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Problème de Cauchy spatial-caractéristique avec courbure L2

en relativité générale

Olivier Graf
joint work with Stefan Czimek

Abstract

The present article is a summary of the papers [10] and [11] which establish a bounded L2

curvature theorem for the spacelike-characteristic Cauchy problem of general relativity. More
precisely, we obtain a lower bound on the time of existence of classical solutions to the spacelike-
characteristic Cauchy problem for Einstein equations in vacuum, depending only on the L2

curvature fluxes through the initial spacelike and initial characteristic hypersurfaces and on
suitable additional low regularity assumptions.

1 Introduction

This article provides an overview of the recent papers [10] and [11] and serves as a companion to
the presentation given at the Séminaire Laurent Schwartz in November 2019.

The main result of [10] and [11] is a bounded L2 curvature theorem for the spacelike-
characteristic Cauchy problem of general relativity. The spacelike-characteristic Cauchy problem
is an initial value problem for data posed on a classical spacelike hypersurface Σ diffeomorphic
to the unit disk of R3 and on the outgoing characteristic hypersurface H emanating from the
boundary ∂Σ of Σ. In [10] and [11], we obtain a lower bound on the time of existence of classical
solutions to the spacelike-characteristic Cauchy problem for Einstein equations in vacuum, de-
pending only on the L2 curvature fluxes through the hypersurfaces Σ and H and on low regularity
assumptions on Σ ∩H.

(a) The classical spacelike Cauchy problem
of the bounded L2 curvature theorem [19].

(b) The spacelike-characteristic Cauchy
problem of [10] and [11].

1.1 Einstein vacuum equations

A spacetime (M,g) is a 4-dimensional manifold M endowed with a Lorentzian metric g. In this
article, M will be (a domain of) Rt × R3

x and at each point (t, x) ∈ M, the metric components
gµν(t, x) are the elements of a symmetric matrix (gµν(t, x))µν=0..3 of signature (−+ ++).1

1Greek indices range from 0 to 3, Latin indices range from 1 to 3 and Einstein summation convention is used.
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Remark 1.1. The prime example of a spacetime is Minkowski spacetime,

M = Rt × R3
x, g = −(dt)2 + (dx1)2 + (dx2)2 + (dx3)2.

A spacetime (M,g) is called a vacuum spacetime if it satisfies the following Einstein vacuum
equations

Ric(g)µν = 0, µ, ν = 0, . . . , 3, (1.1)

where Ric(g) denotes the Ricci curvature tensor of the spacetime metric g. Each component
Ric(g)µν is a second-order nonlinear differential operator on the metric components gαβ , for
α, β = 0, . . . , 3. Therefore, Einstein equations (1.1) form a system of 10 nonlinear coupled partial
differential equations on the 10 unknowns gµν . The equations (1.1) reduce to 6 independent equa-
tions and we have the freedom to impose 4 additional equations on the metric components gµν .2

In what follows, we shall call such an additional choice of equations a gauge choice.

1.2 The maximal gauge and the classical Cauchy problem

In this section we introduce the so-called maximal gauge. Under this gauge choice, Einstein vacuum
equations (1.1) can be cast as a system of coupled evolution and elliptic equations which admits a
well-posed initial value formulation.

Let us first impose that the metric g can be written in the following form

g = −n2dt2 + gijdx
idxj , (1.2)

i.e. we set that g0i = 0 for 1 ≤ i ≤ 3. The unknown n is called the time lapse and g is the
Riemannian metric induced by g on the constant time hypersurfaces ΣT := {t = T}.

Define the second fundamental form k to be the following (normalised) time-derivative of the
metric g

kij := −1

2
n−1∂tgij . (1.3)

The maximal gauge condition reads

trgk := gijkij = 0, (1.4)

where
(
gij
)
ij=1..3

:= (gij)
−1
ij=1..3. Geometrically, this corresponds to the requirement that the

hypersurfaces Σt are maximal hypersurfaces of the spacetime (M,g).3

Define the electric-magnetic tensors E and H to be

Eij := Ric(g)ij − kliklj ,
Hij := curlg kij ,

where curlg is a standard curl operator associated with the Riemannian metric g (see [7] for a
definition).

Einstein vacuum equations (1.1) together with the additional choices (1.2) and (1.4) can be
rewritten as the Einstein vacuum equations in maximal gauge, which is the following system of
coupled quasilinear transport-elliptic-Maxwell equations (see [7], pp. 8-9 and p. 146):

the first variation transport equation for g

n−1∂tgij = −2kij , (1.5a)

2This is related to the so-called general covariance of Einstein equations, i.e. that the system of equation (1.1)
is covariant under a change of coordinates (see [39] for further discussion).

3Maximal hypersurfaces should be thought of as the Lorentzian equivalent of minimal surfaces in Riemannian
geometry.
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the second variation transport equation for k

n−1∂tkij = −n−1∇i∇jn+ Eij − kilklj , (1.5b)

the Hodge-type elliptic equations for k

trgk = 0,

divg ki = 0,

curlg kij = Hij ,

(1.5c)

the Laplace equation for n

∆gn = n|k|2g, (1.5d)

the Laplace-type elliptic equation for g4

Ric(g)ij = Eij + kliklj , (1.5e)

and the Maxwell-type equations for E and H

trgE = trgH = 0,

divg Ei = (k ∧H)i,

divgHi = −(k ∧ E)i,

n−1∂tEij + curlgHij = −n−1(∇n ∧H)ij +
1

2
(k × E)ij −

2

3
(k · E)gij ,

−n−1∂tHij + curlg Eij = −n−1(∇n ∧ E)ij −
1

2
(k ×H)ij +

2

3
(k ·H)gij ,

(1.5f)

where ∇, divg and ∆g are respectively the standard covariant derivative, divergence and Laplace-
Beltrami operators associated to the Riemannian metric g, and where | · |g, ∧, ×, · are standard
contractions with respect to the metric g (see [7] for definitions).

The system of equations (1.5) displays an hyperbolic structure due to the Maxwell-type equa-
tions (1.5f) for the electric-magnetic tensors E and H. The unknowns g, k and n can be determined
only by solving the transport (1.5a), (1.5b) or elliptic (1.5c), (1.5d), (1.5e) equations, for which
the electric-magnetic tensors E and H are source terms. In particular, we expect that the equa-
tions (1.5) admit a well-posed initial value formulation.

To define the Cauchy problem, we consider (classical) maximal Cauchy data which are a triplet
(Σ, g, k) such that (Σ, g) is a Riemannian manifold, k is a symmetric 2-tensor on Σ and such that
the following constraint equations are satisfied

trgk = 0,

divg ki = 0,

R(g) = |k|2g,
(1.6)

where R(g) := trgRic(g) is the so-called scalar curvature of the metric g.

We have the following local well-posedness result for Einstein vacuum equations in maximal
gauge.

Theorem 1.2 (Local well-posedness, [7] pp. 299-300). Let (Σ0, g0, k0) be smooth maximal Cauchy
data such that Σ0 ' R3.5 There exists T > 0 and a unique 5-uplet (g, k, n,E,H) defined on
[0, T ]t×R3

x smooth solution of the system of equations (1.5) such that Σ0 = {t = 0} and the initial
conditions g|t=0 = g0, k|t=0 = k0 are satisfied.

4In the so-called harmonic coordinates for the Riemannian metric g, the Ricci tensor Ric(g)ij can be rewritten
as the Laplace-Beltrami operator of the metric component ∆g(gij) up to lower order terms. Using the so-called
Cheeger-Gromov convergence theory to deal with the existence of such coordinates, elliptic-type results can be
obtained for the metric g (see the results of Chapter 11 in [29] for instance).

5We denote by ' the diffeomorphism equivalence for manifolds.
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Remarks on Theorem 1.2

1.2a Here smooth means regular with respect to standard Sobolev norms. In [7], the initial data g0

and k0 are assumed to be respectively in H4
loc(Σ) and H3

loc(Σ) and the solution (g, k, n,E,H)
belongs to suitable corresponding functional spaces on [0, T ]× R3.

1.2b The time lapse n is only defined through the elliptic equation (1.5d) on each slice Σt, and is
therefore well-determined up to a choice of a limit condition at spatial infinity. Making such a
choice is roughly equivalent to prescribing the boundary values for the maximal hypersurfaces
Σt at infinity. We shall see in Sections 2 and 3 that one of the crucial step in the proof of
the spacelike-characteristic Theorem 2.1 is to make an appropriate choice of boundaries for
maximal hypersurfaces on a finite (null) hypersurface delimiting our domain of study. In
the case of Theorem 1.2, the chosen condition is n → 1 at spatial infinity, which physically
corresponds to considering a centre-of-mass frame for the system (see the discussion in the
introduction of [7]).

1.2c Additional appropriate fall-off conditions at spatial infinity have to be imposed on the initial
data g0 and k0 for Theorem 1.2 to hold (see [7]).

1.2d The proof of Theorem 1.2 goes by a standard Banach-Picard iteration and relies on standard
energy estimates and Sobolev embeddings.

1.2e Defining M := [0, T ] × R3 and g := −n2dt2 + gijdx
idxj , we obtain a vacuum spacetime

(M,g) such that Σ0 is a spacelike hypersurface of (M,g), g0 is the induced metric by g on
Σ0 and k0 is the second fundamental form of Σ0 in (M,g).

1.2f Using the so-called wave gauge, one can prove local well-posedness for Einstein equations for
more general Cauchy data (Σ, g, k) (see the seminals [3] and [12]).

1.2g Local well-posedness results for Einstein equations have also been obtained for initial data
posed on null hypersurfaces (see [21] or [30]). Null hypersurfaces of a spacetime (M,g) are
hypersurfaces orthogonal to null vector fields for the Lorentzian metric g.6 These hyper-
surfaces are characteristic for the hyperbolic equations (1.5f). The characteristic Cauchy
problem is of particular interest in the case of Einstein equations since, contrary to the clas-
sical Cauchy problem where initial data are posed on a spacelike hypersurface and have to
satisfy elliptic constraint equations (1.6), initial data can be freely prescribed on null hy-
persurfaces (see the seminal [31]). The characteristic Cauchy problem is therefore used in
numerical general relativity (see [33]), as well as in the construction and control of solutions
to Einstein equations (see the dynamical formation of black holes solutions in [6], or the
impulsive gravitational waves solutions in [22]).

1.3 The weak cosmic censorship conjecture

One of the most natural question for nonlinear evolution PDE is the large-data global-in-time
existence of solutions. For Einstein equations, singularities can form in finite time as in the case
of the explicit Schwarzschild solutions. For Schwarzschild spacetimes, the singularity lies inside
a so-called black hole region which, by definition, cannot be seen by an observer at infinity. The
global-in-time behaviour of solutions to Einstein equations is subject to the celebrated conjecture
of weak cosmic censorship which states that this feature is generic.

Conjecture 1.3 (Weak cosmic censorship, [28]). For generic initial data, solutions to (1.1) only
form singularities that are hidden in a black hole region.

In the seminal work [5], it is shown that the conjecture holds true in the case of spherical
symmetry for Einstein equations coupled with a scalar field.7 The result relies crucially on the

6The prime example of a null hypersurface is the lightcone emanating from a point.
7Due to Birkhoff’s rigidity theorem, there are no non-trivial spherically symmetric solutions to Einstein vacuum

equations (1.1). Einstein equations coupled with a scalar field can be seen as one of the simplest set of dynamical
equations involving Einstein equations in spherical symmetry.
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sharp breakdown criterion and local existence result proved in [4] at the level of initial data with
bounded variation, which is adapted to the (1 + 1)-setting of spherical symmetry and to the
conservation laws for Einstein equations in this setting. For general evolution equations that
display an energy conservation, local well-posedness of the Cauchy problem for initial data with
regularity controlled by the conserved energy is key to obtain large-data global-in-time existence
results. In many physically relevant situations, the conserved energy only controls low regularity
norms and it is therefore required to prove non-trivial well-posedness results for rough initial data.
See for instance the proof of global existence for the energy subcritical Yang-Mills equations in
(1 + 3)-dimension in [13], or the proof of the threshold theorem for the energy critical Yang-Mills
equations in (1 + 4)-dimension in [24]-[27].

In the proof of the weak cosmic censorship conjecture in spherical symmetry [5], it is moreover
crucial that the local existence result in [4] is formulated for initial data posed on null hypersurfaces.
This is specific to Einstein equations and enables to construct appropriate generic initial data
(see Item 1.2g), to control their propagation and highlight a so-called trapped surface formation
mechanism (see [4], [5] and also [20] for further discussion).

In what follows, we present a generalisation of the local existence result in [4] outside of spherical
symmetry. In Section 1.4, we introduce the so-called bounded L2 curvature theorem obtained
in [19] which is the sharpest known local existence result for Einstein vacuum equations (1.1) in
terms of the regularity of the initial data. This result is obtained for data posed on a spacelike
hypersurface (see Theorem 1.4). In Sections 2 and 3 we present and give an overview of the proof
of a generalisation of the bounded L2 curvature theorem to the case of initial data posed on a
spacelike and on a null hypersurface obtained in [10] and [11] (see Theorem 2.1).

1.4 The bounded L2 curvature theorem

In the case of Einstein vacuum equations without symmetry, local existence results are naturally
formulated in terms of L2-based functional spaces (see for example the discussion in the intro-
duction of [19]). In this context, the sharpest known local existence result in terms of regularity
of the initial data is the celebrated bounded L2 curvature theorem (see [19] and the companion
papers [34]-[36]). The following is a rough statement of that result.

Theorem 1.4 (Bounded L2 curvature theorem, [19]). Let (Σ0, g0, k0) be (smooth) maximal Cauchy
data such that Σ0 ' R3 and such that

‖E0‖2L2(Σ0) + ‖H0‖2L2(Σ0) ≤ ε2. (1.7)

Then there exists a solution to Einstein vacuum equations (1.1) defined on [0, 1]t × R3
x such that

we have the following L2-bounds on the constant time maximal hypersurfaces Σt

∀t ∈ [0, 1], ‖E‖2L2(Σt)
+ ‖H‖2L2(Σt)

. ε2,

together with additional estimates, and such that smoothness is propagated.

Remarks on Theorem 1.4

1.4a The L2-bounds on the electric-magnetic tensors E,H correspond to a control on the electric-
magnetic energy flux naturally arising from the Maxwell equations (1.5f). They are roughly
equivalent to L2-bounds for the curvature Ric(g) and for ∇k. Theorem 1.4 is therefore at
the level of initial data (g0, k0) with regularity H2

loc(Σ0)×H1
loc(Σ0).

1.4b Theorem 1.4 is a small-data time 1 existence result that can be turned into a large-data
small-time existence result by a rescaling argument.

1.4c The hypothesis Σ0 ' R3 is crucial in the construction and control of a parametrix for the
wave operator �g associated to Maxwell equations (1.5f) because an approximate Fourier
transform is needed (see the parametrix construction and control performed in the series of
papers [34]-[36]).
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2 The spacelike-characteristic bounded L2urvature theorem

In view of the use of null hypersurfaces in the proof [5] of the weak cosmic censorship conjecture in
spherical symmetry, one wishes to obtain a generalisation of the bounded L2 curvature Theorem 1.4
for initial data posed on null hypersurfaces. This has been achieved in [10] and [11]. In the following,
we introduce and give an overview of the results obtained in these papers.

2.1 Geometric set up and rough version of the theorem

Let (M,g) be a vacuum spacetime. Let Σ0 = {t = 0} be a spacelike maximal hypersurface
diffeomorphic to the unit disk of R3. Let S0 := ∂Σ0 and H be the null hypersurface emanating
from S0.

Figure 2: The spacelike-characteristic geometric set up.

The following is a rough version of the theorem we obtained in [10] and [11].

Theorem 2.1 (Spacelike-characteristic bounded L2 curvature theorem (rough version), [10]). Let
smooth maximal Cauchy data posed on Σ0 and smooth characteristic data posed on H such that

RΣ0 +RH ≤ ε2, (2.1)

where RΣ0 and RH denote the energy fluxes for the electric-magnetic tensors E and H through Σ0

and through H ∩ {0 ≤ t ≤ 1} respectively, and such that compatibility and regularity conditions
hold at S0 = Σ0 ∩H. Then, there exists a solution to Einstein vacuum equations (1.1) from t = 0
to t = 1, such that we have the following L2-bound on the constant time maximal hypersurfaces Σt

∀t ∈ [0, 1], ‖E‖2L2(Σt)
+ ‖H‖2L2(Σt)

. ε2,

together with additional estimates, and such that smoothness is propagated.

Remarks on Theorem 2.1

2.1a The energy fluxes RΣ0 and RH are at the level of L2-bounds for the electric-magnetic ten-
sors E and H on the initial hypersurfaces Σ0 and H.8 The result from Theorem 2.1 therefore
only relies on bounds at the level of curvature in L2, and makes no symmetry assumptions.
Until now, in the available literature, the Cauchy problem for Einstein vacuum equations on
null hypersurfaces outside symmetry is studied under higher regularity assumption for the
initial data, see for example [21], [30].

2.1b The time function t and the maximal hypersurfaces of the foliation Σt are determined by
the choice of the boundaries ∂Σt = Σt ∩ H (see also Item 1.2b). The most natural choice is
to impose that they coincide with the 2-sphere leaves S′s of the so-called geodesic foliation
(S′s)0≤s≤1 on H, i.e. ∂Σt = S′t for all 0 ≤ t ≤ 1 (see Section 3 for definition).
The fact that there exists a smooth non-degenerate geodesic foliation on H is an assumption

8Note that while RΣ0 ' ‖E‖2
L2(Σ0)

+ ‖H‖2
L2(Σ0)

, RH does not control the L2-norm of all components of the

tensors E and H since the hypersurface H is null. It is however only relevant that these quantities are the energy
fluxes arising naturally from Maxwell equations (1.5f) (see Section 2.2).
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in [10] and [11]. However, the existence of this foliation is consistent with the a priori control
obtained in [16] for the geodesic foliation at the bounded L2 curvature level. We believe that
using this control together with an assumption on the injectivity radius or on the topology
of H could lead to existence of the foliation on H by a geometric continuity argument.

2.1c It turns out that the regularity of the geodesic foliation on H is not enough to control the
maximal hypersurfaces Σt. In [10], we show that, under the small L2-bound assumption on
the electric-magnetic fluxRH, one can deform the geodesic foliation to the so-called canonical
foliation on H, which provides the required regularity to control the hypersurfaces Σt (see
Section 3). The canonical foliation was first introduced by Klainerman-Nicolò in [14] and [15]
to obtain similar improved regularity features (see also [23]).

2.2 Overview of the proof of Theorem 2.1

Let us first assume that boundaries on H for the maximal hypersurfaces Σt have been chosen and
postpone this choice to Section 3. In this section, we shall give an overview of the main ideas of
the proof of Theorem 2.1.

The proof of Theorem 2.1 goes by a standard continuity argument. Let t∗ ≥ 0 be the maximal
time such that the solution to Einstein vacuum equations in maximal gauge (1.5) exists, is smooth
and the following bootstrap assumptions hold for all t ∈ [0, t∗],

‖E‖2L2(Σt)
+ ‖H‖2L2(Σt)

≤ (Dε)2, (2.2)

where D > 0 is a fixed (large) constant.

Our aim is to show that t∗ ≥ 1. Using classical local existence results, it can be shown that
t∗ > 0 and that the solution can be extended as long as it remains smooth. In what follows, we
shall therefore restrict to the improvement of the bootstrap assumption (2.2) which is the crucial
step in the continuity argument.

At the centre of the improvement of the bootstrap assumption (2.2) is the standard energy
estimate for the nonlinear Maxwell equations (1.5f), which reads schematically

‖E‖2L2(Σt)
+ ‖H‖2L2(Σt)

. RΣ0 +RH +

∫

D
k · E ·H, (2.3)

where D denotes the spacetime domain bounded by Σ0, Σt and H and where k · E · H denotes
trilinear error terms. Using the bootstrap assumption (2.2), one wishes to obtain the following
control of the error term ∣∣∣∣

∫

D
k · E ·H

∣∣∣∣ . (Dε)3.

Using the initial assumptions (2.1) and the energy estimate (2.3), we would therefore obtain

‖E‖2L2(Σt)
+ ‖H‖2L2(Σt)

. ε2 + (Dε)3

. ε2,

which would improve the bootstrap assumption (2.2).

Controlling the trilinear error term at our level of regularity is the heart of the proof of the
bounded L2 curvature Theorem 1.4. In [11], we circumvent this difficulty by applying the bounded
L2 curvature Theorem 1.4 from the slice Σt backwards and by performing an energy estimate in
the region D. To apply Theorem 1.4, the data (g, k) on Σt need to be extended to data (Σ̃, g̃, k̃)

such that Σ̃ ' R3 and ‖Ẽ‖2
L2(Σ̃)

+‖H̃‖2
L2(Σ̃)

. (Dε)2. Such an extension procedure was established

in [8]9 and requires to obtain H2 and H1 estimates for respectively g and k on Σt

‖gij − eij‖H2(Σt) . Dε, (2.4)

‖kij‖H1(Σt) . Dε, (2.5)

where eij is the Euclidean metric on Σt.

9In establishing such an extension procedure, the main difficulty is that the constraint equations (1.6) have to

be satisfied by the extended data (Σ̃, g̃, k̃). The result can not be obtained by a simple cut-off procedure.
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Figure 3: Extension procedure and backward application of the bounded L2 curvature theorem.

The bound (2.4) is obtained by considering equation (1.5e) for the Ricci curvature tensor of the
metric g. In the so-called harmonic coordinates, the Ricci curvature tensor is a nonlinear Laplace-
type operator on the metric coefficients gij and equation (1.5e) turns to a Laplace-type nonlinear
equation with the electric-magnetic tensor E as linear source term. The main difficulty is to
obtain such appropriate global coordinates on Σt. This is done by a contradiction argument, using
local (boundary) harmonic coordinates, the Laplace-type equation (1.5e) and Cheeger-Gromov
convergence theory for Riemannian manifolds. To obtain the H2-estimate (2.4), one needs L2-
control of the source term E to equation (1.5e) on Σt, as well as an H3/2-type control on the
boundary value for the metric g on ∂Σt.

10

The bound (2.5) is obtained by a standard energy estimate for the Hodge-type elliptic equa-
tion (1.5c) which reads schematically

∫

Σt

|∇k|2 .
∫

Σt

|H|2 +

∫

∂Σt

k · ∇/ k, (2.6)

where ∇/ denotes the tangential covariant derivative on ∂Σt and k · ∇/ k are contractions of k and
tangential derivative of k. To explicit this boundary term, let us first decompose the tensor k into
its normal and tangential components on the boundary ∂Σt. We define N to be the outgoing unit
normal to ∂Σt in Σt and the ∂Σt-tangent tensors δ, ε, η by

δ := kNN , εA := kNA, ηAB := kAB , (2.7)

where capital Latin indices range from 1 to 2 and denote the evaluation with respect to ∂Σt-tangent
vectors. With these definitions, the boundary integral in (2.6) writes

∫

∂Σt

k · ∇/ k =

∫

∂Σt

ε · ∇/ δ −
∫

∂Σt

(
δ2 + |ε|2 + |η|2

)
+ trilinear error terms, (2.8)

where it should be noted that the second term appears with a favourable sign. Using this fact and
the energy estimate (2.6) we can control the full H1-norm of k on Σt, and we obtain

‖k‖2H1(Σt)
. ‖H‖2L2(Σt)

+

∫

∂Σt

ε · ∇/ δ + trilinear error terms

. (Dε)2 +

∫

∂Σt

ε · ∇/ δ,
(2.9)

provided that the trilinear error terms can be controlled.11 Obtaining the desired bound (2.5) thus
requires to control the last boundary integral in (2.9). This can be achieved provided that one has
an H1/2-control of δ on ∂Σt.

Obtaining the desired H3/2-control of g and H1/2-control of δ on ∂Σt will depend on the choice
of the (foliation of) prescribed boundaries ∂Σt on H. Let us first introduce the geometric quantities
that describe foliations on the null hypersurface H. Let L be a fixed (background) null geodesic

10This is consistent with a Dirichlet-type problem for the Laplace-type equation (1.5e) on Σt.
11Unlike in the case of the hyperbolic system of equations (1.5f), the control of the nonlinear error terms in the

elliptic equations (1.5c) and (1.5e) is easily obtained using standard Sobolev embeddings and the respective H2 and
H1 control for g and k.
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generator of H.12 Let (Sv) be a foliation of 2-spheres on H given as level sets of a scalar function v
on H. In the following, we consider foliations coinciding with the intersection of Σ0 and H, i.e.
such that Σ0 ∩H = S0 = Sv=0. We define the null lapse Ω of the foliation (Sv) to be Ω := Lv. In
this setting, the geodesic foliation (S′s) is defined to be the foliation corresponding to Ω = 1. We
define the null vector field L to be orthogonal to the 2-spheres Sv and such that g(L, L) = −2. We
call g/ the Riemannian metric induced by g on the 2-spheres Sv. Let the null connection coefficients
χ, ζ and χ of the foliation (Sv) be the Sv-tangent tensors defined by

χ(X,Y ) := g(DXL, Y ), ζ(X) :=
1

2
g(DXL, L), χ(X,Y ) := g(DX L, Y ), (2.10)

where X,Y are Sv-tangent vectors.13

Assume now that the boundaries of the maximal hypersurfaces Σt coincide with the 2-spheres of
the foliation (Sv), i.e. ∂Σt = Sv=t. There exists a slope factor ν > 0 such that the future-directed
unit normal T to Σt is related to the null vector fields L, L by14

T =
1

2
νL+

1

2
ν−1 L. (2.11)

Figure 4: Null decomposition on Sv.

From the definitions (1.3), (2.7), (2.10), the maximal assumption (1.4) and using relation (2.11),
one can obtain

δ =
1

2
νtrχ+

1

2
ν−1trχ, (2.12)

where tr is the trace operator with respect to the metric g/. Plugging this relation into the boundary
integral term in (2.9), we have

∫

∂Σt

ε · ∇/ δ =
1

2

∫

∂Σt

νε · ∇/ trχ+
1

2

∫

∂Σt

ν−1ε · ∇/ trχ

+
1

2

∫

∂Σt

νtrχ ε · ∇/ log ν − 1

2

∫

∂Σt

ν−1trχ ε · ∇/ log ν.

(2.13)

From this computation, we deduce two observations. First, that the required regularity on the
foliation (Sv) to estimate the boundary integral (2.13) is that the null connection coefficients trχ
and trχ must be controlled in L∞v H

1/2(Sv). Second, that from writing δ in terms of the geometric
quantities trχ and trχ, one encounters an additional factor ∇/ log ν in the boundary integral (2.13).
We expect that the terms trχ, trχ and ν are close to their value in Minkowski space, which is

12A null geodesic generator is a null vector field tangent to H such that its integral curves are geodesics of the
spacetime (M,g). The existence of such a non-degenerate vector field on H is part of the assumptions in [10]
and [11] (see Item 2.1b).

13The null connection coefficients χ and χ should be thought of as derivatives of the metric g/ in the L and L
direction respectively.

14The fact that ν is not in general equal to 1 is related to a non-trivial slope between the maximal hypersurface
Σt and the null hypersurface H.
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respectively trχ ' 2/(1 + t), trχ ' −2/(1 + t) and ν ' 1. This implies that for the two last
boundary integrals in (2.13) we have

1

2

∫

∂Σt

νtrχ ε · ∇/ log ν − 1

2

∫

∂Σt

ν−1trχ ε · ∇/ log ν ' 2

1 + t

∫

∂Σt

ε · ∇/ log ν. (2.14)

At first sight, this seems to prevent us from closing the energy estimate for k (2.9) since ν can
only be estimated using both the control of δ, ε, η and χ, χ, ζ, but the k-components δ, ε, η are
only determined after solving equation (1.5c). However, using definitions (1.3), (2.7), (2.10) and
relation (2.11), one can obtain

ε = −∇/ log ν + ζ, (2.15)

which, plugged into the boundary integral (2.14), gives

2

1 + t

∫

∂Σt

ε · ∇/ log ν = − 2

1 + t

∫

∂Σt

|∇/ log ν|2 +
2

1 + t

∫

∂Σt

ζ · ∇/ ν, (2.16)

where it should be noted that the first term has a favourable sign and that the second term is
controlled if the null connection coefficient ζ of the foliation (Sv) is bounded in L∞v H

1/2(Sv). We
therefore conclude that we can close the energy estimate for k and control the slope factor ν if
the null connection coefficients trχ, trχ and ζ, which only depend on the geometry of the foliation

(Sv), are controlled in L∞v H
1/2(Sv).

3 The canonical foliation on H with bounded L2 curvature

In this section, we give an overview of the construction and control of a foliation of 2-spheres
(Sv) on H such that, under the L2-bound assumption (2.1) of Theorem 2.1, the null connection
coefficients trχ, trχ and ζ are controlled in L∞v H

1/2(Sv), and such that the metric g is controlled

in an appropriate H3/2-sense.

3.1 The null structure equations

We first define the null curvature components α, β, ρ, σ, β to be the Sv-tangent tensors on H such
that

α(X,Y ) := R(X,L, Y, L), β(X) :=
1

2
R(X,L, L, L), ρ :=

1

4
R(L, L, L, L),

σ :=
1

4
∗R(L,L, L, L), β(X) :=

1

2
R(X, L, L, L),

(3.1)

where R denotes the Riemann curvature tensor of the spacetime metric g and X,Y are Sv-tangent
vectors and where ∗R denotes the Hodge dual of R (see [7] for definitions). General properties
of the Riemann curvature tensor together with Einstein vacuum equations (1.1) imply that the
metric g/, the null lapse Ω and the null connection coefficients χ, ζ and χ satisfy a system of null
structure equations onH, which is the following system of coupled quasilinear transport and elliptic
equations (see [7], pp. 168-170):
the first variation transport equation for g/

L/ Lg/ = 2χ, (3.2a)

the second variation transport equations for χ, χ, ζ

∇/ Ltrχ+
1

2
(trχ)2 =− |χ̂|2, (3.2b)

∇/ Lχ̂+ trχχ̂ =− α, (3.2c)

∇/ Ltrχ+
1

2
trχtrχ =− 2 div/ ζ + 2

(
ρ− 1

2
χ̂ · χ̂

)
+ 2|ζ +∇/ log Ω|2, (3.2d)

∇/ Lχ̂+
1

2
trχχ̂ =−∇/ ⊗̂ζ − (∇/ ⊗̂∇/ ) log Ω− 1

2
trχχ̂+ n.l.t. , (3.2e)

∇/ Lζ + trχζ =− 1

2
trχ∇/ log Ω− β + n.l.t. , (3.2f)
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the Hodge-type elliptic equations for ζ

div/ ζ = −ρ− µ+ n.l.t. ,

curl/ ζ = σ + n.l.t. ,
(3.2g)

the transport equation for the mass aspect function µ

∇/ Lµ+
3

2
trχµ =

1

2
trχ4/ log Ω + n.l.t. , (3.2h)

the Hodge-type elliptic Codazzi equations for χ̂ and χ̂

div/ χ̂ =
1

2
∇/ trχ− ζ · χ̂+

1

2
ζtrχ− β, (3.2i)

div/ χ̂ =
1

2
∇/ trχ+ ζ · χ̂− 1

2
ζtrχ+ β, (3.2j)

and the Gauss equation for the Gauss curvature K of the 2-spheres Sv

K = −1

4
trχtrχ− ρ+

1

2
χ̂ · χ̂, (3.2k)

where χ̂, χ̂ denote the tracefree parts of the tensors χ and χ, and where n.l.t. denotes (additional)
nonlinear error terms. The operators L/L and ∇/ L are the projected respectively Lie and covariant
derivative in the L-direction,15 the operators div/ , curl/ and 4/ are the standard divergence, curl
and Laplace-Beltrami operators associated to the Riemannian metric g/, and | · |, ·, ⊗̂ are standard
contractions with respect to the metric g/ (see [10] for definitions).

The system of null structure equations has the null curvature components α, β, ρ, σ, β as source

terms. Using the initial small L2-bound (2.1) on the electric-magnetic energy flux through H, one
can obtain the following L2-control of the null curvature components on H16

‖α‖2L2(H) + ‖β‖2L2(H) + ‖σ‖2L2(H) + ‖ρ‖2L2(H) + ‖β‖2L2(H) . ε2. (3.3)

Our goal is to estimate the induced metric g/ and the null connection coefficients trχ, trχ and ζ
using the null structure equations (3.2), the bound (3.3) on the null curvature source terms, and
bounds from the regularity assumptions at the sphere S0 = Σ0 ∩H.17

3.2 Linear estimates and the foliation choice.

Estimates can only be obtained when (an equation for) the null lapse Ω is fixed –i.e. once the
foliation has been chosen.18 Let first assume that the geodesic foliation choice Ω = 1 has been
made and try to obtain the desired L∞v H

1/2(Sv)-estimates for ζ, trχ and trχ at the linear level.

Using equation (3.2f) for ∇/ Lζ, taking the L2(H)-norm and using the bound (3.3), one obtains

‖∇/ Lζ‖L2(H) . ‖β‖L2(H) + l.o.t.

. ε,
(3.4)

provided that the lower order terms are controlled. Using the Hodge-type elliptic equation (3.2g)
for ζ, the bound (3.3) and an appropriate elliptic energy estimate, one obtains

‖∇/ ζ‖L2(H) + ‖ζ‖L2(H) . ‖ρ‖L2(H) + ‖σ‖L2(H) + ‖µ‖L2(H)

. ε+ ‖µ‖L2(H).
(3.5)

15L/ L and ∇/ L should be simply thought of as derivatives in the L-direction, consistent with deriving tensors
tangent to the 2-spheres Sv .

16This L2-control is also related to an energy flux naturally arising in an energy estimate for the so-called Bianchi
equations for the spacetime curvature tensor R (see [7] for further discussion).

17The bounds for g/ and the null connection coefficients on the first sphere S0 will be needed when integrating the
transport equation in the L-direction.

18As also seen for Einstein vacuum equations (see Section 1.1), the system of null structure equations (3.2) is
determined only up to a gauge choice, which in this case geometrically corresponds to a choice of foliation on H.
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Using the transport equation (3.2h) for the mass aspect function µ at the linear level and integrating
in the L-direction one deduces that

‖µ‖L2(H) . ‖µ‖L∞
v L2(Sv)

. ‖µ‖L2(S0) + ‖4/ log Ω‖L1
vL

2(Sv)

. ε,
(3.6)

since Ω = 1 and provided that µ is controlled initially on the sphere S0.19 Using the
bounds (3.4), (3.5) and (3.6), we deduce that

‖ζ‖H1(H) . ε. (3.7)

Using a H1(H) to H1/2(Sv) trace estimate, one can obtain

‖ζ‖L∞
v H1/2(Sv) . ‖ζ‖H1(H) . ε, (3.8)

which gives the desired estimate for ζ.

We turn to obtaining the same estimate for trχ. One does not have an elliptic equation of the
type (3.2g) by which the tangential derivatives of trχ would be controlled in L2(H). Fortunately,
there are no curvature source terms in the transport equation (3.2b) for trχ. Commuting this
transport equation with a tangential derivative ∇/ , one thus obtains that ∇/ L∇/ trχ are only lower
order terms. Integrating this equation in the L-direction we therefore have

‖∇/ trχ‖L∞
v L2(Sv) . ‖∇/ trχ‖L2(S0) + l.o.t. . ε, (3.9)

provided that ∇/ trχ is controlled at the initial sphere S0 and that the lower order terms are
controlled. We deduce in particular the desired L∞v H

1/2(Sv)-control for trχ.

For the null component trχ, one does not have an elliptic equation of the type (3.2g). One can
only rely on the transport equation (3.2d). Unlike in the transport equation (3.2b) for trχ, there
are curvature and high order source terms to equation (3.2d), which namely reads at the linear
level and when Ω = 1

∇/ Ltrχ =2ρ− 2 div/ ζ + l.o.t. . (3.10)

To obtain an L∞v H
1/2(Sv)-control of trχ, one would need to control the null curvature term ρ at an

L1
vH

1/2(Sv)-level. Such a control cannot be obtained with the assumed L2(H)-regularity (3.3) for
the curvature. The geodesic foliation choice thus fails –at the linear level– to provide the required
regularity for the study of the spacelike-characteristic bounded L2 curvature theorem.

To circumvent this difficulty, we consider the so-called canonical foliation, first defined in [14]
and [15].

Definition 3.1. The foliation (Sv) on H is called the canonical foliation if v = 0 on Σ0 ∩H and
if the null lapse Ω satisfies the following elliptic equation on each 2-sphere Sv

4/ (log Ω) = −div/ ζ + 2
(
ρ− 1

2
χ̂ · χ̂

)
− 2ρ− χ̂ · χ̂,

log Ω = 0.
(3.11)

with f denoting the mean value of f on Sv.20

Rewriting the transport equation (3.2d) for trχ using the canonical foliation choice (3.11) gives

∇/ Ltrχ+
1

2
trχtrχ = 2ρ− χ̂ · χ̂+ 2|∇/ log Ω− ζ|2, (3.12)

where it should be noted that the higher order terms on the right-hand side are now constant in the
tangential direction. By commuting the transport equation (3.12) with tangential derivatives, we
therefore deduce that at the linear level ∇/ L∇/ trχ is only composed of lower order terms. Arguing

as for the null connection coefficient trχ, we then obtain the desired L∞v H
1/2(Sv)-estimate for trχ.

19Such a control is included in the regularity assumptions on the first sphere S0.
20The elliptic equation (3.11) is only well-posed if the right-hand side has vanishing mean value and if a mean

value condition is imposed on log Ω.
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3.3 Construction and control of the canonical foliation

Our last goal is to show that the canonical foliation from Definition 3.1 can be constructed, exists
and is non-degenerate from v = 0 to v = 1 and that –motivated by the study of the linear case in
Section 3.2– its null connection coefficients satisfy the desired L∞v H

1/2(Sv)-estimates.

Using the smooth background geodesic foliation, this reduces to proving that solutions to
the quasilinear system of transport and elliptic null structure equations (3.2) together with the
additional elliptic equation (3.11) for the null lapse Ω exist and remain controlled from v = 0
to v = 1. This time 1 existence result has to be obtained using only low regularity smallness
assumptions on the initial sphere S0 and the L2-smallness assumption (3.3) on the null curvature
source terms.

In [10], we obtained the following existence and control result for the canonical foliation on H
at the level of bounded L2 curvature.

Theorem 3.2 (Existence and control of the canonical foliation on H, [10]). Let (M,g) be a
vacuum spacetime. Let H be an outgoing null hypersurface emanating from a spacelike 2-sphere
S0 and foliated by a smooth non-degenerate background geodesic foliation (S′s)0≤s≤1. Assume that
the L2-smallness assumption (3.3) is satisfied, i.e.

‖α‖2L2(H) + ‖β‖2L2(H) + ‖σ‖2L2(H) + ‖ρ‖2L2(H) + ‖β‖2L2(H) . ε2,

together with suitable low regularity smallness assumptions at S0. Then:

1. L2-regularity. The canonical foliation (Sv) on H exists and is non-degenerate from v = 0
to v = 1 and we have

∥∥∥∥ trχ− 2

v + 1
, trχ+

2

v + 1
, χ̂, χ̂, ζ, Ω− 1, ∇/ Ω

∥∥∥∥
H1(H)

. ε, (3.13)

together with additional refined estimates.

2. Higher regularity. The smoothness of the geodesic background foliation implies smoothness
of the canonical foliation.

Remarks on Theorem 3.2

3.2a Using a trace estimate, the bounds (3.13) imply the following control, required in Section 2,
for the null connection coefficients χ, χ and ζ

‖trχ− 2

1 + v
‖L∞

v H1/2(Sv) + ‖trχ+
2

1 + v
‖L∞

v H1/2(Sv) + ‖ζ‖L∞
v H1/2(Sv) . ε.

3.2b H3/2-type regularity for the metric g/ can be obtained on each separate sphere Sv using that
the Gauss curvature K can be controlled in an L∞v H

−1/2(Sv)-sense and using harmonic coor-
dinates (see [9] and also [32]). The canonical foliation therefore provides sufficient regularity
for the spacelike-characteristic bounded L2 Theorem 2.1.

3.2c The proof of Theorem 3.2 is reminiscent of the methods used in [16] [17] [18] and the subse-
quent [1] [2] [32] [40] where the geodesic foliation is studied.

Sketch of the proof of Theorem 3.2

The proof of Theorem 3.2 goes by a standard continuity argument relying on bootstrap assumptions
for the estimates (3.13), on propagation of regularity, and on an higher regularity local existence
and continuation result. In the rest of this section, we shall review the key elements for the
improvement of the bootstrap assumptions.

To improve the set of bootstrap assumptions for estimates (3.13), we have to show that we can
estimate the H1(H)-norms of the null connection coefficients one-by-one in a suitable order by the
L2(H)-norm of the null curvature components. This virtually amounts to a triangularisation of
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the system of null structure equations (3.2) and (3.11). It has to take into account the presence of
a non-trivial null lapse Ω and differs from the geodesic foliation case studied in [16] because of the
intertwined equations for ζ, µ and log Ω (3.2f), (3.2g), (3.2h) and (3.11).

Provided that this can be done (see [10]), we obtain the desired H1(H)-control (3.13) for the
null connection coefficients arguing as in the linear case of Section 3.2, using standard elliptic
energy estimates, (deriving) and integrating the transport equations. Here the improved form of
the transport equation for trχ (3.12), which is a consequence of the canonical foliation choice, is

crucial to establish the desired H1-estimate for trχ.

The main difficulty is to control the nonlinear error terms arising in the null structure transport
equations (3.2b), (3.2h) and (3.12) using only the low regularity smallness assumptions on the initial
sphere S0 and the L2-smallness assumption (3.3). Integrating these equations in the L-direction
and taking the L2-norm in the tangential direction requires to deal with error terms of the form

∥∥∥∥
∫ 1

0

A ·R dv

∥∥∥∥
L2(S)

(3.14)

where A denotes the null connection coefficients trχ − 2
v+1 , χ̂, ζ and ∇/ Ω and where R is only

bounded in L2(H) (such as the null curvature components defined in (3.1)). Using Hölder estimates,
the control of (3.14) is achieved provided that the following crucial geometric trace norms estimates
for χ̂, ζ and ∇/ Ω

sup
ω∈S

∫ 1

0

|χ̂(v, ω)|2 dv + sup
ω∈S

∫ 1

0

|ζ(v, ω)|2 dv + sup
ω∈S

∫ 1

0

|∇/ Ω(v, ω)|2 dv . ε2, (3.15)

and the following uniform bound for trχ
∥∥∥∥trχ− 2

v + 1

∥∥∥∥
L∞(H)

. ε, (3.16)

can be obtained.21

In the case of the geodesic foliation, the control of the geometric trace norms for χ̂ and ζ
was obtained in the seminal series of papers [16] [17] [18]. This required to prove sharp bilinear
estimates for transport equations, using Besov spaces and Littlewood-Paley calculus. One therefore
had to make sense to a Littlewood-Paley theory for tensors on the 2-spheres S′s relying only on
low regularity geometric estimates (see [17], [18] and also [32]). In [10], we obtain the bounds for
the corresponding connection coefficients χ̂ and ζ in the canonical foliation using a comparison
argument with the background geodesic foliation, taking advantage of the estimates proved for the
geodesic foliation in [16]. This uses that the null curvature fluxes, the geometric norms and the
null connection coefficients χ and ζ are essentially invariant if the two foliations are close in an
appropriate sense.

Obtaining the last geometric trace norm estimate

sup
ω∈S

∫ 1

0

|∇/ Ω(v, ω)|2 dv . ε2

is the most delicate point of our analysis.22 To this end, we highlight that equation (3.11) displays
the appropriate structure to apply the sharp bilinear estimate theorem of [18]. Applying this the-
orem requires to use the geometric Littlewood-Paley theory and geometric Besov spaces developed
in [32].
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