz equation. These results have
been proved for the constant-coefficients Helmholtz equation outside an analytic Dirichlet
obstacle or an interior domain with an impedance boundary condition.

In [16], we obtained an analogous decomposition for the Helmholtz equation with C∞

variable coefficients in Rd, then in [12], analogous decompositions for scattering problems
fitting into the very general black-box scattering framework of Sjöstrand and Zworski [26],
thus covering Helmholtz problems with variable coefficients, impenetrable obstacles, and
penetrable obstacles all at once. These results allowed us to prove new sharp frequency-
explicit convergence results for (i) the hp-finite-element method (hp-FEM) applied to the
C∞ variable-coefficient Helmholtz equation in Rd, (ii) the hp-FEM applied to the variable-
coefficient Helmholtz equation in the exterior of an analytic Dirichlet obstacle, where the
coefficients are analytic in a neighborhood of the obstacle, and (iii) the h-FEM applied to
the Helmholtz penetrable-obstacle transmission problem. In this expository paper, we show
how to obtain the decomposition from [16], and the main ideas behind the general result
of [12].

1 Introduction

We are interested in the Helmholtz equation

∆u+ k2u = f in Rd\O

in the exterior of an obstacle O – one of the simplest wave models, obtained for example as the
Fourier transform in time of the wave equation. We ask for the solution to verify the Sommerfeld
radiation condition at infinity

∂ru− iku = o(r−(d−1)/2),

corresponding to the fact that we are looking for an outgoing wave (in other words, propagat-
ing from the obstacle toward infinity), with, for example, Dirichlet boundary condition at the
boundary of the obstacle

u = 0 on ∂O.

A very flexible and popular method to solve numerically such an equation is the finite element
method, where one approximates the solution by piecewise polynomial functions. We are in
particular interested in the so called hp-finite element method (hp-FEM), where one decreases
the meshsize h and increases the polynomial degree p of the approximation, both depending on
the frequency k of the solution. A natural question in this framework is the following: what is a
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condition on h, p, and k for these methods to converge? A first intuition is that, as the solution
oscillates at scale k−1, we should need at least a number of degrees of freedom #DOF ≳ kd. Is
it enough ?

In a very influential series of paper [20, 21], Melenk and Sauter brought an answer when the
obstacle O is analytic (see also [19] and [10] for the corresponding interior impedance problem).
They have shown that, under the conditions

hk

p
≤ C1, p ≥ C2 log k,

the solution to the discrete problem exists, is unique, and is quasi-optimal (that is, it is the
best possible approximation of the solution by a piecewise polynomial, up to a multiplicative
constant). This condition is sharp with respect to the number of degrees of freedom of the
problem: one can construct h and p so that the number of degrees of freedom of the problem
verifies

#DOF ≃
( p
h

)d ≲ kd.

In other words, hp-FEM applied to this setting does not suffer the pollution effect that plagues
the h-FEM (where h decreases depending on k and p is left constant), for which one needs
more degrees of freedom than kd [1]. The proof of Melenk and Sauter [20, 21] is based on a
decomposition of the Helmholtz solutions

u = uH2 + uA, (⋆)

where uH2 verifies better estimates in the frequency k than u, and uA verifies the same estimates
in k as u but is analytic. The idea is that uH2 contains the high frequencies (≳ k) of the
solution, and uA the low frequencies (≲ k). Their proof of the decomposition (⋆) is based on
explicit computations (relying on Bessel and Hankel functions) in Rd, and therefore, cannot be
generalised in a straightforward way to more general problems, such as the Helmholtz equation
with variables coefficients, despite the large interest in this problem in the numerical analysis
community.

In the joint works [16, 12] with Jeffrey Galkowski, Euan Spence and Jared Wunsch, we tack-
led the question of understanding the frequency-decomposition (⋆) in the most general possible
situation. We obtained the following results.

1. In [16], we obtained the decomposition (⋆) for the variable C∞ coefficients equation in Rd.

2. Then, in [12], we have shown such a decomposition in the very general black-box scattering
framework of Sjöstrand-Zworski.

One can apply our results to obtain new frequency-explicit convergence estimates in the free
space and for penetrable and non-penetrable obstacles for the equation with variable coefficients.
In particular, theses applications show that the hp-FEM applied to the Hemlholtz equation does
not suffer from the pollution effect in the two following situations:

1. For the equation without obstacle and with variable C∞ coefficients.

2. In the exterior of an analytic obstacle, for the equation with variable C∞ coefficients which
are analytic near the obstacle.

In the sequel of this expository paper, we will show how to obtain the decomposition from
[16], and the main ideas behind the general result of [12]. In particular, we will focus on the
decomposition (⋆), and we refer to [16] and [12] for the application of this decomposition to
convergence estimates for hp-FEM. §2 is dedicated to the exposition of the result of [16], §3
to the general, abstract decomposition obtained in [12], and §4 to its application to concrete
Helmholtz problems.

David Lafontaine
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2 The splitting for the equation with C∞ coefficients in Rd

2.1 Our result

Let us restate the problem in the semiclassical analysis framework. We will use the semiclassical
small parameter ℏ := k−1 (not to be confused with the meshsize h coming from the finite element
method), and the semiclassical Sobolev norms

∥v∥Hm
ℏ := ∥v∥L2 + ℏm∥v∥Ḣm .

We are interested in the semiclassical Helmholtz equation

Pℏu = f, Pℏ := −ℏ2∇ · (A∇·)− n,

with f compactly supported, where n,A ∈ C∞, supp(1− n), supp(1−A) are compact, with

nmin ≤ n ≤ nmax, Amin ≤ A ≤ Amax. (2.1)

The main assumption we will make is that the resolvent of the problem is polynomially
bounded on a certain set of frequencies, for which we will obtain the decomposition. In other
words, we assume that there exists H ⊂ (0, ℏ0] so that Ph satisfies a polynomial resolvent
estimate for ℏ ∈ H: if χ ∈ C∞

c , then for any outgoing Helmholtz solution u we have

∥χu∥H1
ℏ
≤ Cℏ−1−M∥f∥L2 , ∀h ∈ H. (2.2)

Resolvent estimates have been intensively studied in the past decades. In particular, in
any non-trapping geometry, where all the optical trajectories are escaping to infinity, such an
estimate always holds with M = 0 and H = (0, ℏ0] (see [22], [17], [3], [13]...). Whereas a
polynomial bound fails in strongly trapping geometries (see e.g. [2], [4],[23]), it always holds, no
matter the strength of the trapping, outside an arbitrary small set of frequencies, as shown in
[15]: therefore, we see this assumption as non-restricting in the numerical setting our applications
are aimed to.

We can now state the main result of [16].

Theorem 2.1 (Main result of [16]) Under the previous assumptions, if R > 0 and u is an
outgoing solution of Pℏu = f , there exists uH2 , uA so that

u|BR
= uH2 + uA,

where uH2 ∈ H2(BR) verifies

∥uH2∥H2
ℏ(BR) ≲ ∥f∥L2(BR) ∀ℏ ∈ H,

and uA ∈ Cω(BR) verifies, for some λ > 1,

∥∂αuA∥L2(BR) ≲ ℏ−1−M−|α|λ|α|∥f∥L2(BR) ∀α, ℏ ∈ H.

Such a result is applied in [16] to sharp convergence estimates (i.e., no pollution effect) for the
hp-FEM in this setting. Before pursuing to the proof of the decomposition, let us make the
following comments:

1. The bound on uH2 is better than, and does not depend on, the bound on u given by the
polynomial resolvent estimate. In this sense uH2 is better behaved in frequency than u.

2. The ℏ-dependency in the bound on uA is the one given by the polynomial resolvent esti-
mate, hence the same as for u. The dependency in the order of derivation |α| shows that
uA is analytic.

Exp. no XVI—Decompositions of high-frequency Helmholtz solutions and application to the finite element method
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Concerning the second point above, it is worth noting that a bound in C(ℏ)ℏ−|α||α|!λ|α|
would have been sufficient to obtain analyticity. Melenk and Sauter [21] actually obtain, out-
side an analytic obstacle for the equation with constant coefficients, the intermediate bound
C(ℏ)max(|α|, ℏ−1)|α|λ|α|. This zoology of (|α|, ℏ) dependencies in the uA-type bounds can be
better understood by making the connection with the radius of analyticity of uA, as recapped
in Figure 2.1. The bound in Theorem 2.1 is similar to the one in the constant coefficients case

Bound
Radius of

convergence

C(ℏ)ℏ−|α|λ|α| +∞
C(ℏ)ℏ−|α||α|!λ|α| ∼ ℏ
C(ℏ)max(|α|, ℏ−1)|α|λ|α| ∼ 1

Figure 2.1: Estimate on uA and radius of analyticity

[20], and the bound of [21], implying a radius of convergence independent of the frequency, is
sufficient to obtain sharp convergence estimates for hp-FEM.

The rest of the section is devoted to (a sketch of) the proof of Theorem 2.1.

2.2 The frequency splitting

The idea is the following:

• uA will contain the “low frequencies” of the solution. It will be analytic because compactly
supported in frequencies.

• uH2 will contain the “high frequencies” of the solution. In particular, it will be supported
in frequencies where Pℏ is semiclassically elliptic.

In practice, let µ ≫ 1 to be fixed later, ψµ ∈ C∞
c (R) be supported in B(0, 2µ) with ψµ = 1 on

B(0, µ), and define the low- and high-frequency projections Πlow and Πhigh as Fourier multipliers

Πlow

∧

v(ζ) := ψµ

(
ℏ2|ζ|2

)
v̂(ζ), Πhigh := Id−Πlow.

Hence Πlow localises in Fourier variables |ζ| ≲ ℏ−1√µ, and Πhigh in Fourier variables |ζ| ≳
ℏ−1√µ. Finally, with φ ∈ C∞

c (Rd) so that φ = 1 in B(0, R), set

uH2 := Πhigh(φu), uA := Πlow(φu).

Hence the decomposition u|BR
= uH2 + uA holds by definition and we are left with verifying

the bounds on uH2 and uA.

2.3 Low frequencies

The bound on the low-frequency component uA is an immediate consequence of its frequency
localisation, together with the Parseval identity:

∥∂αuA∥L2 = ∥∂α
(
Πlowφu)∥L2 =

1

(2π)d
∥ζαΠ̂lowφu∥L2

=
1

(2π)d
∥ζα ψµ

(
ℏ2|ζ|2

)
︸ ︷︷ ︸
supported in

|ζ|≤ℏ−1√
2µ

φ̂u(ζ)∥L2

≤ 1

(2π)d
(ℏ−1

√
2µ)|α|∥φ̂u(ζ)∥L2 = (ℏ−1√µ)|α|∥φu∥L2

≲ (ℏ−1
√

2µ)|α|h−1−M∥f∥L2 ,

where we used the polynomial resolvent bound (2.2) on the last line.

David Lafontaine
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2.4 High frequencies

A quick reminder on semiclassical ellipticity

In order to deal with uH2 , we prefer to see Πhigh as a semiclassical pseudo-differential operator
and write it as

Πhigh = Opℏ
(
1− ψµ(|ξ|2)

)
,

where, for a ∈ C∞(Rd
x × Rd

ξ),

(
Opℏ(a)v

)
(x) := (2πℏ)−d

∫

Rd

∫

Rd

ei(x−y)·ξ/ℏ a(x, ξ)v(y) dydξ.

We refer to [16, §4] for the notions of semiclassical pseudo-differential operators used here, and
to [27] and [8, Appendix E] for a comprehensive presentation on the topic. It will be sufficient
for the present discussion to know that

• One says that a is a symbol of order m and writes a ∈ Sm if

|∂xα∂ξβa(x, ξ)| ≲ ⟨ξ⟩m−β , ⟨ξ⟩ :=
√

1 + |ξ|2.

• If a ∈ Sm, we write Opℏ(a) ∈ Ψm; if A ∈ Ψ := ∪mΨm, we denote σ(A) its semiclassical
principal symbol.

• If A ∈ Ψm1 and B ∈ Ψm2 then AB ∈ Ψm1+m2 , and for any s ∈ R, A is bounded uniformly
in ℏ as an operator from Hs

ℏ to Hs−m1

ℏ .

• Ph ∈ Ψ2 with σ(Ph) = ⟨Aξ, ξ⟩ − n(x).

In order to introduce the notion of semiclassical ellipticity we will use to control uH2 , we need
to define the operator-wavefront set WFℏA of an operator A ∈ Ψ: it is the subset of the phase-
space where the action of A is not negligible at high frequencies. Whereas a precise definition
can be found for example in [16, §4], it will be sufficient for our purposes to know that

WFℏ(Opℏ(a)) ⊂ supp a.

Now, one says that B ∈ Ψm is elliptic on X ⊂ Rd
x × Rd

ξ if

⟨ξ⟩−m
∣∣σ(B)(x, ξ)

∣∣ ≥ c > 0, ∀(x, ξ) ∈ X, 0 < ℏ ≤ ℏ0.

The importance of this notion lies in the fact that semiclassical pseudo-differential operators are
always microlocally invertible where they are elliptic, up to negligible high-frequency errors. In
other words, if B ∈ Ψm is semiclassically elliptic on WFℏA, A ∈ Ψl then

A = QB + E = BQ′ + E′,

(see for example [8, Proposition E.32]) where Q,Q′ ∈ Ψm−l and E,E′ are negligible:

∀N, ∥E∥H−N
ℏ →HN

ℏ
≤ CNℏN .

One writes that E,E′ are O(ℏ∞).

Controlling uH2

We are now in position to obtain the bound on uH2 and end the proof of Theorem 2.1. As
advertised previously, the idea is to define uH2 in such a way that it will be supported where
Pℏ is semiclassically elliptic. But

σ(Pℏ)(x, ξ) = ⟨Aξ, ξ⟩ − n(x),

Exp. no XVI—Decompositions of high-frequency Helmholtz solutions and application to the finite element method
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hence one can take µ≫ 1 large enough so that, by (2.1)

|ξ| ≥ µ =⇒ ⟨ξ⟩−2σ(Pℏ)(x, ξ) ≥ c0 > 0,

in such a way that Pℏ is elliptic on

{
|ξ| ≥ µ

}
⊃ supp(1− ψµ) ⊃ WFℏ Πhigh ⊃ WFℏ Πhighφ.

Therefore, there exists Q ∈ Ψ−2 so that

Πhighφ = QPℏ +O(ℏ∞).

As a first attempt at a proof, applying u to the previous identity, we get

uH2 = Πhighφu = QPℏu+O(ℏ∞)u

= Qf +O(ℏ∞)u,

and as Q ∈ Ψ−2,
∥Qf∥H2

ℏ
≲ ∥f∥L2 .

It would remain to deal with the error O(ℏ∞)u: the idea is that u grows as most polynomially in
ℏ−1 via the resolvent estimate (2.2), so that this term should be indeed negligible. But, observe
that the polynomial resolvent estimate ∥χu∥H1

ℏ
≲ ℏ−1−M∥f∥L2 is a truncated estimate (hence

the appearance of the cut-off χ): u is indeed a priori not globally L2.

Hence, to make a rigorous proof of this first attempt, we introduce enough spatial cut-offs to
get a truncated error term: let φ1, φ2, φ3 be compactly supported and so that φi+1 = 1 on the
support of φi, with φ0 := φ. As φ2Pℏ is semiclassically elliptic on WFℏ φ1Πhighφ, there exists
Q ∈ Ψ−2 so that

φ1Πhighφ = Qφ2Pℏ +O(ℏ∞)

= Qφ2Pℏ +O(ℏ∞)φ3,

where we multiplied on the right by φ3 to obtain the second identity. Now, applying u to the
above we get

uH2 = φ1Πhighφu+ (1− φ1)Πhighφu = Qφ2Pℏu+O(ℏ∞)φ3u

= Qφ2f +O(ℏ∞)φ3u,

where (1 − φ1)Πhighφ = O(ℏ∞) by the pseudo-locality of the pseudo-differential semiclassical
calculus as supp(1−φ1)∩suppφ = ∅ (see e.g. [16, (4.14)-(4.15)-(4.16)]), and hence is = O(ℏ∞)φ3

by multiplying by φ3 on the right. As Q ∈ Ψ−2,

∥Qφ2f∥H2
ℏ
≲ ∥f∥L2 ,

and the error O(ℏ∞)φ3u is now indeed negligible as ∥φ3u∥H1
ℏ
≲ ℏ−1−M∥f∥L2 via the polynomial

resolvent estimate (2.2). We conclude

∥uH2∥H2
ℏ
≲ ∥f∥L2 .

3 An abstract splitting for black-box scattering problems

3.1 The main idea: use the functional calculus

When trying to extend the proof of Theorem 2.1 presented in §2 to a setup with boundaries –
for example, to the Helmholtz equation in the exterior of an obstacle – one runs into the issue
to try to extend the solution to the whole space in a suitable way in order to be able to use
frequency projections given by Fourier multipliers.

David Lafontaine
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P
]
h̄ ' Ph̄ ' ?

P
]
h̄ ' Ph̄ ' −h̄2∆

R]

R0

Ph̄ ' −h̄2∆

Figure 3.1: Black-box scattering operator and reference operator

The main idea of [12] was to rather use the functional calculus, and define low- and high-
frequency projections as {

Πhigh := (1− ψµ)(Pℏ),

Πlow := ψµ(Pℏ),

where Pℏ is the semiclassical Helmholtz operator associated with the equation. In addition to
not needing to extend the Helmholtz solutions to the whole space, this point of view has two
immediate advantages: these operations commute with the equation, and, as their formulation
is rather abstract, we can try to take Pℏ as general as possible and handle a variety of Helmholtz
problems all at once.

3.2 Black-box scattering of Sjöstrand-Zworski

The general setup we will work with is the one given by the black-box scattering of Sjöstrand
and Zworski, introduced in [26]. We refer to [12, §2] for an overview of black-box scattering in
our setting, to the comprehensive presentation in [8, Chapter 4] for more details, and to [15, §2]
for a brief overview with an emphasis on the counting of resonances.

We work in an Hilbert space with the orthogonal decomposition

H = L2(Rd\BR0
)⊕HR0

,

were HR0
is an Hilbert space. A semiclassical black-box scattering operator Pℏ is a self-adjoint

operator on H that coincides with −ℏ2∆ outside the “black-box” BR0
:= B(0, R0), where it is

left unspecified. In order to compactify the problem, and, in particular, been able to define a
functional calculus, we define the corresponding reference operator P ♯

ℏ by placing the black-box

operator in a large reference torus Td
R♯ := Rd/(2R♯Z)d with R♯ > R0, instead of Rd. Hence P ♯

ℏ
acts on

H♯ = L2(Td
R♯\BR0

)⊕HR0
,

with domain D♯ ⊂ H♯. Whereas we refer to [12, §2] and [8, Chapter 4] for a careful definition of
these operators, the two main assumptions in this framework are that 1BR0

(Pℏ+i)−1 is compact

from H to H, and that the eigenvalues counting-function of P ♯
ℏ grows at most polynomially (this

can be seen as a weak Weyl law).

This very general setup includes most of, if not all reasonable Helmholtz scattering problems
one can think of, such as scattering by a Lipschitz Dirichlet or Neumann obstacle, a Lipschitz
penetrable obstacle, a metric perturbation, a potential... (see for example [8, §4.1]).

Exp. no XVI—Decompositions of high-frequency Helmholtz solutions and application to the finite element method
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3.3 Our result

Before stating a precise version of our result [12], we give an informal version of it.

Theorem 3.1 ([12], informal version) Let Pℏ be a black-box scattering operator of Sjöstrand-
Zworski. We make the two following assumptions.

(H1) One has a polynomial resolvent estimate.

(H2) One has an estimate quantifying the regularity of Pℏ “inside the black-box” B(0, R0).

Then, any solution u of the Helmholtz equation (Pℏ − 1)u = f , can be decomposed as

u = uH2 + uA,

where

• uH2 verifies a black-box version of the estimate ∥uH2∥H2
ℏ
≲ ∥f∥L2 ,

• uA verifies the same estimates in ℏ as u but is regular. This regularity is dictated by the
regularity of the underlying problem as measured by (H2).

The Assumption (H1) is the same as the one encountered in Theorem 2.1. It is shown in
[15] that it holds in the black-box framework for “most” frequencies: the key point, therefore,
to apply the above result to specific situations is to check that an estimate of the type (H2)
holds. In the applications we will present later, this estimate (H2) corresponds to an heat-flow
estimate, an elliptic estimate, and regularity of the eigenfunctions of the Laplace operator on
the torus. This Theorem could be applied to a range of other specific situations, provided an
estimate of type (H2) is at hand.

Let us now give a more precise version of this result. In the following, Dloc denotes the set
of functions locally in the domain of Pℏ (see [12, §2] for a precise definition), D♯,∞

ℏ the set of

functions belonging to the domains of all the iterates of P ♯
ℏ, and C0(R) the set of continuous

functions f so that lim f(λ) = 0 as λ→ ±∞.

Theorem 3.2 ([12], simplified version) Let Pℏ be a black-box scattering operator of Sjöstrand-
Zworski. Then, there exists Λ > 0 so that the following holds. We assume that:

(H1) There exists H ⊂ (0, ℏ0], M ≥ 0, and Dout ⊂ Dloc, so that if χ ∈ C∞
c (Rd) with χ = 1 near

BR0
, for any v ∈ Dout solution of (Pℏ − 1)v = χg we have

∥χv∥H ≲ ℏ−M−1∥g∥H ∀h ∈ H.

(H2) There exists E ∈ C0(R) verifying E > 0 on [−Λ,Λ] and an α-family of operators D(α)
coinciding with ∂α outside BR0

so that

∥D(α)E(P ♯
ℏ)v∥H♯ ≤ CE(α, ℏ)∥v∥H♯ ∀v ∈ D♯,∞

ℏ ,∀ℏ ∈ H.

Then, if u ∈ Dout is solution of (Pℏ − 1)u = f with supp f ⊂ BR, R0 < R < R♯, we have

u|BR
=

(
uH2 + uA)|BR

,

with uH2 ∈ D♯, uA ∈ D♯,∞
ℏ and

∥uH2∥H♯ +
∥∥P ♯

ℏuH2

∥∥
H♯ ≲ ∥f∥H ∀ℏ ∈ H, (3.1)

∥D(α)uA∥H♯ ≲ CE(α, ℏ)ℏ−M−1∥f∥H ∀ℏ ∈ H,∀α. (3.2)

We make the following comments.

David Lafontaine
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• The assumption (H1) is a polynomial resolvent estimate bound as announced. The set
Dout ⊂ Dloc of functions verifying this estimate can be thought of as a set of “outgoing”
functions (but observe that no notion of outgoingness is actually needed here).

• The assumption (H2), measuring the regularity of the underlying problem (“the content
of the black-box”), will be the key assumption to check when wanting to apply this result
to concrete situations. The appearance of the abstract operator D(α) is due to the fact
that the derivation doesn’t a-priori make sense inside the black-box, but in most of the
applications we aim, D(α) := ∂α. In practice, one has to identify the function E to take
in order to have a good estimate. As we only require E to be non-vanishing in an interval
[−Λ,Λ], we often refer to the estimate in (H2) as “the low-energy estimate”.

• When Pℏ is, for example, the Dirichlet Laplacian, the bound (3.1) on uH2 is a bound on
∥uH2∥H2

ℏ
by elliptic regularity. Hence, this bound is the exact analog of the bound on uH2

in Theorem 2.1. In particular, it is better, and does not depend on, the resolvent-estimate
bound (H1).

• uA is regular because belongs to the domains of all the iterates of the reference operator
uA ∈ D♯,∞

ℏ . This regularity is further quantified by (3.2), which is, in practice, an estimate
on the derivatives ∂αuA. It depends, on the one hand, on the resolvent estimate ℏ−M−1,
and, on the other hand, on the regularity of the underlying problem as measured by (H2)
by the quantity CE(α, ℏ).

We give in [12] a stronger version of Theorem 3.2, that will be mentioned in the applications
presented in §4: see [12, Theorem A]. Let us just mention here that the main result of [12] allows
us

• to relax the assumption (H2) to having an estimate on some D(α)E where E is only given
by the functional calculus up to negligible high-frequency errors,

• to localise the assumption (H2) near the black-box in order to be able to use local ana-
lytic estimates (the problem cannot possibly be analytic everywhere as Pℏ has constant
coefficients outside a compact set),

• and to use a family of estimates as (H2), in order to allow tuning the estimate we use
depending on ℏ and α.

3.4 A functional calculus for P ♯
ℏ

We will work with P ♯
ℏ on the reference torus, and would like to define low- and high-frequency

projections by a functional calculus for this operator. As P ♯
ℏ with domain D♯ is self-adjoint with

compact resolvent, we can describe its Borel functional calculus [24, Theorem VIII.6] explicitly

in terms of the orthonormal basis of eigenfunctions ϕ♯j ∈ H♯ (with eigenvalues λ♯j , appearing

with multiplicity): for f a real-valued Borel function on R, f(P ♯
ℏ) is self-adjoint with domain

Df :=

{∑
ajϕ

♯
j ∈ H♯ :

∑∣∣f(λ♯j)aj
∣∣2 <∞

}
,

and if v =
∑
ajϕ

♯
j ∈ Df then

f(P ♯
ℏ)(v) :=

∑
ajf(λ

♯
j)ϕ

♯
j .

As usual, the map f → f(P ♯
ℏ) is an algebra morphism, with, for f bounded

∥f(P ♯
ℏ)∥L(H♯) ≤ sup

λ∈R
|f(λ)|.

However, this very general formulation does not give us a-priori informations on the structure
of the calculus. To this account, it is useful to recall the Helffer–Sjöstrand construction of the
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functional calculus [14], [7, §2.2] (which can also be used to prove the spectral theorem to begin
with; see [6]): if f is smooth and sufficiently decaying, we define

f(P ♯
ℏ) := − 1

π

∫

C

∂f̃

∂z̄
(P ♯

ℏ − z)−1 dxdy,

where f̃ is an almost-analytic extension of f :

f̃|R = f,
∂f̃

∂z̄
= O(| Imz |n), n > 0.

This definition can be shown to agree with the operators defined by the Borel functional calculus
for well-behaved f ; see [6, Theorems 2-5], [7, Lemmas 2.2.4-2.2.7]. The key refinement we will
use, under this formulation, and essentially due to Sjöstrand [25, §4], is that

Outside the black-box, the functional calculus coincides, modulo negligible terms,

with the semiclassical pseudo-differential calculus on the torus. (3.3)

In other words, for f ∈ C∞
c (R), if χ ∈ C∞(Td

R♯
) vanishes near BR0 then

χf(P ♯
ℏ)χ = χf(−ℏ2∆)χ+O(ℏ∞),

and in addition, f(−ℏ2∆) = Op
Td

R♯

ℏ
(
f(|ξ|2)

)
. The negligible term O(ℏ∞) is defined similarly as

in §2 (see [12] for a precise formulation).

3.5 Elements of proof

We now present the ideas behind the proof of Theorem 3.2. We refer to [12] for the details, as
well as for the statement and the proof of the more general [12, Theorem A].

The splitting

Now armed with a functional calculus for P ♯
ℏ, we can define low- and high-frequency projections

as announced. For ψµ ∈ C∞
c (R) supported in B(0, 2µ), ψµ = 1 on B(0, µ), µ≫ 1, we define

Πhigh := (1− ψµ)(P
♯
ℏ), Πlow := ψµ(P

♯
ℏ).

And with
φ = 1 in BR ⊃ BR0 , suppφ ⊂ BR♯

,

one takes
uH2 := Πhighφu, uA := Πlowφu,

and we are left with verifying the bounds on uH2 and uA.

High frequencies

The bound on uH2 comes from an abstract ellipticity manipulation near the black-box, and
semiclassical ellipticity away from it, thanks to the refinement of Sjöstrand (3.4). Indeed, as

Πhigh and P ♯
ℏ commute, using the equation (Pℏ − 1)u = f and the fact that Pℏ and P ♯

ℏ coincide
on suppφ

(P ♯
ℏ − 1)(Πhighφu) = Πhigh(P

♯
ℏ − 1)(φu) = Πhighφf +Πhigh[P

♯
ℏ, φ]u. (3.4)

But, taking a slightly sharper cut-off ψ̃µ ∈ C∞
c (R), equal to zero on supp(1 − ψµ) and so that

1−ψ̃µ is supported away from λ = 1, and using the morphism property of the functional calculus

uH2 = Πhighφu = (1− ψµ)(P
♯
ℏ)φu

David Lafontaine
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=
[
(1− ψ̃µ(λ))(λ− 1)−1(λ− 1)(1− ψµ(λ))

]
(P ♯

ℏ)φu

=
[
(1− ψ̃µ(λ))(λ− 1)−1

︸ ︷︷ ︸
bounded

]
(P ♯

ℏ)(P
♯
ℏ − 1)(Πhighφu),

where (1− ψ̃µ(λ))(λ− 1)−1(P ♯
ℏ) is bounded. Hence, using the equation satisfied by Πhighφu

(3.4),

∥uH2∥H♯ ≲ ∥(P ♯
ℏ − 1)(Πhighφu)∥H♯ ≤ ∥Πhighφf∥H♯ + ∥Πhigh[P

♯
ℏ, φ]u∥H♯

≲ ∥f∥H♯ + ∥Πhigh[P
♯
ℏ, φ]u∥H♯ .

Therefore, using (3.4) once again, the same bound holds on P ♯
ℏuH2 and

∥uH2∥H♯ + ∥P ♯
ℏuH2∥H♯ ≲ ∥f∥H♯ + ∥Πhigh[P

♯
ℏ, φ]u∥H♯ .

It now only remains to control the commutator term Πhigh[P
♯
ℏ, φ]u. But [P

♯
ℏ, φ] is supported away

from the black-box BR0 , hence, by Sjöstrand (3.4), it is up to negligible O(ℏ∞) terms a frequency
cut-off defined by the semiclassical pseudo-differential calculus on the torus ! Therefore, we can
use semiclassical ellipticity to control

∥Πhigh[P
♯
ℏ, φ]u∥H♯ ≲ ∥f∥H♯ ,

for µ≫ 1 fixed large enough, in the same way as in the Rd case presented in §2.4.

Low frequencies

The low frequency estimate on uA is a simple consequence of the assumption (H2) together
with the morphism property of the calculus. Taking indeed Λ > 0 so that suppψµ ⊊ [−Λ,Λ],
as E > 0 on suppψµ we can decompose

D(α)uA = D(α)ψµ(P
♯
ℏ)φu = D(α)E(P ♯

ℏ)
(
ψµ

1

E
)
(P ♯

ℏ)φu.

Therefore, using assumption (H2),

∥D(α)uA∥H♯ ≤ CE(α, ℏ)∥
(
1

E ψµ

)
(P ♯

ℏ)φu∥H♯

≤ CE(α, ℏ) sup
λ∈R

∣∣∣∣
1

E(λ)ψµ(λ)

∣∣∣∣ ∥φu∥H♯

≲ CE(α, ℏ) sup
λ∈R

∣∣∣∣
1

E(λ)ψµ(λ)

∣∣∣∣ ℏ−M−1∥f∥H,

where we used the polynomial resolvent estimate (H1) on the last inequality.

4 Applications of the abstract splitting to concrete Helmholtz
scattering problems

4.1 Recovering the splitting for C∞ coefficients in Rd

As a first application, it is reinsuring to check that we can recover Theorem 2.1. In order to
do so, we need a slightly stronger version of Theorem 3.2, mentioned before: one can relax the
assumption (H2) to having an estimate on some D(α)E0 where E0 is only given by the functional
calculus up to negligible high-frequencies errors. In other words, it is sufficient to assume that
there is E0 so that E0 = E(P ♯

ℏ) +O(ℏ∞) with E > 0 in [−Λ,Λ] and

∥D(α)E0v∥H♯ ≤ CE(α, ℏ)∥v∥H♯ , ∀v ∈ D♯,∞
ℏ , ℏ ∈ H.
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Now, for the Helmholtz equation with variable C∞ coefficients in Rd, Pℏ = −ℏ2c2∇· (A∇·), and
P ♯
ℏ is the same operator but on the torus. We simply take, for Λ > 0 given by (the more general

version of) Theorem 3.2

E = 1 in [−Λ,Λ], supp E ⊂ [−2Λ, 2Λ].

By the coercivity of A, it is not difficult to check that E(−c2ℏ2∇·(A∇·)) is cutting-off in Fourier
variables modulo negligible terms: in other words, taking

φ = 1 in [−Λ′,Λ′], suppφ ⊂ [−2Λ′, 2Λ′],

for Λ′ ≫ 1 large enough, we have

E(−c2ℏ2∇ · (A∇·)) = φ(−ℏ2∆)E(−c2ℏ2∇ · (A∇·)) +O(ℏ∞),

and taking
E0 := φ(−ℏ2∆)E(−c2ℏ2∇ · (A∇·)),

the Parseval identity together with Fourier localisation implies in the exact same way as in §2.3
for Theorem 2.1

∥∂αE0v∥L2 ≲ ℏ−|α|λ|α|∥v∥L2 ,

and we recover the decomposition given by Theorem 2.1.

4.2 Toward Dirichlet: localizing the analyticity near the black-box

We now would like to apply Theorem 3.2 to the exterior of an analytic Dirichlet obstacle for
the equation with variable coefficients. As the coefficients are constants outside a compact set,
the most analyticity we can ask for is for them to be smooth and analytic near the obstacle. In
this setting, we would like (H2) to be an analytic estimate. However, this assumption as stated
in Theorem 3.2 is a global estimate, and we cannot hope for a global analytic estimate to be at
hand as the problem is not globally analytic. For this reason, we want to be able to use as (H2)
an analytic estimate locally near the scatterer.

We can indeed, as mentioned before, show a more general version of Theorem 3.2 allowing
such a local estimate. The black-box scattering operator Pℏ is now a compact perturbation of
−ℏ2∆ outside BR0 (instead of = −ℏ2∆) and the estimate in (H2) becomes

∥ρD(α)E(P ♯
ℏ)v∥H♯ ≤ CE(α, ℏ)∥v∥H♯ , ∀v ∈ D♯,∞

ℏ , ℏ ∈ H,

for some ρ ∈ C∞ with ρ = 1 near BR0 .

Under this relaxed assumption, uA doesn’t verify a global regular estimate: rather, it can
be splited as

uA = uR0

A + u∞A ,

where (see Figure 4.1, and [12, Theorem A] for a precise formulation)

• uR0

A verifies (3.2) near the black-box and is negligible away from it,

• u∞A is negligible near the black-box and is entire away from it.

4.3 Analytic Dirichlet obstacle with locally analytic coefficients

We can now apply the more general version of Theorem 3.2 presented in §4.2 to the Helmholtz
equation in the exterior of an analytic Dirichlet obstacle with C∞ variable coefficients that are
analytic near the obstacle.
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R0 R
I

R
II R

III
R

IV
R]

uR0
A regular

uR0
A = O(h̄∞)

u∞A = O(h̄∞)

u∞A entire

Figure 4.1: The splitting uA = uR0

A + u∞A

As a low-energy estimate (H2), we will use a local heat-flow estimate. In our setting, the
following folklore analytic heat-flow estimate, that can be attributed to Friedman [11],

∥ρ∂αetP ∥L2→L2 ≲ λ|α||α|!t−|α|/2, (4.1)

where P is the (non-semiclassical) variable coefficients Laplacian outside the obstacle and ρ is
supported where the coefficients are analytic, is at hand. Taking E(λ) := e−λ and t := ℏ2, the
above translates in our framework to

∥ρ∂αE(P ♯
ℏ)v∥L2 ≲ λ|α|ℏ−|α||α|!∥v∥L2 ,

and we obtain a splitting with uR0

A verifying where it is not negligible the following analytic
estimate

∥∂αuR0

A ∥L2(B(0,RIII)) ≲ λ|α|ℏ−|α|−1−M |α|!.

Observe how we lost |α|! with respect to the Rd case. While it is enough for the analyticity of uR0

A
where it is not negligible, this is not enough for the sharp convergence of the hp-FEM: using this

result, one indeed only obtains convergence for a number of degrees of freedom #DOF ≃
(
p
h

)d ≲
kdlog k, a logarithm of the frequency away from the conjectured sharp result (no pollution effect).

To obtain the sharp result, we use in combination with Friedman’s estimate (4.1) the more
recent heat-flow estimate due to Escauriaza, Montaner and Zhang [9]

∥ρ∂αetP ∥L2→L2 ≲ λ|α||α|! exp 1

t
. (4.2)

The key point here is that |α| can be arbitrarily large, hence, there is regimes where (4.2)
becomes better than (4.1). Using the most-general version [12, Theorem A] of Theorem 3.2
allowing us to use as (H2) a family of estimates, interpolating between (4.2) and (4.1) and using
the best possible t depending on ℏ and α, we obtain a splitting with

∥∂αuR0

A ∥L2(B(0,RIII)) ≲ λ|α|ℏ−1−Mmax(ℏ−1, |α|)|α|.

Observe how we went from a radius of analyticity proportional to ℏ, to a radius of analyticity
independent of ℏ (see Figure 2.1). This is actually the analog of Melenk and Sauter estimate
outside an analytic obstacle for the equation with constant coefficients [21], and we can apply
it to the sharp-convergence of hp-FEM (no pollution effect) in our variable coefficients setting,
that is, with a number of degrees of freedom

#DOF ≃
( p
h

)d ≲ kd.

4.4 Penetrable obstacles

As a last application, we treat the less regular transmission problem. The equation is now posed
in Rd, with variable coefficients having a jump on an interface O, that we can see as a penetrable
obstacle. We assume that the coefficients away from the interface, and the interface itself, have
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finite C2m regularity. In this setting, we will use as (H2) the standard elliptic regularity estimate
(see e.g. [18, Theorem 4.20], [5, Theorem 5.2.1, Part (i)])

∥v∥H2m(BR\O)⊕H2m(O) ≤ C(m)

m∑

ℓ=0

∥(c2∇ · (A∇))ℓv∥L2(BR\O)⊕L2(O).

Taking E(λ) := ⟨λ⟩−2m, the above can be translated in the framework of Theorem 3.2, and we
obtain a splitting with uA = (u+A, u

−
A) ∈ C∞(BR\O)× C∞(O) verifiying

∥∂αu±A∥L2 ≤ C(m)ℏ−|α|−M−1∥f∥L2 , |α| ≤ 2m.

As the problem is far less regular, it is of no surprise we obtain a less regular splitting, where
in particular the dependency on |α| in the above estimate is not explicit. While this is not
enough to obtain convergence estimates for hp-FEM, we can apply this result to obtain sharp
convergence estimates for the h-FEM method, where only the meshsize h decreases as the
frequency k increases, and the polynomial degree p of the approximation is left constant.
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de Harper. In Schrödinger operators (Sønderborg, 1988), volume 345 of Lecture Notes in
Phys., pages 118–197. Springer, Berlin, 1989.

[15] D. Lafontaine, E. A. Spence, and J. Wunsch. For most frequencies, strong trapping has a
weak effect in frequency-domain scattering. Communications on Pure and Applied Mathe-
matics, 74(10):2025–2063, 2021.

[16] D. Lafontaine, E. A. Spence, and J. Wunsch. Wavenumber-explicit convergence of the hp-
FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients. Comp.
Math. Appl., 113:59–69, 2022.

[17] P. D. Lax and R. S. Phillips. Scattering Theory. Academic Press, revised edition, 1989.

[18] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge Univer-
sity Press, 2000.

[19] J. M. Melenk, A. Parsania, and S. Sauter. General DG-methods for highly indefinite
Helmholtz problems. Journal of Scientific Computing, 57(3):536–581, 2013.

[20] J. M. Melenk and S. Sauter. Convergence analysis for finite element discretizations of
the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comp,
79(272):1871–1914, 2010.

[21] J. M. Melenk and S. Sauter. Wavenumber explicit convergence analysis for Galerkin dis-
cretizations of the Helmholtz equation. SIAM J. Numer. Anal., 49:1210–1243, 2011.
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