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RESONANCES AND GENERICITY IN
BIRKHOFF NORMAL FORMS

ERWAN FAOU

Abstract. This paper is based on the presentation done at the seminar
Laurent Schwartz in January 2020. It describes and summarizes the results
given in Rational normal forms and stability of small solutions to nonlinear
Schrödinger equations, see [BFG20a], written with Joackim Bernier and Benoît
Grébert, and published in Annals of PDE 6, article number: 14 (2020) 65p.
We describe here the main arguments of the proof as well as the general strat-
egy used in the Birkhoff normal form for Partial Differential Equations.

1. Context

We consider the following equations:
• The nonlinear Schrödinger equation

(NLS) i∂tu = −∆u+ ϕ(|u|2)u, x ∈ T, t ∈ R.

where ϕ : R→ R is analytic, with ϕ(0) = 0 but ϕ′(0) 6= 0.
• The Schrödinger-Poisson equation

(NLSP)

i∂tu = −∆u+Wu, x ∈ T, t ∈ R,

−∆W = |u|2 − 1

2π

∫

T
|u|2dx =⇒ W = V ? |u|2,

where V is an explicit potential associated with the Laplace operator on
the torus.

The main goal is to describe the dynamics of small and smooth solutions to the
previous equations. One of the main difficulty is the absence of dispersive estimates
used to control the long time behavior of small solutions. Indeed on the torus the
Laplace operator has a discrete spectrum producing resonance phenomena.

The case ϕ = Id corresponds to a very specific case where the equation is inte-
grable (which holds true only in dimension 1) and it can be shown that the Sobolev
norm of the solutions remain bounded for all times.

The previous equation possess a common Hamiltonian structure ensuring in each
case the preservation of an energy:

• Energy of (NLS)

HNLS(u, u) =

∫

T
|∇u|2 + g(|u|2)dx ∈ R (g′ = ϕ),
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• Energy of (NLSP)

HNLSP(u, u) =

∫

T
|∇u|2 +

1

2
(V ? |u|2)|u|2dx ∈ R.

A general hamiltonian system associated with such an energy is written

i∂tu = ∂uH(u, u),

and the Poisson bracket is defined as follows: For G(u, u) ∈ R

{G,H} = 2Im ∂uG∂uH =
d

dt
G(u(t), u(t)).

Concerning the evolution of small solutions, the Hamiltonians can be viewed as
perturbations of the linear part:

H = H2 + P, H2 =

∫

T
|∇u|2 = O(u2), P = O(u4).

The solution of the linear flow is easily given in Fourier.

i∂tu = −∆ψ ⇐⇒ ∀ k ∈ Z, i∂tuk = ωkuk,

{
ωk = k2

u =
∑
k∈Z uke

ikx.

The solution is thus given by uk(t) = e−itωkuk(0), and we have the preservation of
the actions

∀ k ∈ Z Ik(t) := |uk(t)|2 = Ik(0).

This preservation property implies the preservation of the Sobolev norm

‖ψ‖2
Hs =

∑

k∈Z

(1 + |k|2s)|uk|2.

Note that from the dynamical system point of view, this linear Hamiltonian is an
integrable system.

H2(u, u) =
∑

k∈Z

ωkIk, with {Ik, I`} = 0, k, ` ∈ Zd.

Natural questions are therefore the persistence of integrability by nonlinear per-
turbations, yielding to normal form questions classical in perturbation theory of
dynamical systems (Poincaré, Linstedt, Birkhoff, Nekhoroshev, KAM Theory).

2. Birkhoff normal form with external parameters

Many results exists in the situation where some external parameters are present.
A typical example is given by the following popular model:

(1) i∂tu = −∆u+W ? u+ ϕ(|u|2)u, x ∈ Td, d ≥ 1.

Indeed when the action of the potential is convolutive, it is diagonal in Fourier
which simplifies the analysis. A typical result can be stated as follows:

Theorem 2.1 (Bambusi & Grébert 06, [BG06]). For a generic potential W , ∀ r,
∃ s, ε0 such that for ε < ε0,

(∗) ‖u(0)‖
s
≤ ε =⇒ ‖u(0)‖

s
≤ 2ε, t ≤ ε−r
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The expression generic here means essentially that for almost all potential W
satisfying some regularity conditions, the result holds true. This kind of result
applies also to one-dimensional wave equations: for almost all m,

∂ttu = ∆u−mu− ϕ(u)

we have a long time preservation of the Sobolev norm.
For the wave in dimension d, a similar result can be obtain with a loss of regular-

ity in the high modes only, see (Bernier, Faou & Grébert 2020, [BFG20b]). Using
some optimal truncation technics, Faou and Grébert (2013) proved the stability on
exponentially long times for analytic solutions in such situations (d ≥ 1), [FG13].
More recently, Biasco, Massetti, and Procesi (2018) got stability in Sobolev spaces
for exponentially long times (d = 1), [BMP20].

In the case of the equation (1) the Hamiltonian is given by

H(u, u) = H2(I) + P (u, u), H2 =
∑

k∈Z

ωkIk, ωk = |k|2 + Ŵk.

In action-angle variables uk =
√
Ike

iθk the nonlinearity is written

İk = −∂θkP (I, θ), θ̇k = ∂IkP (I, θ),

and thus we have

P = P4 + P6 + · · · =
∑

k1+k2−`1−`2=0

ak`uk1uk2u`1u`2 +OHs(u6)

=
∑

k1+k2−`1−`2=0

ak`
√
Ik1Ik2I`1I`2e

i(θk1
+θk2

−θ`1−θ`2 ) +O(u6).

The general normal form strategy is to transform the system in order to elimi-
nate the angles, and obtain terms depending only on (Ik)k∈Zd , which means terms
depending only on monomials such that {k1, . . . , km} = {`1, · · · , `m}. Such terms
are integrable. In other words, the goal is to find a symplectic transformation τ
such that ∣∣∣∣∣∣

‖τ(u)− u‖
Hs ≤ C‖u‖

2

Hs

H ◦ τ = H(I) + Z(I) +OHs(ur+2).

The main dynamical consequences are as follows: if we define ψ(t) = τ(u(t)), then
‖u(0)‖

Hs = ε implies than ‖ψ(0)‖
Hs . ε for ε small enough. Now as we have

∀ k ∈ Zd, {Ik, H0(I) + Z(I)} = 0 which is another way to see the integrability of
Z(I), we deduce that:

• |ψk(t)|2 = |ψk(0)|2 +OHs(tεr+1) in the new variables.

• ‖ψ(t)‖
Hs . ε for t ≤ ε−r.

This implies that

‖u(t)‖
Hs = ‖τ−1(ψ(t))‖

Hs . ε for t ≤ ε−r,
as well as preservation of the actions over very long times

∀t ≤ ε−r,
∑

k∈Z

〈k〉2s||uk(t)|2 − |uk(0)|2| . ε3.
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Now to construct this transformation τ , the main tool in perturbation theory is
to try to eliminate P4 by seeking τ of the form τ = ϕ1

χ, the flow of a polynomial
Hamiltonian

χ =
∑

k1+k2−`1−`2=0

χk`uk1uk2u`1u`2 .

We calculate using Taylor expansion that

(H2 + P ) ◦ ϕχ = H2 + P + {H2 + P, χ}+ {{H2 + P, χ}, χ}+ · · ·
= H2 + P4 + {H2, χ}+O(u6).

This naturally yields to the following Cohomological equation

{H2, χ}+ P2 = Z2(I)

to be solved at the level of Hamiltonian functionals. Now for given monomial we
calculate that

{H2, uk1uk2u`1u`2} = i(ωk1 + ωk2 − ω`1 − ω`2)uk1uk2u`1u`2 .

Hence the solution of the equation is given by

χk` =
ak`

i(ωk1 + ωk2 − ω`1 − ω`2)
when {k1, k2} 6= {`1, `2}

and Z2 is the part of P4 corresponding to terms depending on the actions Ik
and I` (when {k1, k2} = {`1, `2}). However, to be solvable and also to iterate
the process, we require a diophantine assumption under the following form: When
{k1, . . . , km} 6= {`1, · · · , `m}
(2) |ωk1 + · · ·ωkm − ω`1 − · · · − ω`m | ≥

γ

µ3(k, `)α
,

where µ3(k, `) is the third largest integer amongst (k1, . . . , `m).
Under such an assumption, we can proceed as follows: for a truncation index N

we can perform the frequency decomposition

y = u≤N and Y = u>N ,

and the Hamiltonian is given by

P = A(y) +B(y) · Y + C(y)(Y, Y ) +R(y, Y )

where R contains at least three high frequencies. Now it is important to notice that
the vector field XR = i∂uR satisfies

‖XR(u)‖
Hs ≤ CN−s‖u‖

2

Hs ,

as the Hamiltonian contains at least three terms with frequencies larger than N .
In the end, we will thus take N = ε−

r
s which will allow to neglect the effect of R

in the analysis.
It is thus enough to consider a Hamiltonian system of the form

P = A(y) +B(y) · Y + C(y)(Y, Y )

containing at most 2 frequencies larger that N . We can then construct iteratively
the transformations as described above on these terms only (quadratic in the high
frequencies), and when we estimate the vector field of the transformation using the
diophantine condition (2), we obtain a control of the small denominator of the form

|ωk1 + · · ·ωkm − ω`1 − · · · − ω`m | ≥
γ

Nα
= γεαr/s.

Erwan Faou
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Hence after each step of the construction, we gain ε and lose εαr/s. In the end, we
obtain a remainder of order εr+3−αr2/s = εr+2 for s large enough, and the main
term remaining in the reduced Hamiltonian is the one depending only of the actions
Z(I).

3. Without external parameters

In contrast with (1) the analysis of the behavior of resonant systems of the form

i∂tu = −∆u+ φ(|u|2)u, x ∈ Td, d ≥ 1

has known recently many advances. Grébert and Thomann (2012) found coun-
terexamples to (∗) for NLS quintic (i.e. ϕ(x) = ±x2), see [GT12]. Similarly, Carles
and Faou (2012) obtained counterexamples to (∗) in dimension d = 2, see [CF12],
and Colliander, Keel, Staffilani, Takaoka and Tao (2010) constructed solutions of
(NLS) that are sparse and initially small in dimension d = 2, whose Sobolev norms
become arbitrarily large, see [CKSTT10].

On the other hand, Kuksin and Pöschel (1996) constructed a Cantor set of quasi
periodic solutions for NLS (KAM normal form), see [KP96], and Bourgain (2000)
got the expected corollaries for NLS with typically non-sparse initial data (d = 1).
[Bou00].

Note that the problem of finding solutions such that lim supt→∞ ‖u(t)‖
Hs = +∞

is for the moment an open problem.
The main results obtained in [BFG20a] are the following:

Theorem 3.1 (Bernier, Faou & Grébert (2020)). For all r ≥ 1, for all s ≥ s0(r),
for all ε ≤ ε0(r, s), there exists an open subset Cε,r,s of Bs(0, ε) on which there
exists a canonical change of coordinates that puts (NLS) in normal form at order r:

HNLS ◦ τ(z) = H2(I) + Zr(I) +O(zr+1), z ∈ Cε,r,s.
The main dynamical consequence is given by the following result.

Corollary 3.2. On an open subset Vε,r,s of Cε,r,s the usual corollary holds:
{
u(0) ∈ Vε,r,s
‖u(0)‖s ≤ ε

}
=⇒

{
|Ij(t)− Ij(0)| ≤ ε3〈j〉−2s
‖u(t)‖s ≤ 2ε

for t ≤ ε−r

Note that since the sets are open, the properties are stable, and we are left with
the following question: How large is Vε,r,s?

Note that this set is a cylinder{
u ∈ Vε,r,s
v̂k = eiθk ûk

}
=⇒ v ∈ Vε,r,s.

To measure the size of this set, we consider a family of independent positive
random variables I = (Ik)k∈Z such that I2k is uniformly distributed in (0, 〈k〉−4s−8)
and we associate random initial data

u0 =
∑

k∈Z

√
Ik e

ikx.

We first state the results for (NLS) which differ slightly from the results in the
(NLSP) case.

Theorem 3.3 (NLS). There exists ε0 > 0 such that

∀ε ≤ ε0, P(εu0 ∈ Vε,r,s) ≥ 1− ε1/3.

Exp. no V— Resonances and genericity in Birkhoff normal forms
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Note that in this case, there exist resonances between ε and I. However, they
are scarse in the following sense:

Theorem 3.4 (NLS). For all 0 ≤ ε < ε0 and for all sequence (xn)n∈N of random
variables uniformly distributed in (0, 1) and independent of I, there is a probability
larger than 1−ε1/6 to realize I such that there is a probability larger than 1−ε1/6 to
realize (εn)n∈N := (ε2−(n+xn))n∈N such that εnu0 is non-resonant for all n. More
formally, we have

P
(

P
(
∀n ∈ N, εnu

0 ∈ Vεn,r,s |I
)
≥ 1− ε1/6

)
≥ 1− ε1/6,

Note that the xn are not necessarily independent. So we can choose xn = x0.

For (NLSP), the situation is more favourable.

Theorem 3.5 (NLSP). For NLSP, for all ε0 small enough

P(∀ε ≤ ε0, εu0 ∈ Vε,r,s) ≥ 1− ε1/30 .

In this case, contrary to (NLS), no resonance between ε and I can appear.

A consequence of this probabilistic analysis is that for (NLS) and (NLSP) we
have that for initial data

u0 =
∑

k∈Z

√
Ik e

iθk ,

{
I2k i.u.d. ∈ (0, 〈k〉−4s−8),

θk ∈ (0, 2π),

then for almost all u0, the usual corollary holds for all ε < ε0(u0). Here we control
ε(u0) independently of r and s, and obtain a description of the flow.

4. Strategy of proof

We will now describe the main steps of the proof of our result. The details are
given in [BFG20a].

First step: Resonant normal form

The Hamiltonian of (NLS) is written in Fourier

HNLS(u) =
∑

k∈Z

k2Ik + ϕ′(0)
∑

k1+k2=`1+`2

uk1uk2u`1u`2 +O(u6).

First, we want to eliminate the quartic non integrable terms by constructing τ = Φ1
χ

such that
HNLS ◦ τ = H2 + Z4(I) +O(u6).

But we have
H ◦ Φ1

χ = H2 + P4 + {H2, χ4}+O(u6),

so the equation to solve is, as in the non resonant case

P4 + {H2, χ4} = Z4(I).

As above, the solution is given by

χ4 = −i
∑

k1+k2=`1+`2
k21+k

2
2 6=`21+`22

uk1uk2u`1u`2
k21 + k22 − `21 − `22

and Z4 =
∑

k1+k2=`1+`2
k21+k

2
2=`

2
1+`

2
2

uk1uk2u`1u`2 .

Erwan Faou
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Now in dimension 1, there is the following algebraic miracle

k1 + k2 = `1 + `2
k21 + k22 = `21 + `22

}
=⇒ {k1, k2} = {`1, `2},

from which we conclude that Z4 = Z4(I). Note that in dimension 2 this fact does
not hold, and a non trivial normal form term cannot be eliminated, which does
depend on the angles and generates non trivial dynamics.

We can then iterate to eliminate all the non resonant terms: there exists τ such
that

HNLS ◦ τ = H2(I) + Z4(I) +

r∑

n=3

∑
∑
kj−`j=0∑
k2j−`2j=0

αk`

n∏

j=1

ukju`j +O(u2r+1).

that we can write under the form

HNLS ◦ τ = H2(I) + Z4(I) +

r∑

n=3

K2n(u, u) +O(u2r+1)

where K2n(u, u) are resonant but non integrable terms.
In particular, K6 contains non integrable terms (no miracle at order six!):

−1 + 3 + 4 = 0 + 1 + 5 and (−1)2 + 32 + 42 = 02 + 12 + 52.

Note that mimicking the strategy of the non resonant case, we can truncate
µ3(k, `) < N = ε−

r
s . But note that in our situation, resonant monomials contain

only terms that are bounded:

µ3(k, `) < N =⇒ µ1(k, `) ≤ N2 (resonant monomials).

Step 2: Modulated frequencies

We now use an idea that already appears in Kuksin-Pöschel ’96: We use the
nonlinearity to avoid resonances. Indeed,

H2(I) + Z4(I) =
∑

k∈Z

k2Ik + ϕ′(0)
(

2‖u‖2
L2 −

∑

k∈Z

I2k

)

=
∑

k∈Z

(k2 + ωk(I))Ik

with ωk(I) = 2‖u‖2
L2 − Ik. We thus see the natural emergence of new modulated

frequencies perturbed by internal parameters. In other words, the solution itself
determines the parameters that generically avoid resonances.

Now to eliminate the sixth order terms, we have to solve the equation

{χ,Z4}+
∑

k1+k2+k3=`1−`2−`3
k21+k

2
2+k

2
3=`

2
1−`22−`23

ak`uk1uk2uk3u`1u`2u`3 = Z6(I).

By linearity, we just have to solve

{χ,Z4} = uk1uk2uk3u`1u`2u`3

with {k1, k2, k3} 6= {`1, `2, `3} and (k, `) resonant, which means that we have the
cancellation of the small denominator coming from the ωk. So we have for this term

{uk1uk2uk3u`1u`2u`3 , Z4} = iuk1uk2uk3u`1u`2u`3(Ik1 + Ik2 + Ik3 − I`1 − I`2 − I`3).

Exp. no V— Resonances and genericity in Birkhoff normal forms
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Hence we set
χ = −i uk1uk2uk3u`1u`2u`3

Ik1 + Ik2 + Ik3 − I`1 − I`2 − I`3
.

The main issue now is that we have poles in the denominator, and the vector field
has to be controlled in `1s with norm

‖u‖
s

=
∑

k∈Z

〈k〉s|uk|.

To control these small divisors, we proceed as follows: Let ‖u‖
s

=
∑〈k〉s|Ik|1/2 ≤ ε.

Then generically (the exact meaning being given by probabilistic arguments) we can
expect

|Ik1 + Ik2 + Ik3 − I`1 − I`2 − I`3 | ' |Iµmin(k,`)| ' ε2〈µmin(k, `)〉−2s,
where |µmin(k, `)| = min(|k1|, |k2|, |k3|, |`1|, |`2|, |`3|). Hence the main problem
comes from the fact that we can loose 2s derivatives. In comparison with the
classical case [BG06], it means that we loose N2s instead of Nα with α << s. This
prevents the standard argument to be applied.

Defining |µ1| ≥ |µ2| ≥ · · · ≥ |µmin|, the worst term is of the form

‖Xχ‖s ≤ |µ1|s
〈µ2〉−s〈µ3〉−s〈µ4〉−s〈µ5〉−s〈µ6〉−s

ε2〈µmin(k, `)〉−2s
6∏

j=2

|〈µj〉suµj
|.

But this quantity is controlled and of order ε3, because |µ2| ≥ 1
6 |µ1|, since∑

kj − `j = 0.
With this construction, we can eliminate the non integrable sixth order terms:

H ◦ τ = Z2(I) + Z4(I) + Z6(I) +

r−1∑

m=4

K̃2m(z) +O(z2r+1)

where ‖XRr
‖ . ε2r−1 but K̃2m is a rational fraction i.e. a sum of terms of the type

1

fk,`(I)

∏

j

ukju`j .

where (k, `) is resonant. Note that this term is no longer a polynomial, and we
have to define a suitable class of rational Hamiltonians for which we control the
vector fields in `1s.

In theory, we could iterate this construction and in practice, it is possible to
solve the 8th order term with Z4 but there are some 10th order terms that cannot
be solve by this procedure. The Poisson bracket between χ6 and Z6 contains terms
of the type

uk1uk2uk3u`1u`2u`3I
4
0

(Ik1 + Ik2 + Ik3 − I`1 − I`2 − I`3)2
.

The elimination of such a term would require the Hamiltonian

uk1uk2uk3u`1u`2u`3I
4
0

(Ik1 + Ik2 + Ik3 − I`1 − I`2 − I`3)3
,

but its vector field cannot be bounded correctly in `1s: We have

‖Xχ‖s ≤ ε7|µ1|s
〈µ2〉−s〈µ3〉−s〈µ4〉−s〈µ5〉−s〈µ6〉−s

(µ−2smin )3
.
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To overcome this difficulty, we take advantage of the fact that Z6 has a nice struc-
ture.

Step 3: Use of Z6.

The main idea to finish the construction is to solve the homological equations
with Z4 + Z6 instead of Z4 alone. Now we calculate explicitly that

Z6(I) = −1

2

∑

k 6=j∈Z

1

(k − j)2 IkI
2
j + · · ·

Hence we get that

Z6 =
∑

k

ω̃k(I)Ik with ω̃k(I) = −
∑

j 6=k∈Z

1

(k − j)2 I
2
j + · · ·

so that

ω̃k(I) ∼ − I
2
0

k2
while ωk(I) ∼ Ik ∼ k−2s.

It means that now generically, we have a bound of the type:

|Ω(I)| ≥
( n∏

j=1

〈µj〉−6
)

max(ε2〈µmin〉−2s, ε4).

Note that a control involves an interaction between I and ε, but this small divisor
control is enough to kill all the higher order terms with Z4 + Z6.

Summing up

We can summarize the construction of [BFG20a] as follows:
• Step 1: Resonant normal form to kill non resonant terms

H ◦ τ0 = H2(I) + Z4(I) +

r∑

n=3

K2n(u, u) +O(u2r+1)

with terms K2n that are resonant but not integrable.
• Step 2: Use Z4(I) to kill the non integrable terms in K6

H ◦ τ1 = H2(I) + Z4(I) + Z6(I) +

r∑

n=4

K̃2n(u, u) +O(z2r+1).

The price to pay is that the Hamiltonians K̃2n are no more polynomials
which leads to rational normal forms.

• Step 3: Use Z4(I) + Z6(I) to kill all remaining non integrable terms

H ◦ τ2 = H2(I) + Zr(I) +O(u2r+1).

We also notice that in the (NLSP) case, the analysis is simpler. In this case we
have

Z4(I) =
∑

k 6=`

IkI`
(k − `)2 ,

for the first term in the resonant normal form. But now

ωk(I) ' I0
k2

which means that Z4 for NLSP similar to Z6 for (NLS) and the analysis can be
performed directly with this engine of construction.
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