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A uniqueness result for travelling waves in the Gross-Pitaevskii equation

Eliot Pacherie

NYUAD Research Institute, New York University Abu Dhabi,
PO Box 129188, Abu Dhabi, UAE

e-mail: ep2699@nyu.edu

Abstract

This note is a summary of a series of papers [12], [13] and [14], done in collaboration with David Chiron.
In them, we establish the uniqueness of the energy minimizer at fixed large momentum for the 2 dimensional
Gross-Pitaevskii equation, up to the natural invariances of the problem. The minimizer is a nonradial travelling
wave with a small speed, behaving like two well separated vortices. Here, we summarize the key steps of the
proof, highlighting the arguments that can be used for similar problems in other equations.

1 Introduction and presentation of the results

We consider the Gross-Pitaevskii equation

{
i∂tu+ ∆u− (|u|2 − 1)u = 0
|u(x)| → 1 when |x| → +∞

in dimension 2 for u : R2
x → C. This equation is a physical model for Bose-Enstein condensate, superfluidity and

nonlinear optics, see [1], [21], [33], [34]. Because of the condition at infinity, the trivial solution will be the constant
1 instead of 0. The equation is invariant by rotation, translation and multiplication by a complex of modulus one,
but there are no scaling invariances. To this equation is associated the Ginzburg-Landau energy

E(u) :=
1

2

∫

R2

|∇u|2 +
1

4

∫

R2

(1− |u|2)2,

which is formally conserved by the flow.
The Gross-Pitaevskii equation is a type of defocusing Schrödinger equation. As such, it has been shown that

it is globally well posed in time (see [18], [19], [20]), for instance in the energy space. If u has finite energy, up to
multiplication by a complex of modulus one, we can choose that u→ 1 at +∞, not only in modulus.

Another quantity formally conserved by the flow is the momentum. It is the quantity 1
2

∫
R2 Re(i∇uu) ∈ R2, but

a precise definition is delicate because of the condition at +∞ on u, see [11], [31]. In this note, the momentum will
always be defined and used in the case that it can be written as:

~P (u) = (P1(u), P2(u)) :=
1

2

∫

R2

Re(i∇u(u− 1)).

Since global existence in time is assured, we are interested in the long time behavior of solutions of the Gross-
Pitaevskii equation. For that reason, we focus on the construction and stability of stationary and travelling waves
solutions of this equation.
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1.1 Previous results on the Gross-Pitaevskii equation

1.1.1 Stationary solutions: vortices

We consider the stationary version of the Gross-Pitaevskii equation, that is the problem
{

∆u− (|u|2 − 1)u = 0
|u(x)| → 1 when |x| → +∞.

It has been shown by Brezis-Merle-Rivière in [9] that any stationary solution of finite energy is constant. However,
it is possible to construct solutions with infinite energy, and they will play a role in the description of finite energy
travelling waves.

We look for solution of the particular form

Vn(x) = ρn(r)einθ

for n ∈ Z∗ and with (r, θ) the polar coordinates of x ∈ R2. In that form, the equation reduces to the ODE problem

{
r2ρ′′n(r) + rρ′n(r)− n2ρn(r) + r2ρn(r)(1− ρ2

n(r)) = 0
ρn(0) = 0, ρn(+∞) = 1.

The condition at r = 0 is chosen so that Vn is smooth at 0. Remark that Vn = V−n and we can therefore focus on
the case n > 1.

By shooting methods, solutions of this equation have been constructed.

Theorem 1.1 ([10], [27]) For all n ∈ Z∗, there exists Vn(x) = ρn(r)einθ such that

∆Vn − (|Vn|2 − 1)Vn = 0

with ρn(0) = 0, ρn(+∞) = 1.

Equivalents at all orders when r → 0 and r → +∞ are also computed in [10], [27]. At infinity, the decay
is algebraic, as we have ρn(r) − 1 ∼ −n2/2r2 when r → +∞. As previously stated, E(Vn) = +∞ because
∇Vn ∼ in

r Vn~eθ 6∈ L2(R2) at infinity.
For n = 1, the function ρ1 is strictly increasing and concave. Also, it has been recently shown in [26] that the

vortices of degree ±1 are orbitally stable, and it is conjectured that higher degree vortices should be unstable.

1.1.2 The energy minimisation problem

We are interested here in constructing travelling waves solutions, that is functions satisfying
{

(TWc)(u) := −ic∂x2
u−∆u− (1− |u|2)u = 0

|u(x)| → 1 when |x| → +∞

with finite energy. The speed is taken in the direction −→e2 without any loss of generality, since the Gross-Pitaevskii
equation is invariant by rotation. One general method to construct such solutions is to look for minimizer of the
energy at fixed momentum: in the space

W (R2) := {1}+ {v;∇v,Re(v) ∈ L2(R2), Im(v) ∈ L4(R2),Re(∇v) ∈ L4/3(R2)},

consider the problem
Emin(p) := inf{E(v); v ∈W (R2), P2(v) = p}.

The spaceW (R2) is chosen such that E and ~P are well defined on it. We cannot replaceW (R2) with the more natural
space {1}+H1(R2), because it has been shown by Gravejat in [23] that travelling waves cannot be in it. A conse-
quence is that the minimum cannot be reached on {1} + H1(R2). The Lp(R2) spaces choosen for Im(v),Re(∇v)
do not have a particular importance, other choices could have been made.

It has been shown by Bethuel-Gravejat-Saut in [5] that this problem admits a minimizer, and that this minimizer
is a travelling wave.
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Theorem 1.2 ([5]) For any p > 0, there exists a non constant finite energy solution up ∈ W (R2) to the equation

(TWc(p))(u) = 0 for some speed c(p) > 0, such that ~P (up) = (0, p) and

E(up) = Emin(p).

Remark that the translation and the multiplication by a complex of modulus one does not change the energy
and the momentum. That is, if up ∈ W (R2) is a minimizer, then for a ∈ R2, γ ∈ R, v = up(. − a)eiγ ∈ W (R2)
verifies

E(v) = E(up) = Emin(p), ~P (v) = (0, p)

and is therefore also a minimizer.
An important conjecture is the uniqueness of this minimizer for all momentum up to these invariances. Our

goal is to explain the proof of this uniqueness for large momentum, done in [12], [13] and [14]. The uniqueness for
all momentum remains an open problem.

1.1.3 Properties of travelling waves

The study of travelling waves for the Gross-Pitaevskii equation started in the physical literature, with the works of
Jones and Roberts (see [29], [30]).

We refer to the survey [8] for an overview of mathematical works on existence and properties of travelling
waves of finite energy for the Gross-Pitaevskii equation in several dimensions. This includes more precise results on
the minimization problem described in the previous subsection, but also construction of travelling waves by other
methods, and general properties that all travelling waves must satisfied.

For instance, in [24], [25] by Gravejat, it has been shown that travelling waves of finite energy must have their
speeds in

]
0,
√

2
[
, otherwise they are constant (

√
2 is the speed of sound in this problem). Recently, it has been

shown by Bellazzini and Ruiz in [3] that travelling waves exists for almost all speeds in this range, but the existence
for all speeds in

]
0,
√

2
[

is still an open problem. Numerically, several branches of distinct travelling waves have
been constructed for all subsonic speeds, see the works of Chiron-Scheid in [16].

Concerning the minimization problem, some properties of the minimizers are known in the limits p → 0 (see
[4]) and p → +∞. In particular, minimizers for small momentum have speeds close to

√
2, and the ones for large

momentum have speeds close to 0. We will give some precise statement for the latter case in subsection 1.2.1.

1.2 Statement of the uniqueness result

We now state the main result of [13]. The rest of this note is devoted to explaining its proof.

Theorem 1.3 ([13], Theorem 1.4) There exists P0 > 0 such that, for p > P0, if u1, u2 ∈ W (R2) satisfy p =
P2(u1) = P2(u2) and E(u1) = E(u2) = Emin(p), then there exists a ∈ R2, γ ∈ R such that

u1 = u2(.− a)eiγ .

This is the uniqueness of the energy minimizer for fixed large momentum. That is, for any p > 0 large enough,
there exists only one function with momentum p whose energy is Emin(p), up to the natural invariances of the
problem. The proof of Theorem 1.3 can be decomposed in four steps, that are described in subsections 1.2.1 to
1.2.4. More details on each of these steps are given in section 2.

Let us explain the key difficulty to overcome: As we will see later on, minimizers of this problem are not radial.
For problem with a radial minimizers, it is simpler, as we have very powerful tools to show the uniqueness (Cauchy
theory, Wronskian...). To the best of our knowledge, there are no example of uniqueness result in this type of
setting, that is without radiality or other equivalently strong properties of minimizers.

We expect Theorem 1.3 to hold for any p > 0 and not simply for large ones, but this seems to be a very difficult
problem. There are numerical counterexamples for other nonlinearity and dimensions (see [15]), so to generalize
Theorem 1.3 to all momentum, we would have in particular to understand what is special about the nonlinearity
of Gross-Pitaevskii that is not true in general.
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1.2.1 Properties of the minimizer when p→ +∞
Theorem 1.2 tells us that the set of minimizers of the energy is non empty for any momentum p > 0. The goal of
this section is to show a number of properties that any minimizer with a large momentum must satisfies.

The first result, proven by Bethuel-Gravejat-Saut, that is true for any momentum, is that any minimizer has to
be even in x1.

Proposition 1.4 ([5]) For any p > 0, u ∈ W (R2) satisfies E(u) = Emin(p), P2(u) = p, then there exists X ∈ R
such that u(.−X~e1) is even in x1.

The proof is done by symmetrising any given minimizer around a well chosen line, and to show that the
momentum does not change, but the energy strictly decreases if any change has been made to the function by this
symmetrisation.

Next, using works of Bethuel-Gravejat-Saut and Sandier, we have an equivalent for Emin(p) when p→ +∞.

Theorem 1.5 ([5], [35]) The function Emin : R+ → R is concave, nondecreasing and
√

2-Lipschitz continuous.
In addition, there exists K > 0 such that, for any p > 1, we have

2π ln(p)−K 6 Emin(p) 6 2π ln(p) +K.

The proof of this result is rather involved, we refer to [5] and [35] for more details about it.
We continue. From Theorem 1.2, we know that minimizers are travelling waves. We can compute an equivalent

of their speeds when the momentum goes to +∞.

Proposition 1.6 ([7], [13]) Any minimizer of the energy at fixed momentum p > 0 is a travelling wave of speed
cp > 0, and

pcp → 2π

when p→ +∞.

In particular, cp → 0 when p→ +∞. Finally, still in the limit p→ +∞, we can show that any minimizers has
to have a specific shape.

Proposition 1.7 ([13]) For any minimizer of the energy at fixed momentum p > 0 large enough, denoted up, there
exists d > 0 with

d

p
→ 1

2π

when p→ +∞, such that, up to a translation,

|u− V1(.− d~e1)V−1(.+ d~e1)| → 0

in large balls around ±d~e1, and
||u| − 1| → 0

outside of them when p→ +∞.

This last result in not written in a very precise way here. To be exact, the properties we show for minimizers
with large momentum are exactly the hypotheses of Proposition 1.10 below. The main arguments of the proof of
Proposition 1.7 will be exposed in subsection 2.1.

Let us explain here what Proposition 1.7 means. First, we see that vortices are appearing in the limite p→ +∞,
however they have infinite energy (see subsection 1.1.1). The remark is that although indeed E(V1) = +∞ because
of its behavior at +∞, if we have a pair of vortices of opposite sign, their first order cancels out at +∞ and the
energy is finite. Naturally, when the distance between them goes to +∞, so does the energy of the pair, that is

E(V1(.− d~e1)V−1(.+ d~e1))→ +∞

when d → +∞, but this is consistent with the fact that Emin(p) ' 2π ln(p) and d ' p
2π when p → +∞. Also, the

two vortices are multiplied and not added, because the product continue to satisfy the condition at +∞.
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Recall that a vortex of degree ±1 cancels out at exactly one point, its center, that is V±1(0) = 0. Proposition
1.7 tells us that we can find two points, well separated when p is large, such that any minimizers cancels at these
two points, and behaves like the vortex, a stationary solution, near them. Outside of a neighborhood of these two
points, the minimizers does not cancel, and in fact its modulus is close to 1.

This description, that seems to describe rather well the shape of minimizers, is in some sense rather weak.
Indeed, two functions satisfying the hypotheses of Proposition 1.7 can be very different from one another, for two
main reasons.

First, we only have an equivalent of d, namely d = p ((1 + op→+∞(1))/2π). For that reason we can imagine
that there are two (or more) family of distinct minimizers with different values of d, for instance d1 = p

2π +
√
p,

d2 = p
2π −

√
p. In this case, d1,2/p→ 1/2π but d1 − d2 = 2

√
p→ +∞ when p→ +∞.

Secondly, outside of a vicinity of the vortices, we only have an information on the modulus of minimizers. Two
of them, even if they have the same position for their vortices, can have very different nonconstant phase far from
the vortices and still satisfy Proposition 1.7.

For these reasons, it is possible to construct two functions satisfying the description of Proposition 1.7 that,
even up to translation and shift of phase, are very different almost everywhere.

We have shown in this subsection that any minimizers of the energy at fixed large momentum is in a particular
set of function, however this set is still large.

To show Theorem 1.3 from here, we would have to show that if we choose a function satisfying the properties
described above, then any other function satisfying the same hypotheses will be, up to the invariances of the
problem, equal to it. This is difficult because the size of the set of functions satisfying these hypotheses is very
large, and not clearly endowed with a distance. Also, we do not have a specific candidate at this stage on which we
have more information than the others. The goal of the next steps is to construct one such candidate.

1.2.2 Smooth branch of travelling waves for small speeds

In this section, we construct a travelling wave that, at this point, is unrelated to the minimization problem. We
have seen in subsection 1.2.1 that minimizers behaves like two well separated vortices. Here, we construct, by a
Lyapunov-Schmidt reduction, a branch of travelling waves, smooth with respect to the speed, that has this behavior.
That is, we look for a travelling wave as a small perturbation of the approximate solution V1(.− dc~e1)V−1(.+ dc~e1)
for some dc ' 1/c.

Theorem 1.8 ([12], Theorem 1.1 and [14], Proposition 1.2) There exists c0 > 0 a small constant such that
for any 0 < c 6 c0, there exists a solution of (TWc) of the form

Qc := V1(.− dc~e1)V−1(.+ dc~e1) + Γc,

where dc = (1 + oc→0(1))/c is a C1 function of c. This solution has finite energy, Qc → 1 at infinity, and

‖Γc‖W 1,∞(R2) = oc→0(1).

In addition,
c 7→ Qc − 1 ∈ C1(]0, c0],W 1,∞(R2))

and
d

dc
(P2(Qc)) =

−2π + oc→0(1)

c2
< 0,

hence the C1 mapping P :]0, c0] 3 c 7→ P2(Qc) ∈ R is a strictly decreasing diffeomorphism from ]0, c0] onto
[P2(Qc0),+∞[.

It has been shown, in the thesis of the author (Theorem 1.5.2 there), that c 7→ Qc− 1, E(Qc), P2(Qc) are in fact
C∞ functions on ]0, c1] for some small c1 > 0.

Because of the way this branch is constructed, it has no reason to be a minimizer of the energy at this point,
even though it has the same shape, and same relation between the energy and momentum (we can show that
|E(Qc)− 2π ln(P2(Qc))| 6 Λ for some universal constant Λ > 0 if c is small enough). Remark also that because Qc

Exp. no XVII— A uniqueness result for travelling waves in the Gross-Pitaevskii equation
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is close to the product of two vortices, we can show (see [14], Proposition 1.2) that it has exactly two zeros, close
to ±dc~e1.

Since the function Γc is constructed by a fixed point argument, its differentiability (and the one of dc) will result
from an implicit function theorem. This differentiability, which is not known for minimizers of the energy, will be a
key point in the proof of the uniqueness. We can also be more precise on the size of the error Γc and its smallness.
More details about this, and a sketch of the proof of Theorem 1.8, is proposed in subsection 2.2.

By the invariances of the equation, we have constructed a 5 dimensional family of travelling waves:

Q~c(.−X)eiγ ,~c,X ∈ R2, γ ∈ R.

1.2.3 Coercivity of the constructed branch

We study here the linearized operator around the branch of travelling waves of Theorem 1.8, done in [14]. This
is necessary to establish a local uniqueness result on this branch. As in subsection 1.2.2, this is for now a priori
unrelated to the minimization problem.

We decompose (TWc)(Qc + ϕ) = LQc(ϕ) + NL(ϕ), where LQc(ϕ) contains all the linear terms in ϕ, and is
defined by

LQc
(ϕ) := −∆ϕ− ic∂x2

ϕ− (1− |Qc|2)ϕ+ 2Re(Qcϕ)Qc.

The question of which space of perturbations we should consider the linearized operator in is rather complicated.
We are going to give some details in subsection 2.3, but for now, we consider ϕ ∈ C∞c (R2\{±d̃c~e1},C), where ±d̃c
are the zeros of Qc.

We define

BQc(ϕ) :=

∫

R2

Re(LQc(ϕ)ϕ)

=

∫

R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)− cRe(i∂x2
ϕϕ), (1.1)

the quadratic form around Qc. Our goal is to show some coercivity results on it.
To do so, we do a change of variable, ϕ = Qcψ. Then, after a few integration by parts, we have

BQc
(Qcψ) =

∫

R2

|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4

+

∫

R2

4Im(∇QcQc).Im(∇ψ)Re(ψ) + 2c|Qc|2Im(∂x2
ψ)Re(ψ).

In this form, the quadratic form is easy to study far from ±d̃c~e1, the zeros of Qc. Indeed, for λ > 0, outside of
B(d̃c~e1, λ) ∪B(−d̃c~e1, λ), we check, using precise estimates on Qc from [12], that

|Qc| = 1 + oλ→0,c→0(1), |Im(∇QcQc)| = oλ→0,c→0(1).

Therefore, if for instance ϕ = Qcψ ∈ C∞c (R2\(B(d̃c~e1, λ) ∪ B(−d̃c~e1, λ)),C) for some λ > 0 large and c > 0 small,
then by using Cauchy-Schwarz inequality on the last two terms, we have

BQc
(Qcψ) > κ

∫

R2

|∇ψ|2 + Re2(ψ),

that is a coercivity result on BQc
far from the zeros of Qc for a semi norm. Now, close to the zeros of Qc, the key

remark is that there, Qc is close to the vortices V±1 when c→ 0, and that the coercivity of the quadratic form for
one vortex has been studied by Del Pino-Felmer-Kowalczyk in [17].

Let us make a quick summary of the results in [17]. For a vortex V±1, the quadratic form is coercive, up to three
local orthogonality conditions, connected to the three dimensional invariance set of the problem (the translation
in R2 and the multiplication by a complex of modulus one).

Eliot Pacherie

XVII–6



We deduce, by perturbative arguments, that for c > 0 small, the quadratic form around Qc close to one of its zero
is coercive up to three directions. Gluing together the quadratic form in the three areas (B(d̃c~e1, λ), B(−d̃c~e1, λ)
and R2\(B(d̃c~e1, λ) ∪B(−d̃c~e1, λ))), we deduce that BQc

is coercive up to six orthogonality conditions.
From subsection 1.2.1, we know that minimizers are even in x1. So if we ask ϕ to have this symmetry as well,

the number of orthogonality required becomes three. We have shown in [14] coercivity results without it (see for
instance Theorem 1.5 and Proposition 1.12 there), but we do not need them for the proof of Theorem 1.3. Let us
state the coercivity result we will use.

We define the space

Hexp
Qc

:=
{
ϕ ∈ H1

loc(R2), ‖ϕ‖Hexp
Qc

< +∞
}
,

where for ϕ = Qcψ ∈ H1
loc(R2) and r̃d := min(|x− dc~e1|, |x+ dc~e1|), the minimum of the distances to the vortices,

we define

‖ϕ‖2Hexp
Qc

:= ‖ϕ‖2H1({r̃d610}) +

∫

{r̃d>5}
|∇ψ|2 + Re2(ψ) +

|ψ|2
r̃ ln2(r̃)

.

Remark that ∫

{r̃d>5}

|ψ|2
r̃ ln2(r̃)

6 K

(∫

{r̃d>5}
|∇ψ|2 + ‖ϕ‖2H1({r̃d610})

)
,

and we add it so that ‖.‖Hexp
Qc

is now clearly a norm and not just a semi norm. We will come back in subsection 2.3

on why this is a good space to do the coercivity. We also define the symmetric functions in this space by

Hexp,s
Qc

:= {ϕ ∈ Hexp
Qc

,∀(x1, x2) ∈ R2, ϕ(x1, x2) = ϕ(−x1, x2)}.

Theorem 1.9 ([14], Theorem 1.13) There exists R,K, c0 > 0 such that, for 0 < c 6 c0, if a function ϕ ∈ Hexp,s
Qc

satisfies the three orthogonality conditions
∫

B(dc~e1,R)∪B(−dc~e1,R)

Re(∂cQcϕ) =

∫

B(dc~e1,R)∪B(−dc~e1,R)

Re(∂x2Qcϕ) = 0,

∫

B(dc~e1,R)∪B(−dc~e1,R)

Re(iQcϕ) = 0,

then
1

K
‖ϕ‖2Hexp

Qc

> BQc(ϕ) > K‖ϕ‖2Hexp
Qc

.

We will explain in subsection 2.3 why we have to consider these three specific directions for the coercivity, and
why the orthogonalities are local. There, we will also give more details about spectral properties of LQc

, that are
interesting in themselves, but not necessary for the proof of Theorem 1.3. We will also discuss the fact that BQc

,
given by (1.1), is not well defined for ϕ ∈ Hexp

Qc
.

The three orthogonality conditions are connected to the change of speed for the one with ∂cQc, to the translation
for ∂x2Qc, and to the shift of phase for iQc.

In general, a coercivity result implies the local uniqueness of the branch in some space. This is done without
symmetry in [14], Theorem 1.14 for instance. However, to show Theorem 1.3, we are going to need a uniqueness
result in a given space of functions, which is very large, but with a specific shape.

1.2.4 Uniqueness result on the branch

In the previous two subsections, we constructed and studied a specific candidate to be the unique minimizer of
the energy at fixed momentum. The choice is non intuitive, in the sense that we do not know at this point that
the candidate Qc is a minimizers, but we accept to loose this property, and to have instead information like the
coercivity and the smoothness with respect to the speed/momentum, that we do not know on minimizers.

The uniqueness theorem we show is as follows.
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Proposition 1.10 ([13], Proposition 1.8) There exists λ∗ > 1 such that, for any λ > λ∗, there exists ε(λ) > 0
such that if a function u ∈ H1

loc(R2) with E(u) < +∞ satisfies

1. u is even in x1,

2. u = V1(x− d~e1)V−1(x+ d~e1) + Γ, with d > 1
ε(λ) , ‖Γ‖L∞({r̃d62λ}) 6 ε(λ),

3. ‖|u| − 1‖L∞({r̃d>λ}) 6 1/λ∗,

4. (TWc)(u) = 0 for some c > 0 such that |dc− 1| 6 ε(λ),

then there exist X ∈ R2, γ ∈ R such that u = Qc(.−X~e2)eiγ .

This proposition, combined with subsection 1.2.1, implies Theorem 1.3. Proposition 1.10 can be seen as a local
uniqueness result on Qc among travelling waves, and in fact it implies the local uniqueness in L∞ for even functions
in x1:

Corollary 1.11 ([13], Corollary 1.10) There exists c0, ε > 0 such that, for 0 < c < c0, if a function u ∈
H1

loc(R2,C) with E(u) < +∞ satisfies

1. u is even in x1

2. (TWc)(u) = 0 in the distributional sense

3. ‖u−Qc‖L∞(R2) 6 ε,

then there exist X, γ ∈ R such that u = Qc(.−X~e2)eiγ .

However Proposition 1.10 is much stronger than this corollary, because it applied to some functions u that can
satisfy ‖u−Qc‖L∞(R2) > 1/2, as long as u has a two vortex structure, even if the distance between them is not the
same as the vortices of Qc.

Let us sketch the proof of Proposition 1.10. Consider u satisfying the hypotheses of the proposition. Then,
choose c′ > 0 such that Qc′ has the same position of the vortices than u. This uses the fact that c→ Qc is smooth,
and thus given two points far away from each other, there exists an element of this family composed of two vortices
at these points. Remark that we do not have necessary that c = c′ at this stage, but (c− c′)/c is small if p is large.

Near the vortices, write u = Qc′ + ϕ, and because both u and Qc′ behaves like the same vortices, we have that
ϕ is small there, in any Hs norm by standard elliptic arguments. By modulation, choose (c′′, X, γ) close to (c′, 0, 0)
such that if we consider Q := Qc′′(.−X~e2)eiγ instead of Qc′ , then ϕ satisfies the three orthogonality conditions of
Theorem 1.9. Using this coercivity result, and the fact that locally ϕ is small in any norm, this part will not be a
concern for the uniqueness result.

The difficult part is to understand the error far from the vortices. There, we only have |u| ' 1 ' |Q|, and not
u ' Q, so ϕ is not small a priori. To solve this issue, we use the fact that both u and Q have modulus close to one
to write the error in the form

u = Qeψ

instead of u = Q+ ϕ. In this form, the condition |u| ' 1 ' |Q| tells us that Re(ψ) is small in L∞, but Im(ψ) can
be very large (at this stage we can simply show that it is in L∞, without any uniform bound on it).

At the linear level, writing the perturbation on this form does not change anything, and the coercivity still holds.
However, we have change the shape of the nonlinear terms. The goal is to show that now, in this form, they can
be estimated by the coercivity norm on ψ and Re(ψ) in L∞, without never needing to control Im(ψ) in L∞ at any
point. This is done by doing integration by parts in any term where Im(ψ) appears, since Im(∇ψ) is part of the
coercivity norm. This will require infinitely many integration by parts, more detailed are given in subsection 2.4.
The fact that such a computation is possible relies on the structure of the linear Schrödinger equation for functions
that can be written as an exponential, and the fact that the nonlinearity is of the form F (|u|)u.
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1.2.5 Orbital stability and other properties

We know state a few corollaries of Theorem 1.3. Consider the semi distance

D0(u, v) := ‖∇u−∇v‖L2(R2) + ‖|u| − |v|‖L2(R2).

Theorem 1.12 ([11], [13], Theorem 1.13) There exists p0 > 0 such that, for any p > p0, the set Sp =
{QP−1(p)(.−X)eiγ , X ∈ R2, γ ∈ R} is orbitally stable for the semi-distance D0.

This is a consequence of the work of Chiron-Maris [11], where it has been shown that for any momentum, the
set Sp of minimizers is orbitally stable for D0. With Theorem 1.3, we can describe exactly what is this set for p
large.

Next, we show that Qc is a minimizer for another problem as well.

Theorem 1.13 ([11], [13], section 1.4) Consider for κ > 0 the variational problem

Imin(κ) := inf

{
1

4

∫

R2

(1− |v|2)2dx− P2(v), v is s.t.
1

2

∫

R2

|∇v|2 = κ

}
.

Then, there exists κ0 > 0 such that any minimizers for κ > κ0 is of the form Qc(.−X)eiγ for some X ∈ R2, γ ∈ R.

This is also a consequence of [11], where it has been shown that there exists minimizers of the problem Imin(κ)
for any κ > 0, and furthermore, that if p 7→ Emin(p) is smooth, then minimizers of both problems coincides. This
last part is a consequence of Theorems 1.3 and 1.8.

Finally, we can show that there are no travelling waves almost minimizing the energy that are even in x1 other
than Qc.

Theorem 1.14 ([13], Theorem 1.11) For any Λ0 > 0, there exists p0(Λ0) > 0 such that, if u ∈ H1
loc(R2) with

E(u) < +∞ satisfies

1. u is even in x1,

2. (TWc)(u) = 0 for some c > 0,

3. P2(u) > p0(Λ0),

4. E(u) 6 2π ln(P2(u)) + Λ0,

then there exists X ∈ R, γ ∈ R such that
u = Qc(.−X~e2)eiγ .

This result, which is stronger than Theorem 1.3, is also a consequence of subsection 1.2.1 and Proposition 1.10.

1.2.6 Summary

We summarize here, in a generic way, the key steps of the proof of the uniqueness.

Consider a minimization problem under a constraint. Suppose that, in some limit of some parameter of the
constraint, you have information on what minimizers should look like. In particular, that they converges, in a
weak sense, to some limit profile. This limit profile in itself is known, and in particular it is possible to show some
coercivity result on its linearized operator.

The case of the Gross-Pitaevskii is kind of degenerate in this regard. When the moment is large, it does not
really converges to some nice limit object (the vortex here), it converges to a pair of them, and they are separated
by a distance that is diverging. However the idea is still the same.
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To show the uniqueness of this hypothetical minimization problem, the following approach might work. Con-
struct a smooth family of functions close to the limit profile, depending on some parameter connected to the
constraint, by perturbative arguments. Since the limit profile is coercive, this is just a matter of finding the right
space in which to do a fixed point. Then, since the limit profile is coercive and the family of functions is close to it
in a strong sense, they will also be coercive, up to some determinable orthogonality conditions.

This coercivity naturally implies local uniqueness in some space. Now, to finish the proof of the uniqueness of
minimizers, this space has to include all the profile that looks weakly like the limit profile. There are now two angle
of attack to do so. Either improve the properties known of minimizers, or increase the size of the space in which
the local uniqueness is proved.

Of course, this summary is very schematic and actual proofs could be much more involved. However, we believe
that this approach can be applied to other problems, not necessarily dispersive.

2 Some additional elements of the proof

In this section, we explain some of the more technical parts of the proof.

2.1 About the limit p→ +∞ in the energy minimisation

In this subsection, we discuss the proof of Proposition 1.7. The arguments given here are not fully rigorous, simply
an overview of the steps of the proof. We refer to section 3 of [13] for the full details.

We consider u ∈ H1
loc(R2) with E(u) < +∞ and P2(u) = p� 1. We suppose that u is an energy minimizer, or

at least has an energy close to the minimum, that is

E(u) ' 2π ln(p).

Our goal is to show that u satisfies the properties of Proposition 1.7. We consider the rescaled function û(x) = u(px),
so that P2(û) = 1.

First, using arguments from Alberti-Baldo-Orlandi and Jerrard-Soner [2], [28], we show that the Jacobian of û
converges to a sum of diracs when p→ +∞, that is to

∑
dkδyk for some dk ∈ Z, yk ∈ R2. This sum can be empty.

Furthermore, a vicinity of these points yk contains an energy (at the level of E(u)) of size '∑ |dk|π ln(p).
Since

∑
dk = 0 (otherwise E(u) = +∞) and E(u) ' 2π ln(p), that means that either this sum is empty, or

contains two elements, d+ = −d− = 1.

Now, using arguments from Bethuel-Saut [7], we have that

∣∣∣P2(û)− π
∑

dk(yk)1

∣∣∣→ 0

when p→ +∞, where (yk)1 is the first component in cartesian coordinates of yk. Since P2(û) = 1 6= 0, this implies
in particular that the sum cannot be empty, it has therefore two elements, and π((y+)1 − (y−)1) = 1 + op→+∞(1),
which will give us the equivalent of the distance d between the two vortices.

Remark that, at first order, all the energy of E(u) ' 2π ln(p) is contains in a vicinity of y+, y− by the arguments
of [2], [28]. Following now ideas from Bethuel-Orlandi-Smets [6], we show that if ||û| − 1| > ε at some point for
some ε > 0, then a vicinity of this point has an energy of size η(ε) ln(p). Since no more energy is available, this
implies that |û| is close to 1 everywhere, except close to y±.

Finally, near y±, we have that u → u∞ on R2 when p → +∞, where by passing to the limit, we check that
∆u∞ = (|u∞|2 − 1)u∞, |u∞| → 1 at infinity and 0 6=

∫
R2(|u∞|2 − 1)2 6 4π. Using [9], stationary solutions of the

Gross-Pitaevskii equation satisfies
∫
R2(|u∞|2 − 1)2 = 2π(deg(u∞))2, where deg(u∞) is the degree of the solution at

+∞. Therefore, deg(u∞) = ±1, and by a result from Mironescu [32], the only stationnary solution of degree ±1 is
V±1.
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2.2 About the construction of a smooth branch

We detail here the proof of Theorem 1.8. Arguments in this subsection comes from [12]. Define for some d ' 1/c
the profile

V (x) := V1(.− d~e1)V−1(.+ d~e1).

We do not have (TWc)(V ) = 0, however this quantity is small. We look for a solution of (TWc)(Qc) = 0 of the
form (with Φ = VΨ)

Qc = (1− η)(V + Φ) + ηV eΨ,

where η is a cutoff function with value 0 near ±d~e1 and 1 far from them. We then decompose the equation
(TWc)(Qc) = 0 into

(TWc)(V ) + LV (Ψ) + NL(Ψ) = 0,

where LV (Ψ) contains the linear terms in Ψ, and NL(Ψ) the nonlinear ones.

The goal is to inverse here the operator LV , so that a fixed point can be made on the problem

Ψ = L−1
V (−(TWc)(V )−NL(Ψ))

on functions Ψ that are small, so NL(Ψ) is small compared to Ψ. Since we only want to construct a particular
solution, we can impose what we want on Ψ. In particular, we ask Ψ to satisfies the symmetries Ψ(x1, x2) =
Ψ(−x1, x2) and Ψ(x1,−x2) = Ψ(x1, x2) (these symmetries are also satisfied by V ).

We now look at the operator LV . close to ±d~e1, it behaves like the linear operator around V±1, that we write
LV±1 . This operator is studied in [17]. It is invertible, up to two orthogonality conditions.

Far from both vortices, |V | ' 1, and in that case, LV has been studied in another context by Gravejat in [22].
In that region, we have

LV (ψ) ' −ic∂x2
ψ −∆ψ + 2Re(ψ)

which can be understood using Fourier transform. We can show that it is invertible there without any orthogonality
conditions.

For now, we have not detailed in which space we are inverting the operator. Our goal is to have a precise
description of the error term Ψ, and for that reason we take a very precise norm. Define r̃ = min(|x−d~e1|, |x+d~e1|),
the minimum of the distance to the two vortices. We will invert LV for function Ψ = Ψ1+iΨ2 in the space associated
to the norm

‖Ψ‖∗,σ,d := ‖VΨ‖C2({r̃63})

+ ‖r̃1+σΨ1‖L∞({r̃>2}) + ‖r̃2+σ∇Ψ1‖L∞({r̃>2}) + ‖r̃2+σ∇2Ψ1‖L∞({r̃>2})

+ ‖r̃σΨ2‖L∞({r̃>2}) + ‖r̃1+σ∇Ψ2‖L∞({r̃>2}) + ‖r̃2+σ∇2Ψ2‖L∞({r̃>2})

for any σ ∈]0, 1[. Let us explain why we choose such a space.
At the end of the proof, we will show that there exists K(σ) > 0 and Ψ such that Qc is indeed a travelling wave,

and
‖Ψ‖∗,σ,d 6 K(σ)c1−σ

for any σ ∈]0, 1[.
First of all, having weights in r̃ is necessary if we want the constant K(σ) to be independent of d, which is

necessary for some computations to come.
Secondly, some equivalents at +∞ have been computed for any travelling wave by Gravejat in [23]. If we

compare it to the norm ‖.‖∗,σ,d, it corresponds (for all the terms) to the case σ = 1. We therefore cannot expect
to do better, and in fact we have to do a little worse to have some smallness to close the fix point argument. The
other limit, that is σ = 0+, is interested because we then have a lot of decay in L∞ on Ψ, in particular if r̃ ' 1.

Unfortunately, the choice of this norm makes the computations necessary to show that LV is invertible rather
technical. Indeed, we have to to elliptic estimates (for instance to invert the problem −ic∂x2ψ−∆ψ+ 2Re(ψ) = h)
in weighted L∞ spaces, where the weight is r̃, which is not radial, and we want to show that the constants coming
from the computations are independent of d, the distance between the vortices. In some sense this is more technical
than difficult, but it requires an heavy amount of computations.
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To finish the inversion of LV , we have to deal with the four directions of its kernel. By the symmetries imposed
on Ψ, only one of these directions survives. This is done by introducing a Lagrangian multiplier, that will be equal
to 0 by choosing a specific value of the parameter d, that remained free up to this point.

We finish by saying a few words concerning the differentiability of the branch with respect to the speed. Since Ψ
is defined by a fixed point and d by an implicit equation, we can show that they are differentiable with respect
to the speed by an implicit function theorem. There are two main difficulties to do so. First, the norm ‖.‖∗,σ,d
depends on d, and we have to show that if we fix some d∗ > 0 large, the norms ‖.‖∗,σ,d∗ and ‖.‖∗,σ,d are equivalents
with constants independent of d, d∗ if d is close to d∗. And secondly, this requires additional, more precise elliptic
estimates, that are quite technical (see for instance the painful Proposition 4.5 of [12]).

2.3 About the coercivity of the branch

The Gross-Pitaevskii equation is invariant by translation and multiplication by a complex of modulus one. As such,
the linearized operator around the travelling wave Qc, that is

LQc(ϕ) = −∆ϕ− ic∂x2ϕ− (1− |Qc|2)ϕ+ 2Re(Qcϕ)Qc,

has three zeros, namely
LQc

(∂x1
Qc) = LQc

(∂x2
Qc) = LQc

(iQc) = 0.

Remark that, although ∂x1Qc, ∂x2Qc are decaying at infinity, we have iQc → i at infinity, therefore iQc 6∈ Lp(R2)
for any p ∈ [1,+∞[.

The natural definition for the quadratic form associated to LQc
would be

BQc(ϕ) =

∫

R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)− cRe(i∂x2ϕϕ),

and a natural space in which we should consider the function ϕ would be one such that the four quantities are
integrable, and we can check (this is done in [14]) that such a space is

HQc
:=

{
ϕ ∈ H1

loc(R2),

∫

R2

|∇ϕ|2 + |(1− |Qc|2)||ϕ|2 + Re2(Qcϕ) < +∞
}
.

Indeed, after some integration by parts, we show that
∫
R2 Re(i∂x2ϕϕ) is well defined in this space.

However, ∂x1
Qc, ∂x2

Qc ∈ HQc
but iQc 6∈ HQc

because of the slow decay of |(1− |Qc|2)| ' 1/(1 + r2) at infinity.
Having an element of the kernel not in the space of perturbation is generally a bad idea. For instance, because
of this, the coercivity of BQc

in the space HQc
with its natural norm cannot hold, even with any number of local

orthogonality conditions (see section 3.1 of [14]).
As explained in 1.2.3, if we write ϕ = Qcψ, compactly supported away from the zeros of Qc, then by integrations

by parts we have

BQc
(Qcψ) =

∫

R2

|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4

+

∫

R2

4Im(∇QcQc) · Im(∇ψ)Re(ψ) + 2c|Qc|2Im(∂x2ψ)Re(ψ).

Now remark here that for ϕ = iQc, that is ψ = i, all terms, even in absolute value, are now well defined (and
they are all zero). These integration by parts created a cancellation at infinity. However, this change of variable is
not good near the zeros of Qc. We therefore take a cutoff function supported close to the vortices, decompose the
quadratic form using this cutoff, and do the integration by parts only on part supported away from the vortices.
This leads to the formulation (1.4) of [14] for the quadratic form, for which each term is integrable in the space

Hexp
Qc

=
{
ϕ ∈ H1

loc(R2), ‖ϕ‖Hexp
Qc

< +∞
}
,

where for ϕ = Qcψ ∈ H1
loc(R2) and r̃d := min(|x− dc~e1|, |x+ dc~e1|), the minimum of the distances to the vortices,

we have

‖ϕ‖2Hexp
Qc

= ‖ϕ‖2H1({r̃d610}) +

∫

{r̃d>5}
|∇ψ|2 + Re2(ψ) +

|ψ|2
r̃ ln2(r̃)

.

We check easily that HQc
⊂ Hexp

Qc
and iQc ∈ Hexp

Qc
.
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Now, in addition to the three zeros ∂x1Qc, ∂x2Qc and iQc of the linearized operator, there are two other inter-
esting directions to consider. These are ∂cQc and ∂c⊥Qc := x⊥.∇Qc, connected respectively to the variation of the
speed and the invariance of Gross-Pitaevskii by rotation (that are both also in Hexp

Qc
). We compute that

LQc
(∂cQc) = i∂x2

Qc, LQc
(∂c⊥Qc) = −ic∂x1

Qc,

and

BQc
(∂cQc) = ∂c(P2(Qc)) =

−2π + oc→0(1)

c2
< 0,

BQc
(∂c⊥Qc) = cP2(Qc) = 2π + oc→0(1) > 0.

We recall, following subsection 1.2.3, that the quadratic form BQc
is coercive, up to six orthogonality conditions.

These are the two translations and the shift of phase of each vortices, that is the six directions

∂x1
V1(x− dc~e1), ∂x2

V1(x− dc~e1), iV1(x− dc~e1)

and
∂x1V−1(x+ dc~e1), ∂x2V−1(x+ dc~e1), iV−1(x+ dc~e1)

Adapting results from [17] (see Proposition 1.3 of [14]), we check that we can take these orthogonality conditions
locally around each respective vortices.

Near the vortices, we have

∂x1
Qc = ∂x1

V1(x− dc~e1) + oc→0(1), c2∂cQc = −∂x1
V1(x− dc~e1) + oc→0(1)

and
∂x2

Qc = ∂x2
V1(x− dc~e1) + oc→0(1), c∂c⊥Qc = −∂x2

V1(x− dc~e1) + oc→0(1)

near dc~e1. Similar estimates can be made near −dc~e1. Since they are almost equal, we check that we can replace
the local orthogonality on ∂x1

V1, ∂x2
V1, ∂x1

V−1, ∂x2
V−1 by ∂x1

Qc, ∂x2
Qc, ∂cQc, ∂c⊥Qc.

When c→ 0, the four directions are almost zeros of the quadratic form. However, with the new decomposition,
we can say which ones are positive or negative. Indeed,

BQc(∂x1Qc) = BQc(∂x2Qc) = 0, BQc(∂cQc) < 0, BQc(∂c⊥Qc) > 0.

Now, concerning the phases, the situation is a little more delicate. We need the two local orthogonality conditions
on iV1(x− dc~e1) and iV−1(x+ dc~e1), but we only have iQc as a direction. In some sense, we are missing a second
direction on the phase.

A first way to solve this, which is enough for the proof of Theorem 1.3, is to consider only the coercivity on
functions even in x1. In that case, the two orthogonality conditions on the phase coincides.

It is also possible to have a coercivity result by removing one of the two orthogonality, but the cost is that the
coercivity constant now depends on c, and can converge to 0 when c → 0. We refer to [14], section 1.3 for more
details about this case.

Let us conclude with some corollaries of the coercivity.

Corollary 2.1 ([14]) For c > 0 small enough,

KerHexp
Qc

(LQc
) = SpanR{∂x1

Qc, ∂x2
Qc, iQc}.

Furthermore, for ϕ ∈ H1(R2,C), if 〈ϕ, i∂x2Qc〉 = 0, then

BQc(ϕ) > 0.

Finally, LQc : H2(R2)→ L2(R2) has exactly one negative eigenvalue with eigenvector in L2(R2).

Remark that all these properties can be stated without needing Qc to be part of a smooth branch of travelling
waves, or have a small speed. We believe that the uniqueness of the energy minimizer hold for any momentum, and
that Proposition 2.1 holds for any of these minimizers.

Exp. no XVII— A uniqueness result for travelling waves in the Gross-Pitaevskii equation

XVII–13



2.4 About the uniqueness result

We complete here the proof of Proposition 1.10. Decompose u = Qeψ far from the vortices (we explained in 1.2.4
how to deal with the vicinity of vortices). Then, the equation (TWc)(u) = 0 becomes

0 = (TWc)(Q) + LQ(Qψ) + NL(ψ),

where LQ(Qψ) contains the linear terms in ψ, and

NL(ψ) = −Q∇ψ.∇ψ +Q|Q|2(e2Re(ψ) − 1− 2Re(ψ)).

Taking the scalar product with Qψ gives us

0 = 〈(TWc)(Q), Qψ〉+ 〈LQ(Qψ), Qψ〉+ 〈NL(ψ), Qψ〉.

We recall the coercivity norm (far from the zeros of Q)

‖ψ‖2 = ‖Re2(ψ)‖2L2 + ‖∇ψ‖2L2 +

∥∥∥∥
ψ

(1 + r̃)3/2

∥∥∥∥
2

L2

,

and from section 1.2.3, we have
〈LQ(Qψ), Qψ〉 > K‖ψ‖2

by a good choice of the parameters in Q.
Now, with the hypotheses of Proposition 1.10, we can show that ‖ψ‖, ‖Im(ψ)‖L∞ < +∞ but not that they are

small. We simply have ‖Re(ψ)‖L∞ 6 ε.
By doing a dichotomy on the size of ‖ψ‖, we can check that we always have

|〈(TWc)(Q), Qψ〉| 6 o(1)‖ψ‖2.

To control 〈NL(ψ), Qψ〉 by o(1)‖ψ‖2 (the o(1) is for c → 0 and ε → 0), we check that it is possible for all terms
except

A0 :=

∫

R2

|Q|2Im(∇ψ.∇ψ)Im(ψ).

Define more generally

An :=

∫

R2

|Q|2Ren(ψ)Im(∇ψ.∇ψ)Im(ψ).

We have Im(∇ψ.∇ψ) = 2Im(∇ψ).Re(∇ψ) and doing an integration by parts on Re(∇ψ) in An, we check that we
can control every term by o(1)‖ψ‖2, except for the term that contains Im(∆ψ). For this term, we use the equation
(TWc)(Qe

ψ) = 0, which also contains the term ∆ψ, to rewrite Im(∆ψ) as a sum of a large number of terms, that
can all be controlled by o(1)‖ψ‖2 except one, but it turns out that this term is 2An+1. To be specific, we check
that there exists a universal constant K > 0 such that

|An| 6 2|An+1|+Kn‖Re(ψ)‖nL∞‖ψ‖2,

and 2nAn → 0 when n→ +∞ by dominated convergence. Therefore, letting n, the number of integration by parts
we do, go to +∞, We deduce that A0 can be controlled by o(1)‖ψ‖2, concluding the proof.
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Sci. Paris Sér. I Math., 323(6):593–598, 1996.

[33] J. C. Neu. Vortices in complex scalar fields. Phys. D, 43:385–406, 1990.

[34] L. Pismen. Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, From Non-Equilibrium Patterns
to Cosmic Strings. International Series of Monographs on Physics (Book 100). Oxford University Press, 1999.

[35] E. Sandier. Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal., 152(2):379–403,
1998. Erratum: Ibid. 171(1):233, 2000.

Eliot Pacherie

XVII–16


