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Quantitative hydrodynamic limits of the Langevin
dynamics for gradient interface models

Paul Dario

Abstract

We review some recent, quantitative, progress regarding the large-scale behavior
of the ∇φ (or Ginzburg-Landau) interface model with uniformly convex potential.
The arguments rely on a dynamical approach of the problem (following [32] where
the Langevin dynamics associated with the model are studied) combined with recent
progress in the field of quantitative stochastic homogenization of nonlinear elliptic
equations.

1. Introduction

Random surfaces in statistical mechanics are used to model the interface separat-
ing two pure thermodynamic phases. A classical way to model an interface is to
represent it as a function φ : Zd → R encoding its height (see Figure 1.1) to which
one associates an energy defined as follows. On a finite set Λ ⊂ Zd, each surface
φ : Λ → R satisfying the Dirichlet boundary condition φ = 0 on ∂Λ (the external
vertex boundary) is assigned the energy

HΛ (φ) =
∑

x,y∈Λ+

|x−y|=1

V (φ(y)− φ(x)),

where Λ+ is the set Λ ∪ ∂Λ, | · | denotes the Euclidean norm, V : R → R is an
interaction potential.

Figure 1.1: A representation of a random surface (by C. Gu).
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Different assumptions can be imposed on the potential V . In this report, we
focus on the uniformly convex setting, i.e., we assume that:

• V is twice continuously differentiable and symmetric;

• V is uniformly convex, i.e., there exist two constants λ,Λ such that

0 < λ ≤ V ′′(x) ≤ Λ <∞.

The law of the random surface is then given by

µΛ(dφ) :=
1

ZΛ
exp (−HΛ(φ))

∏

v∈Λ

dφ(v), (1.1)

where dφ(v) denotes Lebesgue measure on R and ZΛ is the constant which makes
µΛ a probability measure. The question is then to study the macroscopic behavior
of a surface φ sampled according to µΛ.

The problem admits a dynamical interpretation, and the Gibbs measure (1.1)
is naturally associated with Langevin dynamics

dφ(t, x) =
∑

y∈Zd

|y−x|=1

V ′(φ(t, y)− φ(t, x)) dt+
√

2dBt(x), (1.2)

where
{
Bt(x) : x ∈ Zd, t ≥ 0

}
is a family of independent Brownian motions. Specif-

ically, the measure µΛ is stationary, reversible and ergodic with respect to the
dynamics (1.2).

The qualitative behavior of the ∇φ-model has been extensively studied under
the uniform ellipticity assumption, and we refer to [31, 49, 47] and to Section 3.1
for an overview of its literature.

We are interested in studying quantitatively the large-scale behavior of the
Langevin dynamics (1.2) and draw a parallel with the recent progress in quantitative
stochastic homogenization of nonlinear equations [8, 4, 3, 29, 21]. The rest of this
report presents the framework of (nonlinear) stochastic homogenization as well as
some results and contributions, and explains how the techniques developed in this
setting can be used to study the Langevin dynamics (1.2).

2. Stochastic homogenization

2.1 The linear setting and historical background

Stochastic homogenization aims at understanding partial differential equations with
rapidly varying random coefficients. An important part of the literature on the topic
is devoted to the linear, uniformly elliptic equation in divergence form

−∇ · a(x)∇u = f in Rd, (2.1)

where the coefficient field a : Rd → Rd×d is assumed to be random and to vary on
the unit scale. One is then interested in studying the behavior of the solutions of
the equation on a length scale much larger than the unit scale.

It is customary to introduce a small parameter 0 < ε� 1 to represent the ratio
between the microscopic and macroscopic scale, and to rescale the equation (2.1) as

−∇ · a
(x
ε

)
∇uε = f in Rd.
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The question is then to understand the behavior of the function uε as ε→ 0.
It was proved in the 80s, under quite general assumption over the coefficient

field, that the function uε converges in L2 to the solution of the elliptic equation

−∇ · ā∇ū = f in Rd,

where ā is a constant, deterministic and uniformly elliptic matrix called the homog-
enized coefficient (except in d = 1 and in some specific situations in two dimensions,
this coefficient is not explicit).

The theory has, since then, been extensively developed, and homogenization has
been applied to various class of elliptic and parabolic equations as well as different
models of probability and statistical physics. The past ten years have seen the
emergence of a quantitative theory that has been developed to the point that the
model is now well-understood (at least in the linear setting (2.1)).

To give a more detailed historical background, the theory of stochastic homog-
enization was developed qualitatively in the 1980s, in the works of Kozlov [42],
Papanicolaou and Varadhan [46], Yurinskĭı [50], Avellaneda and Lin [10, 11], and
Dal Maso and Modica [24, 25] (in the nonlinear setting). We refer to [41] for a more
detailed bibliographical account of the qualitative theory.

From a quantitative perspective, major progress was achieved by Gloria and
Otto in [36, 37], where a satisfactory quantitative theory was developed for the first
time. These results were then further developed by Gloria, Marahrens, Neukamm
and Otto [38, 39, 34, 35]. Another quantitative approach was initiated by Arm-
strong and Smart in [8], and further developed by Armstrong, Kuusi and Mour-
rat [5, 6, 7].

The nonlinear setting, to which Section 2.2 is devoted, was studied qualitatively
in [24, 25] and quantitatively in the recent contributions of Armstrong, Smart [8],
Armstrong, Ferguson, Kuusi [4, 3], Fischer, Neukamm [29] and Gloria, Clozeau [21].

2.2 The nonlinear setting

The standard problem of stochastic homogenization of nonlinear elliptic equations
studies the equations of the form

∇ ·DpL(x,∇u) = f in Rd, (2.2)

where L : (x, p) 7→ L(x, p) is called the Lagrangian and is assumed to satisfy the
following assumptions

• The map L is measurable with respect to the variable x and twice continuously
differentiable with respect to the variable p;

• For any x ∈ Rd, the map p 7→ L(x, p) is uniformly convex.

The solution of the equation (2.2) can be equivalently characterized as the minimizer
of the convex energy functional

ˆ

Rd

L(x,∇u(x))− f(x)u(x) dx.

One then encodes randomness in the model through the Lagrangian as follows:
we let (Ω,F ,P) be a probability space equipped with a collection of operators
(Tx)x∈Zd : Ω→ Ω satisfying the following properties:

• The composition rule: For any pair x, y ∈ Zd, Tx ◦ Ty = Tx+y;
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• Translation invariance and ergodicity: For any x ∈ Zd, the measure P is
translation-invariant and ergodic with respect to the operator Tx.

One then considers a (random) Lagrangian to be a map L : Ω × Rd × Rd → R
satisfying the identity

∀(ω, x, y, p) ∈ Ω× Rd × Rd × Rd, L(Tyω, x, p) = L(ω, x+ y, p).

The objective is then to study the behavior of the solution of the random elliptic
equation

−∇ ·DpL
(
ω,
x

ε
,∇uε

)
= f in Rd, (2.3)

as ε tends to 0. This framework was originally considered by Dal Maso and Modica
in [24, 25], where they established (under more general assumptions) that there
exists a uniformly convex function L̄ : Rd → R such that, with probability one, the
solution uε of (2.3) converges as ε tends to 0 to the deterministic solution ū of the
nonlinear elliptic equation

−∇ ·DpL̄ (∇ū) = f in Rd.

Under suitable quantitative ergodicity assumptions on the probability space
(Ω,F ,P), a quantitative version of the homogenization theorem stated above has
been obtained in [8, 4, 3, 29]. We record below a finite-volume version of the result
stated with Dirichlet boundary conditions (the version below is the one of [29,
Th. 7]). The theorem holds under specific quantitative ergodicity assumptions that
are not made explicit here; they can be found in [29].

Before stating the result, we introduce the following notation to measure the
stochastic integrability of a random variable: given a nonnegative random vari-
able X, an exponent s > 0 and a constant C <∞, we write

X ≤ Os(C) ⇔ E
[
exp

((
X

C

)s)]
≤ 2.

Theorem 2.1 (Quantitative homogenization, Theorem 7 of [29]). For any C1 or
convex Lipschitz bounded domain D ⊆ Rd, and any boundary condition g ∈ H2(D),
there exist an exponent s := s(d, λ,Λ) > 0 and a constant C := C(d, λ,Λ, D, g) <∞
such that the solutions of the equations




−∇ ·DpL

(
ω,
x

ε
,∇uε

)
= 0 in D,

uε = g in ∂D,
(2.4)

and {
−∇ ·DpL̄ (∇ū) = 0 in D,

ū = g in ∂D,

satisfy

‖uε − ū‖L2(D) ≤ Os

(
Cε1/2

(
1 + |ln ε|1/4

))
.

The proof of Theorem 2.1 relies on a standard tool and Ansatz in stochastic
homogenization: the first-order corrector and the two-scale expansion. These are
explained in more detail in the next section.
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2.3 First-order corrector and two-scale expansion

This section is devoted to the first-order corrector and the two-scale expansion.
It is split into two parts. We first introduce the first-order corrector and record
two of its properties. Section 2.3.2 presents the Ansatz of the two-scale expansion.
We mention that the first-order corrector and the two-scale expansion have been
studied in various contexts. Different definitions have been used for the first-order
corrector and some technicalities are required to make the general Ansatz of the
two-scale expansion fully rigorous. In the sections below, the arguments are only
presented on a general level to highlight the main ideas.

2.3.1. The first-order corrector. In order to define the first order-corrector, we
simplify the setup of Theorem 2.1 and consider a specific case: the situation where
the boundary condition g is affine. For p ∈ Rd, we let lp be the affine function of
slope p, i.e., lp(x) = p · x. In this setting, we have ū = lp. For each ε > 0, we define
the first-order corrector with slope p ∈ Rd according to the formula

φε(x; p) := uε(x)− p · x.

One is then interested in establishing two properties on the first-order corrector.

• Estimates on the corrector: typically, one wants to show that, for any x ∈ D,

φε(x; p) −→
ε→0

0, (2.5)

and to quantify this result with respect to both the stochastic integrability
and the rate of convergence. In this direction, the optimal result should be

|φε(x; p)| ≤ O2

(
ε
(
1 + | log ε|1/21{d=2}

))
.

A result of this nature can be found in [38] and [6, Chapter 4] in the linear
setting.

• Estimates on the flux of the corrector: typically, one wants to show that

DpL
(
ω,
·
ε
,∇φε

)
⇀
ε→0

DpL̄(p), (2.6)

where the arrow refers to the weak convergence in the space H1(D). Similarly,
this convergence can be quantified both over the stochastic integrability and
rate of convergence. In this direction, the optimal result should be

∥∥∥DpL
(
ω,
·
ε
,∇φε

)
−DpL̄(p)

∥∥∥
H−1(D)

≤ O2(Cε),

where the H−1(D)-norm is defined by the formula

‖f‖H−1(D) := sup

{
ˆ

D
f(x)u(x) dx : u ∈ H1

0 (D), ‖∇u‖L2(D) ≤ 1

}
.

We do not present here the details of the mathematical construction and refer
the interested reader to [8, 4, 3, 29].
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2.3.2. The two-scale expansion. Once equipped with the first-order corrector,
one defines the two-scale expansion wε according to the formula

wε(x) := ū(x) + φε(x;∇ū(x)).

Two properties can then be proved on the two-scale expansion wε.

• From the definition of the first-order corrector and the property (2.5), we
know that the map wε is close to the map ū. Specifically, we have

|wε(x)− ū(x)| = |φε(x,∇ū(x))| −→
ε→0

0. (2.7)

• Using the definition of the two-scale expansion wε together with an explicit
computation (which is not presented here to keep the details light), one can
prove that the function wε is almost a solution of the heterogeneous equa-
tion (2.4). Specifically, one can verify that the convergences (2.5) and (2.6)
imply that the term

Eε := −∇ ·DpL
(
ω,
·
ε
,∇wε

)

satisfies
‖Eε‖H−1(D) −→ε→0

0. (2.8)

Moreover, the convergence (2.8) can be quantified depending on the rates of
convergence in (2.5) and (2.6). We can then use the identity (2.4) to prove
that

−∇ ·
(
DpL

(
ω,
·
ε
,∇wε

)
−DpL

(
ω,
·
ε
,∇uε

))
= Eε. (2.9)

Multiplying the equation (2.9) by the function wε − uε, integrating over the
domain D and performing an integration by parts, we obtain

ˆ

D

(
DpL

(
ω,
x

ε
,∇wε

)
−DpL

(
ω,
x

ε
,∇uε

))
· (∇wε(x)−∇uε(x)) dx

=

ˆ

D
Eε (wε(x)− uε(x))

≤ ‖Eε‖H−1(D) ‖∇wε −∇uε‖L2(D) ,

where, in the last inequality, we used that the functions wε and uε are equal on
the boundary of D and thus wε−uε ∈ H1

0 (D). The term in the left-hand side
can be estimated from below using the uniform convexity of the Lagrangian L,
and we have

λ ‖∇wε −∇uε‖2L2(D)

≤
ˆ

D

(
DpL

(
ω,
x

ε
,∇wε

)
−DpL

(
ω,
x

ε
,∇uε

))
· (∇wε(x)−∇uε(x)) dx.

A combination of the two previous displays shows that

‖∇wε −∇uε‖L2(D) ≤ λ−1 ‖Eε‖H−1(D) .

By Poincaré’s inequality, we deduce that

‖wε − uε‖L2(D) ≤ C ‖∇wε −∇uε‖L2(D) ≤ C ‖Eε‖H−1(D) .

Paul Dario
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Consequently

‖uε − ū‖L2(D) ≤ ‖wε − uε‖L2(D) + ‖wε − ū‖L2(D)

≤ ‖φε(x,∇ū)‖L2(D) + C ‖Eε‖H−1(D) .

Applying (2.7) and (2.8) shows that the right-hand side tends to 0 as ε tends
to 0.

3. Random surfaces and Langevin dynamics

In this section, we explain how the techniques of developed in the setting of the
homogenization of the nonlinear equation (2.2) can be applied to study the Langevin
dynamics (1.2). We first present a short historical account of the study of the model.

3.1 Historical background

The study of random surfaces was initiated in the 1970s by Brascamp, Lieb and
Lebowitz [18] who obtained sharp localization and delocalization estimates for uni-
formly convex potentials.

The question of the scaling limit of the model was first addressed by Brydges and
Yau [19] in a perturbative setting based on a renormalization group approach, and
settled in the uniformly convex setting by the works of Naddaf, Spencer [44] and
Giacomin, Olla, Spohn [33]. The hydrodynnamic limit of the model, discussed in
this note, was established by Funaki and Spohn [32], with subsequent refinements
of Nishikawa [45]. After the groundbreaking works [32, 44, 33], large deviation
estimates and concentration inequalities were established by Deuschel, Giacomin
and Ioffe [27], and sharp decorrelation estimates for the discrete gradient of the
field were obtained by Delmotte and Deuschel [26]. The fluctuations of the model
in a bounded domain were studied by Miller [43]. More recently, Armstrong and
Wu applied quantitative homogenization to the Helffer-Sjöstrand PDE of [44] to
prove the C2 regularity of the surface tension.

The case of non-convex potentials was studied in the high temperature regime
by Cotar, Deuschel and Müller [23], who established the strict convexity of the
surface tension, and by Cotar and Deuschel [22] who proved the uniqueness of
ergodic Gibbs measures, obtained sharp estimates on the decay of covariance and
identified the scaling limit of the model in this framework (see also [28] where the
hydrodynamic limit is established). The strict convexity of the surface tension
in the low temperature regime was established by Adams, Kotecký and Müller [1]
through a renormalization group argument. In [12], Biskup and Kotecký showed the
possible non-uniqueness of infinite-volume, shift-ergodic gradient Gibbs measures
for some nonconvex interaction potentials, and Biskup and Spohn [13] proved that,
for a general category of nonconvex potentials, the scaling limit of the model is a
Gaussian free field.

3.2 The Langevin dynamics as a stochastic homogenization problem

The starting point of the analysis is the observation that the Langevin dynam-
ics (1.2) can be viewed as a (discrete) nonlinear parabolic equation with noise. One
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should mentally make the replacement
∑

y∈Zd

|y−x|=1

V ′(φ(t, y)− φ(t, x)) ! ∇ ·DpL(∇φ).

In fact, the difference φ(t, y)−φ(t, x) corresponds to the discrete gradient, the sum
is the discrete divergence operator, and the map V ′ plays the role of the gradient
of the Lagrangian. With this interpretation of the problem, one can think of the
dynamics (1.2) as being similar to the equation

∂tφ−∇ ·DpL(∇φ) = “noise”, (3.1)

where the noise corresponds to the term involving the Brownian motions (1.2) and
can be thought of as a discretized version (with respect to the space variable) of
a space-time white noise. The equation (3.1) can then be interpreted as a discrete
and parabolic version of the equation (2.3) where the randomness is not encoded in
the Lagrangian but externally through a random noise. A similar observation was
made recently by Cardaliaguet, Dirr and Souganidis [20], who proved a qualitative
homogenization result for a continuum version of the Langevin dynamics.

3.3 The quantitative hydrodynamic limit

Once the observation that the Langevin dynmamics can be seen as a nonlinear
parabolic equation with an external random noise has been made, one can inves-
tigate what is the version of the homogenization theorem discussed in Section 2
for this model. The result is known in the field of random surfaces as the the hy-
drodynamic limit and was originally established by Funaki and Spohn [32]. Their
result is stated below, and requires to introduce a few notations. We let Td be
the d-dimensional torus. For any fixed ε > 0, we discretize the torus at scale ε by
setting

Td
ε := Td ∩ εZd.

To ease the notation in the statement of the result, we also denote by

∇ε · V ′(∇εφε)(t, x) =
1

ε

∑

y∈εZd

|y−x|=ε

V ′
(
φε(t, y)− φε(t, x)

ε

)
.

The hydrodynamic limit for Langevin dynamics of the ∇φ-model reads as follows.

Theorem 3.1 (Hydrodynamic Limit, Funaki-Spohn [32]). There exists a uniformly
convex function σ̄ : Rd → R such that the following holds. For any g ∈ L2(Td) and
any ε ∈ (0, 1), if we let φε : [0, 1]× Td

ε → R be the solution of Langevin dynamics



dφε(t, x) = ∇ε · V ′(∇εφε)(t, x)dt+

√
2εdBt/ε2

(x
ε

)
for (t, x) ∈ [0, 1]× Td

ε ,

φε(0, x) = g(x) for x ∈ Td
ε ,

(3.2)
and φ̄ : Q→ R be the solution of the continuous nonlinear parabolic equation

{
∂tφ̄−∇ ·Dpσ̄(∇φ̄) = 0 in [0, 1]× Td,

φ̄(0, ·) = g on Td,

then, for any time t > 0,

E
[∥∥φε(t, ·)− φ̄(t, ·)

∥∥2

L2(Td
ε)

]
−→
ε→0

0.

Paul Dario
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Remark 3.2. 1. The random process εBt/ε2 is a standard Brownian motion, we
use this notation to emphasize that the dynamics (1.2) and (3.2) are the same
up to suitable rescaling with respect to the space and time variables.

2. The map σ̄ is called the surface tension [32] and corresponds to the effective
Lagrangian L̄ in stochastic homogenization.

3. The proof of Funaki and Spohn is based on techniques developed in the context
of Ginzburg-Landau equations with a conserved order parameter [40], and is
different from the approach based on stochastic homogenization developed in
this note.

4. The result of [32] is proved on the torus, and their method has been extended
to other settings such as the one of a bounded domain with Dirichlet boundary
condition by Nishikawa [45].

From a quantitative perspective, it turns out that the model can be treated
using the techniques developed in stochastic homogenization of the nonlinear elliptic
equation (2.2), and a two-scale expansion can be implemented on the model to prove
a quantitative version of the hydrodynamic limit.

In order to state the result, we introduce a few notations. We let D be a
bounded C1-domain, denote by Q := [0, 1] × D the parabolic cylinder and let
∂parQ := ({0} ×D) ∪ ([0, 1]× ∂D) be the parabolic boundary of Q. For ε > 0, we
discretize the set D by defining Dε := D ∩ εZd and denote by ∂Dε the external
vertex boundary of Dε. We define Qε := [0, 1] × Dε and ∂parQ

ε := ({0} ×Dε) ∪
([0, 1]× ∂Dε).

Theorem 3.3 (Quantitative hydrodynamic limit, Theorem 1.1 of [2]). Let g ∈
H2(Q). Fix ε ∈ (0, 1) and let φε : Qε → R be the solution of the Langevin dynamics




dφε(t, x) = ∇ε · V ′(∇εφε)(t, x)dt+

√
2εdBt/ε2

(x
ε

)
for (t, x) ∈ Qε,

φε(t, x) = g(t, x) for (t, x) ∈ ∂parQ
ε,

and let φ̄ : Q→ R be the solution of the continuous nonlinear parabolic equation

{
∂tφ̄−∇ ·Dpσ̄(∇φ̄) = 0 in Q,

φ̄ = g on ∂parQ.

Then, there exists a constant C := C(d, λ,Λ, D, g) <∞ such that

∥∥φε − φ̄
∥∥
L2(Qε)

≤ O2

(
Cε1/2

(
1 + | log ε|1/21{d=2}

))
.

3.4 Sketch of the proof of Theorem 3.3

As mentioned above the model can be treated using a two-scale expansion, and the
sketch of the proof of Theorem 3.1 is essentially the one presented in Section 2.3.
We will only focus on the first part of the proof: the definition and bounds of the
first-order corrector associated with the Langevin dynamics.

3.4.1. Definition of the first-order corrector for the Langevin dynamics.
The first-order corrector for the Langevin dynamics is defined below.

Exp. no V— Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models
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Definition 3.4 (First-order corrector for the Langevin dynamics). For any ε > 0
and any p ∈ Rd, the first-order corrector φε(·; p) : Qε → R with slope p ∈ Rd is
defined to be the solution of the Langevin dynamics




dφε(t, x; p) = ∇ε · V ′(p+∇εφε(·; p))(t, x)dt+

√
2εdBt/ε2

(x
ε

)
for (t, x)∈Qε,

φε(t, x; q) = 0 for (t, x)∈∂parQ
ε.

(3.3)

Bounds on the first-order corrector are then established in the following propo-
sition. The details of the argument outlined below can be found in [2, Prop. 3.3].

Proposition 3.5 (Bounds on the first-order corrector). There exists a constant
C := C(d, λ,Λ) <∞ such that, for any (t, x) ∈ Qε,

|φε(t, x; p)| ≤ O2

(
Cε
(
1 + | log ε|1/21{d=2}

))
.

Remark 3.6. 1. In Proposition 3.5, both the rate of convergence and the
stochastic integrability are optimal.

2. In the stationary regime (i.e., when the dynamics are started from a ran-
dom profile distributed according to the Gibbs measure (1.1)), the result is
known as the Brascamp-Lieb inequality [17, 16] (see [30] for the inequality
with Gaussian stochastic integrability).

3.4.2. Preliminary results. In order to sketch the proof of Proposition 3.5, we
need to collect two preliminary results: the Gaussian concentration inequality and
the Nash-Aronson estimate.

The Gaussian concentration inequality. The Gaussian concentration inequal-
ity [14, 48] (see also [15, Theorem 5.6]) provides strong concentration properties for
Lipschitz functions of Gaussian random variables.

Proposition 3.7 (Gaussian concentration inequality [14, 48]). Let X1, . . . , Xn be
independent Gaussian random variables with expectation 0 and variance 1. Let
F : Rn → R be a Lipschitz function and denote by |F |Lip its Lipschitz norm (i.e.,
the smallest constant such that |F (x) − F (y)| ≤ |F |Lip |x − y| for all x, y ∈ Rn

where we used the Euclidian metric on Rn). Then there exists an absolute constant
C <∞ such that

|F − E [F ]| ≤ O2(C |F |Lip).

The Nash-Aronson estimate. The second result we collect is the Nash-Aronson
estimate which provides an upper bound on the heat kernel for linear parabolic
equations with uniformly elliptic environment. To state the result, we fix ε > 0
and introduce two definitions. First, we define a time-dependent uniformly elliptic
environment on the cylinder Qε to be a map a : [0, 1] × E(Dε) → [λ,Λ], where
E(Dε) denotes the set of undirected edges of Dε. We next define the discrete
elliptic operator ∇ε · a∇ε according to the formula, for any function u : Qε → R,

∇ε · a∇εu(t, x) =
1

ε2

∑

y∈εZd

|y−x|=ε

a(t, {x, y}) (u(t, y)− u(t, x)) .
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For any (s, y) ∈ [0, 1] × Dε, we define the heat-kernel started at time s from the
vertex y to be the solution of the linear parabolic equation





∂tPa(·, ·, s, y)−∇ε · a∇εPa(·, ·, s, y) = 0 in Q,

Pa(s, ·, s, y) = δy in Dε,

Pa(·, ·, s, y) = 0 on [0, 1]× ∂Dε,

(3.4)

where δy denotes the discrete version of the Dirac δ function on a lattice with mesh
size ε, i.e., the function which takes the value ε−d at the vertex y and 0 everywhere
else. The Nash-Aronson estimate, originally established in the continuous setting
in [9], provides an upper bound on the heat-kernel Pa which does not depend on the
environment a. In the discrete setting considered here, the result can essentially be
deduced from [33, Proposition B.3].

Proposition 3.8 (Nash-Aronson estimate). There exists a constant C :=
C(d, λ,Λ) < ∞ such that for any ε > 0 and any uniformly elliptic environment a
defined on Qε, the heat kernel Pa defined in (3.4) satisfies

Pa(t, x, s, y) ≤ Ct−d/2 exp
(
−|x− y|
Ct1/2

)
.

3.4.3. Sketch of the proof of Proposition 3.5. The sketch of the proof pro-
ceeds in two steps. We first approximate the first-order corrector by discretizing
the Brownian motions in the right-hand side of (3.3). The objective of this step
is to obtain a good approximation of the first-order corrector which depends on
finitely many independent Gaussian random variables. We then estimate the size
of the discretized version of the first-order corrector by combining the Gaussian
concentration inequality and the Nash-Aronson estimate.

Discretization of the Brownian motions. We first approximate the map φε using
a discretization of the Brownian motions. To this end, we fix n ∈ N, k ∈ {0, . . . , n}
and x ∈ Dε, and set Bε

t (x) := εBt/ε2 (x/ε). We then define the increment Xn
k (x)

and the piecewise constant function Xn by the formulae

Xn
k (x) := Bε

(k+1)/n(x)−Bε
k/n(x) and Xn(t, x) =

∑

k∈N
Xn

k (x)1{k/n≤t≤(k+1)/n}.

We also denote by Xn := (Xn
k (x))k∈{0,...,n},x∈Dε ⊆ Rn|Dε| the collection of all the

increments, and let φε,n be the solution of the parabolic equation

{
∂tφ

ε,n(t, x) = ∇ε · V ′(∇εφε,n)(t, x)dt+
√

2Xn (t, x) for (t, x) ∈ Qε,

φε = 0 on ∂parQ
ε.

(3.5)

One then observes that, as n tends to infinity, the map φε,n converges almost surely
(and uniformly over the parabolic cylinder Qε) to the first-order corrector φε.

Concentration inequalities and regularity estimate. The advantage of the dis-
cretization scheme is that the dynamics φε,n depends only on the collection of
increments Xn, that is, on finitely many independent Gaussian random variables.

The strategy is then to consider the map φε,n(t, y) as a function of the collection
of increments Xn, and to apply the Gaussian concentration inequality stated in
Proposition 3.7. To this end, we need to prove that the map φε,n(t, x) is Lipschitz
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and estimate its Lipschitz norm. By the definition of the Lipschitz norm, we have
the identity

|φε,n(t, y)|2Lip := sup
Xn∈Rn|Dε|

∑

k∈{0,...,n}

∑

x∈Dε

∣∣∣∣
∂φε,n(t, x)

∂Xn
k (x)

∣∣∣∣
2

,

where ∂φε,n(t, y)/∂Xn
k (x) denotes the partial derivative of the map φε,n(t, y) with

respect to Xn
k (x) and the supremum is considered over all the possible values of the

collection of increments Xn ∈ Rn|Dε|.
The right-hand side can then be estimated as follows: we fix x ∈ Dε, k ∈

{1, . . . , n} and denote by w := ∂φε,n/∂Xn
k (x). Differentiating both sides of (3.5)

with respect to the increment Xn
k (x), we obtain that the map w solves the linear

parabolic equation

{
∂tw(t, y) = ∇ε · a∇εw(t, y)dt+

√
21{k/n≤t≤(k+1)/n}1{y=x} for (t, x) ∈ Qε,

w = 0 on ∂parQ
ε,

where the environment a is given by the formula a(t, e) = V ′′(∇εφ(t, e)). Duhamel’s
principle can then be applied to write the solution w in terms of the heat-kernel Pa.
Specifically, we have

w(t, y) =
√

2εd
ˆ (k+1)/n

k/n
Pa(t, y; s, x) ds.

The Nash-Aronson estimate yields an upper bound on the function w which is
uniform over the set of increments X ∈ Rn|Dε|. This bound can then be used
to obtain an estimate on the Lipschitz norm of φε,n(t, y). Proposition 3.5 then
follows, after appropriate computations carried out in [2, Prop. 3.3], by applying
the Gaussian concentration inequality.
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