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ON THE LAUGHLIN FUNCTION AND ITS PERTURBATIONS

NICOLAS ROUGERIE

Abstract. The Laughlin state is an ansatz for the ground state of a system of 2D quantum
particles submitted to a strong magnetic field and strong interactions. The two effects
conspire to generate strong and very specific correlations between the particles.

I present a mathematical approach to the rigidity these correlations display in their
response to perturbations. This is an important ingredient in the theory of the fractional
quantum Hall effect. The main message is that potentials generated by impurities and
residual interactions can be taken into account by generating uncorrelated quasi-holes on
top of Laughlin’s wave-function.

An appendix contains a conjecture (not due to me) that should be regarded as a major
open mathematical problem of the field, relating to the spectral gap of a certain zero-range
interaction.

Expository text based on joint works with Elliott H. Lieb, Alessandro Olgiati, Sylvia
Serfaty and Jakob Yngvason.
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1. Physical motivation

1.1. Laughlin’s state. We are looking for a wave-function for N 2D planar quantum
spinless electrons. It should be a square-integrable function ΨN : R2N 7→ C, normalized

∫

R2N

|ΨN |2 = 1 (1.1)

and (because of the Pauli principle) antisymmetric with respect to exchange of particle
labels:

ΨN (xσ(1), . . . , xσ(N)) = (−1)sign(σ)ΨN (x1, . . . , xN ) (1.2)

for all x1, . . . , xN ∈ R2 and all permutations σ of the N labels.
More precisely we study the Laughlin wave-function from 1983 [19, 20]

Ψ
(`)
Lau(z1, . . . , zN ) := cLau

∏

1≤i<j≤N
(zi − zj)`e−

B
4

∑N
j=1 |zj |2 (1.3)

where the planar coordinates x1, . . . , xN of the electrons are identified with complex numbers
z1, . . . , zN , B > 0, ` is an odd1 integer and cLau = cLau(`) is a L2-normalization constant.

As we shall explain shortly, it is natural to consider general perturbations of the Laughlin
function, of the form

ΨF (z1, . . . , zN ) := cFΨ
(`)
Lau(z1, . . . , zN )F (z1, . . . , zN ) (1.4)

where F is analytic in all its complex arguments and symmetric

F (zσ(1), . . . , zσ(N)) = F (z1, . . . , zN ) (1.5)

for any permutation σ, so that ΨF retains the symmetry of Ψ
(`)
Lau. Again, cF is a L2-

normalization constant.
It is of interest in fractional quantum Hall physics to restrict the general perturbation (1.3)

to a much more restricted class

Ψf (z1, . . . , zN ) := cfΨ
(`)
Lau(z1, . . . , zN )

N∏

j=1

f(zj) (1.6)

where f : C 7→ C is analytic and cf is a normalization constant.
The purpose of this expository note is to review mathematical theorems of the following

flavor:

Variational problem on the full set {ΨF } −→
N→∞

Same variational problem, on the restricted set {Ψf}. (1.7)

The class of “natural” variational problems we consider is described in more details below.
The motivation is from fractional quantum Hall physics [17, 11, 13, 43, 21]. More details
can be found in the original research papers this note summarizes [27, 32, 36, 37, 38, 39, 40].
Other expository versions are in [26, 34] and [35, Chapter 3].

There are two ways, both instructive, to interpret a result of the form (1.7):

1In order to satisfy (1.2), but even values are relevant for bosons.
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Absence of superfluous correlations. The wave-function Ψ
(`)
Lau we start from contains

pair correlations between electrons, because of the Jastrow factors (zi−zj)`. Since F in (1.4)
is analytic, it cannot “undo” these correlations by canceling a factor: ΨF can only be more

correlated than Ψ
(`)
Lau. What the statement says is that, in the situations of our concern,

it is physically useless to add more correlations: the minimizers of the variational problem
have an uncorrelated F = f⊗N .

Emergence of quasi-particles. The analytic function f defining (1.6) is essentially a
polynomial. Write it as

f(z) =
K∏

k=1

(z − ak)mk . (1.8)

The complex numbers a1, . . . , aK are interpreted as the locations of quasi-particles (in fact,
quasi-holes) generated from the Laughlin state. These are the effective particles responsible
for the phenomenology of the fractional quantum Hall effect (FQHE), in particular the
charge transport [41, 8, 30] in lumps of `−1× the electron’s elementary charge (the ` is
that appearing in (1.3)). One can indeed argue that each ak corresponds to a defect of
density ∼ mk`

−1 in the charge density of Ψf , as compared to the (approximately flat, see

Theorem 1.1 below) density of the bare Ψ
(`)
Lau.

We shall refer to states of the form (1.6) as the Laughlin phase. As regards the Laughlin
quasi-holes, we stress that they are here seen as classical particles, parameters in a many-
body wave-function. If one considers them as true quantum particles instead, they should
be be thought of [2, 29] as anyons with statistics parameter −1/`. That is, they are neither
bosons nor fermions, but something in between. We shall not discuss this topic here.

1.2. Physics background. Let us quickly explain what Ψ
(`)
Lau (and its descendants) are

supposed to do. In fact, it is constructed out of the following considerations:

A It is of the form “analytic × gaussian” or, in other words, made entirely of single-particle
orbitals belonging to the lowest Landau level of a magnetic field perpendicular to the plane,

of intensity B. This means that all the electrons collectively described by Ψ
(`)
Lau have the

lowest possible magnetic kinetic energy: they do the best they can to accommodate a huge
external magnetic field, the crucial ingredient of the quantum Hall effect. This is true for
any choice of ` in (1.3).

B It vanishes when electrons come close, because of the zeroes of the wave-function on the
hyperplanes zi = zj . The parameter ` adjusts the rate of vanishing, but it is in fact fixed
by other considerations (see below). The ansatz thus seems to do a good job at reducing
repulsive interactions (Coulombic, or any other repulsive interaction for that matter).

C The one-particle density of Ψ
(`)
Lau is almost constant in a thermodynamically large (i.e.

of radius ∝
√
N) disk, with value B/(2π`). The ansatz is thus relevant to describe a

homogeneous electron gas at density B/(2π`), in the thermodynamic limit.

D The function Ψ
(`)
Lau is expected to be very rigid in its response to perturbations. Its nat-

ural excitations are described by simple variants, the Laughlin-plus-quasi-holes states (1.6).
There are also Laughlin-plus-quasi-particles states, but their description is not as easy.

Exp. no II— On the Laughlin function and its perturbations
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Points A and B conspire together: there is not much freedom in an analytic × gaussian
function to vanish upon particle encounters zi = zj . The rate of vanishing is quantized (poly-
nomial) and the zeroes come with a phase circulation/topological degree/winding number
(whose chirality is imposed by the direction of the external magnetic field).

Another way to think of the good job the wave-function does against interactions is as
a kind of super-Pauli principle. While the usual Pauli principle prevents electrons from

multiple occupancy of a single-particle orbital, Ψ
(`)
Lau has electrons occupying only 1 out of

` available natural orbitals. These being spatially localized (again, because of the magnetic
field), one can hope this favors repulsive interactions. See [7, 15, 16, 18] and references
therein for more details in this direction. Also observe that, any LLL (analytic × gaussian)
many-body wave function satisfying (1.2) (i.e. the Pauli principle) must be of the form (1.4)
with ` = 1 (because they must vanish at zi = zj). Taking a higher exponent thus enhances
the Pauli principle.

Concerning point C , we can formulate this as a theorem (see [37] and references therein
for a proof; this is in fact an instance of a large class of results on classical Coulomb gases
old enough for me not to try to attribute priority, see [1, 9, 42]):

Theorem 1.1 (Density of the Laughlin function).
For a many-body wave-function ΨN : R2N 7→ C satisfying (1.2), define its one-body density
as

ρΨN
(x) := N

∫

R2(N−1)

|ΨN (x, x2, . . . , xN )|2dx2 . . . dxN . (1.9)

Let ρ
(`)
Lau be the one-body density of Ψ

(`)
Lau. Then, with ` and B fixed,

∫

R2

∣∣∣∣ρ
(`)
Lau −

B

2π`
1D(0,R)

∣∣∣∣� N (1.10)

in the limit N →∞. Here D(0, R) is the disk of center 0 and radius

R =

√
2`N

B
.

Points A , B and C above indicate (with a bit of hand-waving, perhaps) that Ψ
(`)
Lau

should be a very good ansatz for minimizing the energy of a 2D electron gas in a uniform
perpendicular magnetic field, at density2 ρ = B(2π`)−1. This fact has been extensively
checked numerically, see [17, 11, 13, 43, 21] for references.

What about point D ? There are two aspects to it. One is a major open problem,
that one can refer to as the spectral gap conjecture. I have nothing new to report on it,
see Appendix A for a precise formulation. The other aspect is the topic of the following
exposition, so see below.

To conclude with the physical motivation, we should emphasize the importance of point

D for the theory of the FQHE. Indeed, the effect does not occur in a homogeneous electron
gas at zero temperature and density ρ = B(2π`)−1 but in an electron gas with impurities
at small temperature and density in the vicinity of ρ = B(2π`)−1. This is not a technical
distinction: without impurities there would be no effect, and the essence of the QHE is a

2I.e. at filling factor ν = (hc/e)(ρ/B) = `−1 in view of our implicit choice of units ~ = c = e = 1.
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quantized plateau in the Hall conductivity of the sample for densities close to B/(2π`). The
latter fact is crucial to the main application of the QHE (in metrology, setting the standard
for the von Klitzing constant h/e2). Again, see [17, 11, 13, 43, 21] for introductions to the
topic.

2. The mathematical problem and the main theorem

We turn to proposing a mathematical formulation for point D of the previous section.

We first observe that the (more or less informal) arguments A and B proposed to arrive
at Laughlin’s wave-function (1.3) in fact point to the larger class of functions (1.4) built
on it. So why indeed restrict attention to (1.3), or even to the functions in (1.6) decorated
by quasi-holes ? Argument 1: why should we do something complicated when we can try
something simpler first ? Argument 2: by fiddling around the proof of Theorem 1.1 and/or
more informal intuitions, one can guess that ΨLau will be the only function of the class (1.4)
with mean density B/(2π`). But we have explained (or at least, alluded to) the fact that in
FQHE physics it is crucial to understand what happens around the special density B/(2π`),
in particular, for smaller values.

The problem we propose below is intended to shed some light on these issues. It takes for
granted the restriction of admissible states to the class (1.4). It is believed that the class (1.4)
is an approximate low-energy eigenspace for the full physical Hamiltonian, separated by a
gap (which does not close in the thermodynamic limit) from the rest of the spectrum.
In Appendix A, I present a problem in this direction: the class (1.4) is an exact ground
eigenspace for an approximate Hamiltonian, is it separated by a gap from the rest of the
spectrum ?

In the spirit of degenerate perturbation theory, we consider the problem of minimizing
what is left of the energy, within the class (1.4). Since the magnetic kinetic energy is fixed
by the restriction to lowest Landau level (analytic × gaussian) functions, all that is left
to minimize are the interaction energy and the energy due external potentials (trapping
and/or impurities). We thus arrive at the following problem

E(N,λ) = inf
{
EN,λ[ΨF ] | ΨF of the form (1.4),

∫

R2N

|ΨF |2 = 1
}
. (2.1)

where

EN,λ[ΨF ] =
〈

ΨF

∣∣∣
N∑

j=1

V (xj) + λ
∑

i<j

W (xi − xj)
∣∣∣ΨF

〉
L2
. (2.2)

Here V,W : R2 7→ R are the external and pair-interaction potentials respectively (seen as
mutliplication operators in (2.2)), and λ ∈ R is a coupling constant. Note that W might be
reduced a lot (this is in fact hoped for) by restricting to the class ΨF , but it is not strictly
canceled (unlike the zero-range interactions considered in Appendix A), in particular it can
have a long-range, 3D-Coulomb-like, part.

A more precise version of the statement (1.7) is as follows. Consider the simpler energy

e(N,λ) = inf
{
EN,λ[Ψf ] | Ψf of the form (1.6),

∫

R2N

|Ψf |2 = 1
}
. (2.3)

Exp. no II— On the Laughlin function and its perturbations
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Obviously E(N,λ) ≤ e(N,λ). We would like to prove that

E(N,λ) ' e(N,λ) as N →∞ with λ fixed. (2.4)

This means that, for the purpose of minimizing a natural energy functional, it is sufficient
to restrict to the sub-class (1.6) instead of considering the fully general (1.4). We can prove
this under some simplifying assumptions that we now describe.

Since, in view of Theorem 1.1, the Laughlin state lives on thermodynamically large length
scales ∝

√
N , it is natural to demand that the potentials V and W also do. We thus set,

for fixed functions v, w,

V (x) = v
(
N−1/2x

)
(2.5)

and (the N pre-factor ensures that the potential and interaction energies stay of the same
order when N →∞)

W (x) = N−1w
(
N−1/2x

)
. (2.6)

Note that it is physically relevant to consider potentials living on smaller length scales, in
particular to take impurities into account. We thus simplify the physics of the problem at
this point.

In [32] we proved the λ 6= 0 version of the following theorem, while the (still highly
non-trivial) λ = 0 case was solved earlier [27, 40]:

Theorem 2.1 (Energy of the Laughlin phase).
Assume that v and w are smooth fixed functions. Assume that v goes to +∞ polynomially
at infinity, and that it has finitely many non-degenerate critical points. There exists λ0 > 0
such that

E(N,λ)

e(N,λ)
→

N→∞
1

with B > 0, ` a fixed odd integer and |λ| ≤ λ0.

Comments.
1. The assumption that |λ| be small enough is probably necessary. Indeed, increasing
λ ≥ 0 would mean decreasing the relative influence of the external potential V , which in
particular represents trapping. Less trapping should mean a lower mean density. But for
significantly lower densities, the likely behavior of the system is not to generate more quasi-
holes as in (1.6) but to reorganize into a different fractional quantum Hall state, e.g. a
Laughlin wave-function with higher exponent. What the theorem shows is that for λ small
but O(1) in the N → ∞ limit, the system does respond by generating quasi-holes. This
robustness is related to the finite width of the plateaus in the Hall conductivity, although
a full explanation thereof requires many more ingredients.

2. The smoothness assumptions on the potentials should not be necessary, although our
method of proof does demand some regularity. In particular, for the Coulomb interaction
w(x) = |x|−1 the theorem is inconclusive.

3. A key tool in the proof is to relate the two infima (2.2)-(2.3) to the flocking [6, 10] (or,
for λ = 0, bath-tub [25, Theorem 1.14]) energy

Eflo(N,λ) := inf

{∫

R2

V %+
λ

2

∫∫

R2

%(x)W (x− y)%(y)dxdy, 0 ≤ % ≤ B

2π`
,

∫

R2

% = N

}
.

(2.7)

Nicolas Rougerie
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In fact, since E(N,λ) ≤ e(N,λ), it is sufficient to prove

e(N,λ) / Eflo(N,λ)

by a trial state argument, and

E(N,λ) ' Eflo(N,λ), (2.8)

which, as for most variational problems, is the hardest inequality.

4. In order to prove (2.8), the main tool is what we coined an incompressibility estimate,
starting from [38]. Namely, for any L2-normalized ΨF of the form (1.4), with ρF the
associated one-particle density (1.9), we have in an appropriate sense

ρF ≤
B

2π`
(1 + oN (1)). (2.9)

Note that this holds irrespective of the (sequence of) analytic factor(s) F chosen, so that
the variational set defining (2.2) is in some sense included in that defining (2.7).

See [27, 32, 36, 37, 38, 39, 40] for more details, and for corollaries regarding the minimizers
of the problem. �

In the next section I discuss in more details the tool (2.9). Partial results were obtained
in [38, 39], and a satisfactory statement (although there is still room for improvement)
in [26, 27]. For the results of [32] we in fact need something stronger than (2.9): the latter
is a result in expectation, for the λ 6= 0 case we need a deviation result.

3. Incompressibility estimates for 2D Coulomb systems

Let me now present the main insight behind (2.9), and some elements of proof.

3.1. Plasma analogy. The main way one has to get to grips with Laughlin’s wave-function
and its descendants is via an analogy with classical statistical mechanics, more precisely the
2D one-component plasma, or log-gas, or β-ensemble, which is itself connected to random
matrices via the Ginibre ensemble [1, 9, 31, 42]. The analogy originates in the seminal
paper [19].

For the applications we have in mind, one is only interested in the probability density
|ΨF |2 of a function ΨF of form (1.4). One writes it as a Boltzmann-Gibbs factor,

|ΨF (z1, . . . , zN )|2 =
1

ZF
exp (−HF (z1, . . . , zN )) (3.1)

with ZF ensuring L1-normalization (partition function of the effective plasma) and HF an
effective Hamilton function

HF (z1, . . . , zN ) =
B

2

N∑

j=1

|zj |2 − 2`
∑

1≤i<j≤N
log |zi − zj | − 2 log |F (z1, . . . , zN )| . (3.2)

Usually, writing a function as the exponential of its logarithm is not a particularly brilliant
idea. The reason it is in this case is that, in a 2D universe, the function HF has a clear

Exp. no II— On the Laughlin function and its perturbations
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interpretation3 in terms of electrostatics. This is because in 2D the electrostatic potential
Φ generated by a charge distribution σ is given by

−∆Φ = σ, Φ = − 1

2π
log | . | ? σ.

More precisely HF is the energy of N mobile 2D particles (at locations z1, . . . , zN ∈ C↔ R2)

of charge −
√

4π`

1. Interacting among themselves via repulsive Coulomb forces.

2. Attracted to a fixed uniform background of charge density +B`−1/2/
√
π.

3. Feeling the potential W = −2 log |F | generated by additional “phantom” + charges.
The location of the latter can be essentially arbitrary, and correlated with the positions of
z1, . . . , zN , but their charge must be positive because

−∆zjW ≥ 0

for any j (recall that F is analytic).

Now the bound (2.9) ought to become less mysterious. The density ρF is interpreted as
the mean distribution of the charges in the plasma described above, at thermal equilibrium
with temperature 1. It turns out that this is an effectively small temperature, so that one
can just as well think of the charges as distributed to minimize the energy given by HF .

Then, the density value B/(2π`) appearing in (2.9) is just that corresponding to local
charge neutrality for the effective plasma (compare points 1 and 2 above), a situation
notoriously favorable to minimize the electrostatic energy. This is the intuitive explanation
behind Theorem 1.1: for F = 1 there are only the effects of 1 and 2 to take into account, so
that the density wants to be equal to B/(2π`). This can be made very precise [4, 3, 22, 23].

What about the effect of the additional potential W = −2 log |F | ? We know essentially
nothing of it, except that it is generated by a positive charge distribution and hence exercises
a repulsive force on the points z1, . . . , zN . Hence it is perhaps natural that a non-trivial
analytic F leads to a smaller density, whence (2.9). However this is much more subtle than
it looks. The bound (2.9) should hold everywhere in space. Why cannot one generate a
local bump of charge above the preferred value B/(2π`) by acting suitably with repulsive
charges ?

Consider the following thought experiment: we are given a patch of negative (mobile) and
positive (fixed) charges, screening one another (i.e. the total charge distribution is locally
neutral). Now add around this patch additional (phantom) positive charges (generating
W), pushing on the negative charges already present. The kind of result we aim at is:
however we distribute the phantom charges, the effect is that the mobile negative charges
leak out the original patch, but never accumulate above the density of the fixed charges.

Even worse: since the positions of the phantom charges can (via the zeroes of the analytic
function F ) be correlated in any way we like with the positions of the mobile charges, one
could even make them “run after” the leaking charge. If there is some leaking, the phantom
charges relocate themselves so as to push back the indisciplined mobile charges to force
them to concentrate. This, we say, can only result in more leaking.

3This effective Hamiltonian is a technical tool, it has nothing to do with the original, physical, energy
that ΨF should be chosen to minimize.
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That the bound (2.9) is true is a remarkable instance of the power of screening in elec-
trostatics. We give a sketch of the main part of the proof of (2.9) in the next subsections.

3.2. Density bounds for Coulomb ground states. In this exposition we shall be con-
tent with explaining why the density bound (2.9) is true at the level of ground states of (3.2).
Taking into account the temperature is done in a second step, and is the less optimal part
of the proof as it now stands. From now one we thus focus exclusively on the effective 2D
electrostatic problem described in the previous subsection.

Let us clean the notation a bit. By changing length and energy units we can consider
the Hamilton function

H(x1, . . . , xN ) =
π

2

N∑

j=1

|xj |2 −
∑

1≤i<j≤N
log |xi − xj |+W(x1, . . . , xN ) (3.3)

with x1, . . . , xN ∈ R2 and W superharmonic in each variable:

−∆xjW ≥ 0, ∀j. (3.4)

We consider only zero-temperature equilibrium configurations (minima of H) and want to
prove that their density of points is everywhere bounded above by 1 (the neutrality density
in the new units). The following, proved in [27], shows that this is true on any length scale
much larger than the typical inter-particle distance (O(1) independently of N in the new
units):

Theorem 3.1 (Incompressibility for 2D Coulomb ground states).
There exists a bounded function g : R+ 7→ R+, independent of N and W, with

g(R) →
R→∞

0,

such that, for any X0
N = (x0

1, . . . , x
0
N ) minimizing H, any point a ∈ R2 and any radius

R > 0

N(a,R) := ]
{
x0
j ∈ X0

N ∩D(a,R)
}
≤ πR2(1 + g(R)) (3.5)

where D(a,R) is the disk of center a and radius R and ] stands for the cardinal of a discrete
set.

Comments. A look at a simplified problem is instructive. Consider a positive measure σ
with ∫

R2

σ = N,

the particle number, minimizing a continuous/mean-field version of the energy (3.3):

π

2

∫

R2

|x|2σ(x)dx− 1

2

∫∫

R2×R2

σ(x) log |x− y|σ(y)dxdy

+N−N
∫

R2N

W(x1, . . . , xN )σ(x1) . . . σ(xN )dx1 . . . dxN . (3.6)

The Euler-Lagrange for this problem says that, on the support of σ,

π

2
|x|2 − log | . | ? σ(x) +N1−N

∫

R2(N−1)

W(x, x2, . . . , xN )σ(x2) . . . σ(xN )dx2 . . . dxN = µ,
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a constant (Lagrange multiplier associated with the mass constraint). Taking the Laplacian
of the above equation and using (3.4) immediately gives

σ ≤ 1.

The issue is that, for a general genuine many-body potentialW, it does not seem feasible to
reduce the minimization of (3.3) for point configurations to that of (3.6) for measures. For
particularW containing only few-particle interactions one can pass rigorously [38] from (3.3)
to (3.6), which gives a particular, weaker, case of the Theorem and its applications. The
proof of the general case, sketched below, does not use the continuum/mean-field approxi-
mation. �

3.3. Sketch of proof for Theorem 3.1. We present the four main lemmas of the proof
and a few explanations of how they fit together. See [26, 27] for more details. The method
is rooted in potential theory.

Figure 1. Exclusion rule. The blue points generate a screening region
(dashed white). No other (red) point of a minimizing configuration may lie
within it.

Lemma 3.2 (Screening regions).
Let x1, . . . , xK be points in R2. There exists an open set Σ = Σ(x1, . . . , xK) ⊂ R2 with
Lebesgue measure

|Σ(x1, . . . , xK)| = K (3.7)

such that the electrostatic potential

Φ := − log | . | ?
(

K∑

k=1

δxj − 1Σ

)
(3.8)
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satisfies {
Φ > 0 almost everywhere in Σ

Φ = 0 almost everywhere in the complement of Σ.
(3.9)

Comments. In other words, given K charges in R2, one can always screen their electrostatic
potential by putting a patch of constant charge density of opposite sign around them. The
proof is semi-constructive, using an auxiliary variational problem (incompressible neutral
Thomas-Fermi molecule) whose solution is the indicative function of Σ. �

The utility for the minimizers of (3.3) is as follows (see Figure 1 for illustration):

Lemma 3.3 (Exclusion rule).
Let X0

N be a minimizing configuration of points for (3.3). Let K < N be an integer and
y1, . . . , yK+1 ∈ X0

N . Then, yK+1 /∈ Σ(y1, . . . , yK), where Σ(y1, . . . , yK) is the screening
region of Lemma 3.2. We refer to this as the exclusion rule.

Proof. For minimality, yK+1 must minimizeW plus the potential generated by all the other
points and the background. If yK+1 ∈ Σ(y1, . . . , yK), one would be able to decrease this
total potential by moving it the boundary of yK+1. The argument uses (3.9) and the
superharmonicity of W. �

Now we can forget about the minimality of the configuration X0
N , for we have the

Lemma 3.4 (Exclusion ⇒ density bound).
There exists a continuous function g : R+ 7→ R+ going to 0 at infinity such that, for any
(possibly infinite) point configuration X = x1, . . . , xN , . . . satisfying the exclusion rule of
Lemma 3.3 and for any disk D(a,R) we have

] {xj ∈ X ∩D(a,R)} ≤ πR2(1 + g(R)). (3.10)

Proof. Consider a minimizing configuration, and a disk D(a,R). The proof is illustrated by
Figure 2, to which the color code below refers. Suppose the screening region (white line)
from Lemma 3.2 generated by the (blue) points inside the (blue) circle is included within a

slightly larger circle (dashed white) of radius R̃. Then we know from (3.7) that the number

of points in the disk D(a,R) is not larger than πR̃2. If we can construct such a R̃ ∼ R
when R→∞, we have won. Since the (white) screening region may not contain any of the
(red) points outside the disk, it is conceivable that the latter force the white line to stay
close to the blue circle. The typical enemy we fight is a pathological configuration such as
that presented in Figure 3. The screening region sends long serpentine tendrils to infinity,
still avoiding the red points. Its area is still (by definition) the number of points in the disk,
but the latter can now have an area much smaller than that of the screening region. This
kind of pathology is excluded by Lemma 3.5 below. �

Clearly Theorem 3.1 follows from the previous lemmas. The final element of the proof of
Lemma 3.4 is

Lemma 3.5 (Support of the screening region).
We use the notation of Lemma 3.5. There exists a constant C > 0 such that, for any a ∈ R2

and r ∈ R+

Σ ⊂ D(a,R)
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Figure 2. Good configuration. The blue points inside the (blue) circle
generate a screening region (inside of white line), avoiding the other (red)
points. It is contained in a disk (inside of white dashed circle) not too large
compared to the original blue circle.

with
R = r + C

√
max {|Φ(x)|, |x− a| = r}.

Comments. In other words, if one happens to know that the potential (3.8) is small on some
circle, then the screening region must sit inside a slightly larger concentric circle: there is
no need to screen any further to make the potential vanish.

To see that this completes the proof of Lemma 3.4 we argue as follows. One can assume
the density of point in the configuration is bounded below everywhere (this requires some
argument, but clearly, a high density everywhere is the most likely enemy). Recall that
(blue, red etc ... again refer to the color-code of Figures 2 and 3) the potential (3.8)
generated by the blue points and the screening region must vanish at all the red points.
Since there are many such points outside the blue circle, it takes only a small leap of faith
(and/or a few estimates) to hope that the potential must in fact be small uniformly outside
of the blue circle. But then Lemma 3.5 implies that the screening region (white line) must
be included in a slightly larger disk (dashed line in Figure 2). The pathological configuration
of Figure 3 is thus excluded. �
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Figure 3. Pathological configuration, to be excluded. The blue
points inside the (blue) circle generate a screening region (inside of white
line). It sends tendrils out to infinity, while still avoiding the other (red)
points.

Appendix A. The spectral gap conjecture

Here I expose a conjecture whose resolution would go a long way towards a full rigorous

justification of point D of the introduction. The conjecture is not mine: it can be traced
back to the fundamental papers [19, 14], and is more or less folklore in the condensed
matter physics community. I am grateful to F.D.M. Haldane, E. H. Lieb and J. Yngvason
in particular for discussions relating to the topic below. Previous explicit mentions of the
conjecture are e.g. in [24, 37].

To obtain a clean mathematical statement, we consider a toy Hamiltonian defined as
follows. Let the bosonic and fermionic lowest Landau levels be respectively

LLLNsym =
{
A(z1, . . . , zN )e−

B
4

∑N
j=1 |zj |2 , A analytic and symmetric

}
(A.1)

LLLNasym =
{
A(z1, . . . , zN )e−

B
4

∑N
j=1 |zj |2 , A analytic and antisymmetric

}
(A.2)

where symmetric/antisymmetric means “under exchange of the labels of the coordinates
z1, . . . , zN”. On these spaces, consider the m-th Haldane pseudo-potential Hamiltonian

H(m,N) :=
∑

1≤i<j≤N
|ϕm〉〈ϕm|ij (A.3)
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where |ϕm〉〈ϕm|ij projects the relative coordinate4 xi − xj of particles i and j on the one-
body state (cm is a normalization constant)

ϕm(z) = cmz
me−

B
4
|z|2 .

Note that, when acting on LLLNsym or LLLNasym, only for even (respectively, odd) m does
H(m,N) act non-trivially.

Clearly, Ψ
(`)
Lau is an exact ground state, i.e. eigenfunction with eigenvalue 0 for H(`−2, N)

acting on LLLNsym (even `) or LLLNasym (odd `). The conjecture says that the gap above the
eigenvalue 0 does not close in the thermodynamic limit N → ∞. To formulate it, observe
first that H(`− 2, N) commutes with the total angular momentum operator

LN :=

N∑

j=1

zj∂zj − zj∂zj , (A.4)

and consider a joint diagonalization of the two operators on either LLLNsym (if ` is even) or

LLLNasym (if ` is odd). The angular momentum of the Laughlin state (1.3) is

LNΨ
(`)
Lau =

`

2
N(N − 1)Ψ

(`)
Lau.

Conjecture A.1 (Spectral gap conjecture).
Consider the spectral gap of H`−2,N on the sector of angular momenta below that of the
Laughlin state

σ(N, `) = inf
{

spec
(
H(`− 2, N)|LN≤ `

2
N(N−1)

)
\ {0}

}
. (A.5)

There exists a constant c` > 0, independent of N , such that

σ(N, `) ≥ c` > 0.

To motivate the conjecture, observe that if one projects a bona-fide pair interaction
Hamiltonian

Hw =
∑

1≤i<j≤N
w(xi − xj)

with radial potential w ≥ 0 on the LLL, one obtains

HLLL
w := PLLLN

sym/asym
Hw PLLLN

sym/asym
=
∑

i<j

∑

m≥0

〈ϕm|w|ϕm〉 |ϕm〉〈ϕm|ij . (A.6)

The coefficients 〈ϕm|w|ϕm〉 are called “Haldane pseudo-potentials”. The toy Hamilton-
ian (A.3) above is obtained by discarding all terms from the sum but one, in order for the
Laughlin state to be an exact ground state, and not just a very good approximation.

There is one particular case, namely ` = 2, with H(0, N) acting on LLLNsym where this
truncation of (A.6) is more than a crude simplification. Indeed, H0,N is nothing but a Dirac-
delta interaction projected on the LLL. This makes perfect sense [5, 37, 28, 24, 33, 12] since

4Again, R2 3 x↔ z ∈ C.
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LLL functions are very regular. In fact H0,N acts as

H0,N

(
A(z1, . . . , zN )e−

B
4

∑N
j=1 |zj |2

)
=

1

2π

∑

1≤i<j≤N
A

(
z1, . . . ,

zi + zj
2

, . . . ,
zi + zj

2
, . . . , zN

)
e−

B
4

∑N
j=1 |zj |2

and this model can be derived from a true many-body Hamiltonian in a physically relevant
limit [24].

The conjecture is widely believed to be true in the FQHE-physics community on the
grounds that:

1. It is supported by numerical simulations (numerical diagonalizations of the Hamiltonian
for small particle numbers, say up to ∼ 20, see for example [17, 44] and references therein).

2. Where it to be false, it would be extremely hard to make sense of the experimental data
of the FQHE.

It should not actually be necessary to restrict the Hamiltonian to angular momenta below
`N(N − 1)/2 to obtain a lower bound to the spectral gap. It is likely that restricting to
angular momenta below a larger value (but still of order N2 when N →∞) would suffice. It
is conceivable that the conjecture holds only for small values of `. If so, a likely threshold [45]
for the conjecture ceasing to hold is ` = 7.

Finally, there are other versions of the conjecture: for particles living on a sphere or a
cylinder instead of in the plane, see [17, Sections 3.10 and 3.11] and references therein.
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