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Ergodicity, mixing and KAM

Sergei Kuksin∗

Abstract

In this note we review recent progress in the problem of mixing for a
nonlinear PDE of parabolic type, perturbed by a bounded random force.

1 Introduction

We are concerned with evolutionary nonlinear PDEs under periodic boundary
conditions, perturbed by finite-dimensional random force. We write their solu-
tions u(t, x) as curves

uω(t) = uω(t, ·) ∈ H
where (H, ‖ · ‖) is a certain Hilbert space of functions of x (usually this is a
Sobolev space over L2). We are interested in equations of the form

u̇+ Lu+B(u) = ~η(t), u(0) = u0, u(t) ∈ H, (1.1)

where L = −∆ (or, more generally, L = (−∆)a, a > 0) is the dissipation, B is a
nonlinearity (its linear part may be non-zero), and ~η(t) = ~ηω(t, x) is a random
force. We assume that eq. (1.1) is well posed if the function ‖~η(t)‖2 is integrable
on bounded segments.

We regard Lu and ~η(t) as a perturbation and are the most interested in the
case when the unperturbed equation

u̇+B(u) = 0 (1.2)

is a Hamiltonian PDE. The problem of long time behaviour in hamiltonian
systems (1.2) is related to the ergodic hypothesis and is hopelessly complicated.
Instead our goal is to study the long-time dynamics of the perturbed eq. (1.1).

Consider eigen-functions of the operator L (these are simply the complex
exponents), and label them by natural numbers:

Lej = λjej , j = 1, 2, . . . .
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We will decompose vectors u ∈ H in this basis, u =
∑∞
s=1 uses, and will identify

any u ∈ H with the vector of its Fourier coefficients:

u = (u1, u2, . . . ).

Let us take any set M ⊂ N of indices j, finite or infinite, and consider the
subspace

HM ⊂ H, HM = span(ej , j ∈M).

The random force ~η is assumed to be of the form

~η(t) =
∑

j∈M
ajη

ω
j (t)ej ∈ HM ,

∑
a2
j <∞, (1.3)

where ηj ’s are i.i.d. real random processes. If |M | < ∞, the force η is called
finite-dimensional. With this notation eq. (1.1) may be written as

u̇j + λjuj +Bj(u) = ajη
ω
j (t), j ≥ 1; aj = 0 if j 6∈M.

The objection is to show that a large class of “non-degenerate” equations (1.1)
with finite-dimensional random forces η is “ergodic”, more precisely – mixing:
Denote by u(t;u0) a solution of (1.1), equal u0 at t = 0. It depends on a random
parameter ω ∈

(
Ω, F, P ).

Definition 1.1. Eq. (1.1) is called mixing if in the space H exists a Borel
measure µ such that for any “reasonable” functional f : H → R and for any
starting point u0

the observable Ef(u(t;u0)) converges, as t→∞, to

∫

H

f(u)µ(du). (1.4)

This measure µ is called the stationary measure for eq. (1.1).

Note that (1.4) means that for any u0,

D(u(t;u0)) ⇀ µ as t→∞, weakly, (1.5)

where D signifies distribution of a random variable, and that

dist(Du(t, u01),Du(t, u02))→ 0 as t→∞, for all u01, u02

(here dist a distance in the space of measures on H which metrises the weak
convergence ⇀). If the convergence (1.5) is exponentially fast, eq. (1.1) is called
exponentially mixing.

What was known about the mixing in equations (1.1):
i) If HM = H, then the mixing is proved for various classes of equations, see
in [4].
ii) If the set M is finite, then what was available is the result of Hairer–
Mattingly [1] who proved the mixing for the case of white in time forces ~η.
Their proof is based on an infinite–dimensional version of the Malliavin calculus
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and applies to a rather special class of eq. (1.1), which includes the 2d NSE on
the torus. In particular, this approach does not apply if B(u) is a Hamiltonian
nonlinearity which is a polynomial of degree > 3 (this restriction on the degree
of nonlinearity also remains true for finite-dimensional systems). Even more: for
some important equations (B) corresponding equations (1.1) with white-noise
forces are not known to be well posed, while equations (1.1) with bounded ran-
dom forces are well posed, and – as our results imply – are mixing. For example,
this is the case for the primitive equations of atmosphere which are principal
equations of meteorology (the stochastic primitive equations are known to be
well posed only in some weak sense).

Below I present recent result on the mixing in equations (1.1) with bounded
random forces, recently obtained in [2] and [3]. In [3] the approach of the original
work [2] is repeated for an easier problem which resulted in a shorter and more
accessible text.

Acknowledgements. I thank l’Agence Nationale de la Recherche for sup-
port through the project ANR-10-BLAN 0102, and the Russian Science Foun-
dation – through the grant 18-11-00032.

2 Bounded random forces.

Recall that the random force ~η(t) has the form (1.3), where ηω1 (t), ηω2 (t), . . . are
i.i.d. bounded random processes. To define a suitable class of processes ηj we
use a naive approach: Let {h1(t), h2(t), . . .} be a basis of functions on [0,∞),
made by bounded functions. We define

ηωj (t) =

∞∑

k=1

ckξ
jω
k hk(t), ck 6= 0,

where {ξjωk } are i.i.d., |ξjωk | ≤ 1. So ηj ’s are random series in the basis {hj}.
For our techniques to apply, we have to impose on the basis {hj} a restriction.
For j ∈ N let us denote Jj = [j − 1, j]. We assume that

for every function hl(t), its support belongs to some segment Jj , j = j(l).

Our favorite example of a base as above is the Haar base “of step 1”
{hj,l(t), j, l ≥ 0}. Each function h0,l is a characteristic function of the segment
[l, l+ 1], while for j ≥ 1 each hj,l is a “dipole” of unit L2–norm on the segment
[2−j l, 2−j(l + 1)]:

hj,l(t) =





0 for t < l2−j or t ≥ (l + 1)2−j ,

2j/2 for l2−j ≤ t <
(
l + 1

2

)
2−j ,

−2j/2 for
(
l + 1

2

)
2−j ≤ t < (l + 1)2−j .

This is an orthonormal base of L2(0,∞).
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Now consider the random force ~η(t, x) =
∑
j∈M ajη

ω
j (t)ej(x). We take the

processes ηj(t) to be i.i.d. random Haar series:

η1(t) =

∞∑

k=0

ck

∞∑

l=0

ξωk,l hk,l(t) , ck 6= 0. (2.1)

Here {ξωk,l, k, l ≥ 0} are i.i.d. bounded random variables such that |ξk,l| ≤ 1 a.s.
and Dξk,l = p(x) dx, where p(x) is a Lipschitz function, p(0) 6= 0.

It is known that if ck ≡ 1 and {ξωk,l} are independent N(0, 1) r.v., then
(2.1) is a white noise. We assume that the random process in eq. (1.1) is much
smoother than that: the i.i.d. r.v. {ξωk,l} are bounded and the process is
“smooth in time”:

|cn| ≤ Cn−q2−n/2, for each n, (2.2)

where q > 1. Such processes are called red noises.
Consider any red noise η1 as in. (2.1), (2.2), and for N ∈ N consider the

process

βωN (T ) =
1√
N

∫ NT

0

ηω1 (t)dt = c0
1√
N

[NT ]−1∑

l=0

ξω0,l +O
(NT−[NT ]√

N

)
.

Its trajectories are Lipschitz functions of T , and by Donsker’s invariance princi-
ple the process βN (T )/σ, σ2 = E(ξ0,0)2, converges in distribution to the Wiener
process. That is, on large time-scales

∫
η1 behaves as a Wiener process. So the

red noises are “smoother siblings” of the white noise.
In view of (2.2) and since

∑
a2
j < ∞, the force ~η(t) is bounded in H,

uniformly in t and ω. Since (1.1) is a well posed equation of parabolic type, then
usually it possesses the following regularity property, which is being assumed
below: there is a compact set X ⊂ H such that

∀u0 ∈ H there exists t(‖u0‖) ≥ 0 such that u(t) ∈ X ∀ t ≥ t(‖u0‖), ∀ω.

3 Shift Operator S

We wish to pass from continuous to discrete time. To do that let us cut R+ to
the unit segments Jl, l ≥ 1, and consider the process ~η, restricted to any Jj :

~η j(t) = ~η(t− (j − 1)), 0 ≤ t ≤ 1, ~η j : [0, 1]→ HM .

Denote E = L2(0, 1;HM ). Then

the law of ~η j is a measure in E, independent from j,

and suppD~η j is a compact set in E since the r.v. ξk,l are bounded and∑
a2
j <∞,

∑
ck <∞.
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Operator S. Consider the operator

S : H × E → H, (u0, ~η
1) 7→ u(1); u(t) – solution of eq. (1.1), u(0) = u0.

Then u(2) = S(u(1), ~η 2), etc.
Our task is to understand iterations of the operator S, i.e. to study the

equation
uk+1 = S(uk, ~η

k+1), k ∈ N, (3.1)

where u0 ∈ H is given. Certainly for k ∈ N the solution of (3.1) after k step
equals u(k;u0).

Differential of S in ~η. For u ∈ H, ~η ∈ E consider the linearised in ~η map S:

D~η S(u, ~η) : E → H.

This operator examines how a solution u(t) at t = 1 changes when we modify
infinitesimally the force ~η(t), 0 ≤ t ≤ 1, keeping u(0) fixed. More precisely for

any given u0 ∈ H and ~η0 ∈ E to calculate D~ηS(u0, ~η0)(~ξ), ~ξ ∈ E, we do the
following: find a solution u(t) of (1.1) for 0 ≤ t ≤ 1 such that u(0) = u0, ~η = ~η0.

Linearise eq.(1.1) about this u(t) and add to the obtained linear eq. the r.h.s. ~ξ:

v̇ + Lv + dB(u(t))(v(t)) = ~ξ(t), v(0) = 0, 0 ≤ t ≤ 1.

Consider v(1) ∈ H. This is D~ηS(u0, ~η0)(~ξ).

4 The main theorem

We require from the shift–operator S the following three properties:

(H1) (regularity). a) S(X× suppD(~η j)) ⊂ X for some compact X ⊂ H, and
b) there is a compactly embedded Banach space V b H such that:

S : H × E → V is C2–smooth.

(H2) (stability of 0). If in (1.1) ~η ≡ 0, then all solutions of (1.1) converge to 0
exponentially.

(H3) (approximate linearised controllability). This assumption is a key point.
It exists in a strong and weak forms:

(Hstrong
3 ) For each point u ∈ X and every ξ ∈ E, ξ ∈ suppD(~η1), the

mapping D~ηS(u, ξ) : E → H has dense image in H.
This condition is easy to verify. It holds if M = N (all modes are excited),

but it does not hold if M is a finite set. To work with finite–dimensional
random forces ~η we evoke a weaker condition:

(Hweak
3 ) For each point u ∈ X there exists a null-set Ωu such that if ω /∈ Ωu,

then the range of the linear operator D~ηS(u, ~ηω) is dense in H.
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FACT (see [2]). If
? eq. (1.1) is the 2d NSE,
? or eq. (1.1) is the CGL equation

u̇− ε∆u− iγ∆u+ i|u|2pu = ~η(t, x), ε > 0, γ ≥ 0, x ∈ Td,

where
a) either d = 2 and p is any, or
b) d = 3 and p ≤ 2, or
b) d is any, p is any, γ = 0,

and the force ~ηω(t, x) is a red noise as above, then:
1) if M = N, then (H1)– (Hstrong

3 ) holds.
2) if M is a finite set, satisfying some small restrictions, then (H1)– (Hweak

3 )
hold.

The hardest is to check (Hweak
3 ). For the 2d NSE similar results were first

obtained by Weinan E, Mattingly, Pardoux, Hairer, next they were properly un-
derstood by Agrachev–Sarychev, and developed further by Shirikyan, Nersesyan
and others.

Theorem 4.1. Equation (1.1) is exponentially mixing if either
1) (H1)– (Hstrong

3 ) hold,
or if
2) (H1)– (Hweak

3 ) hold, and the mapping S is analytic.

The assertion 2) is proved in [2], and assertion 1) is established in [3], using
the method of [2].

5 How do we prove this? (“Doeblin meets
Kolmogorov”)

Let u(t) ∈ X and u′(t) ∈ X be two solutions of (1.1) with initial data u0 and u′0.
It is not hard to see that in our setting to prove the mixing we should verify
that

dist(Du(t),Du′(t))→ 0 as t→∞, (5.1)

for all u0, u
′
0. How to establish (5.1) ?

Doeblin’ coupling, a.k.a. the method of two equations. In X × X consider the
integer-time dynamics (uk, vk), k ≥ 1, where

(u0, v0) = (u0, u
′
0), (uk, vk) = (S(uk−1, ~ηk), S(vk−1, ~η

′
k), k ≥ 1,

with ~η
′
k = η′k(uk−1, vk−1, ~ηk) such that

D~η ′
k = D~ηk. (5.2)
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Then for each k, uk = u(k) and Dvk = Du′(k). If we can choose ~η
′
k, k ≥ 1, such

that (5.2) holds and

‖uk − vk‖ → 0 as k →∞ a.s., (5.3)

then dist(Du(k),Du′(k))→ 0 as k →∞, and our goal (5.1) is achieved.
To achieve (5.3), at Step 1 we wish to choose the kick ~η

′
1 , depending on u0, v0

and ~η, in such a way that D~η ′
1 = D~η1, and

‖u1 − v1‖ is small with hight probability.

Then the law of u1 will be “rather close” to that of v1, and iterating we will get
(5.3).

We have to distinguish two cases:
a) ‖u0 − v0‖ ≤ δ0,

where δ0 is an additional small parameter;
b) ‖u0 − v0‖ > δ0.

In case b) we choose for ~η
′
1 an independent copy of ~η1, and use the assumption

(H2) (stability of zero) to achieve a) with positive probability, in a few steps.
Now let ‖u0 − v0‖ = δ � 1. This is the main difficulty. Then we choose

~η
′
1 = Ψu0,v0(~η1),

where Ψ is an unknown mapping which preserves the measure D~η1, so D~η ′
1 =

D~η1. The dream would be to find Ψ such that

u1 − v1 = S(u0, ~η1)− S(v0,Ψu0,v0(~η1)) = 0 ∀ ~η1. (5.4)

Then v1 = u1 a.s., and (5.1) is achieved. But this is hardly possible since it is
very exceptional that D(S(u0, ~η

1)) = D(S(u′0, ~η
1)) for u0 6= u′0.

The situation is reminiscent to that treated by Kolmogorov in his celebrated
work which initiated the KAM theory. There Kolmogorov considers a pertur-
bation of an integrable Hamiltonian,

H1(p, q) = H0(p) + εh(p, q), ε� 1, (p, q) ∈ P × Tn, (5.5)

where P is a domain in Rn. If exists a canonical transformation S : P1 × Tn →
P × Tn, where P1 is a large subdomain of P , such that

H1 ◦ S = H ′0(p), (5.6)

then the equation with the transformed Hamiltonian H1 ◦S would be integrable
on P1 × Tn. Since Poincaré it is well known that normally such a transforma-
tion S does not exist. So instead of the hopeless equation

H1 ◦ S −H ′0(p) = 0, S =?,

Kolmogorov suggested to look for S in the form S =id+εS1,1 to linearise the
equation in ε,

(H0 + εh) ◦ (id + εS1) = H ′0(p) + εh1(p, q) +O(ε2),

1here S1 is a vectorfield, and the expression id+εS should be properly understood.
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and to search for an S1 such that h1 = O(ε2). This transformation should be
defined for p from a large subdomain P1 ⊂ P . The term h1 linearly depends
on S, so the equation

h1(S) = 0 (5.7)

is linear in S. It is called homological equation, and one looks for its approximate
solution with a disparity of order ε. If such an S1 exists, then replacing H1 with
the transformed Hamiltonian H2 = H1 ◦ (id+εS1) we arrive at a Hamiltonian
of the form (5.5) but with ε replaced by Cε2. Then we would iterate the
procedure and after infinitely many steps will arrive at a transformation S
which satisfies (5.6) for all p from a Borel subset of P of large measure.

Let us proceed likewise with the impossible equation (5.4). Namely, for
δ = ‖u0 − v0‖ ≤ δ0 let us re-write the equation, looking for the mapping Ψu0,v0

in the form Ψu0,v0 = id + δΦ and neglecting in (5.4) terms ∼ δ2. Then eq. (5.4)
reeds

δ[D~ηS(u0, ~η1)Φ(~η1)− S∆(u0, v0, ~η1)] +O(δ2) = 0,

where S∆ = δ−1(S(v0, ~η1)−S(u0, ~η1)) ∼ 1. Requiring that the sum of the terms
in the square brackets vanishes we get the homological equation:

D~ηS(u0, ~η1)Φ = S∆(u0, v0, ~η1), Φ =? (5.8)

– If (Hstrong
3 ) holds, we can solve the homological equation approximately.

– If (Hweak
3 ) holds, we can solve it approximately for all ω’s outside some

bad event Ω1
u0

of small measure, like in the Kolmogorov scheme above, where
the homological equation (5.7) may be non-soluble, even approximatively, for p
from some small subset of P .

With the solution Φ = Φ(~η1) in hands we, as planned, choose ~η
′
1 = ~η1 +

δΦ(~η1). Then

‖u1 − v1‖ � δ for ω outside Ω1
u0

.

Note that since the control for the norm of the solution Φ of (5.8) is very
poor, then now, in difference with KAM, we cannot obtain the quadratic
approximation

‖u1 − v1‖ � δ2 =
(
‖u0 − v0‖

)2
,

despite the method we are using is quadratic! We only can achieve that
‖u1 − v1‖ ≤ 1

2δ. But this turns out to be enough to get the convergence (5.1).

Two main problems appear on the way:
1) what should we do when ω /∈ Ω1

u0
, so we cannot solve (5.8) approximately?

2) the mapping ~η1 7→ ~η
′
1 = Ψ(~η1) = ~η1 + δΦ(~η1) does not preserve the

measure D(~η1), so D(~η1) 6= D(~η
′
1).

The difficulty 1) usually is present in KAM (there we simply throw away the
set of bad parameters). The second difficulty is specific for this setting.
What should we do?
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Answer to 1). If ω /∈ Ω1
u0

, we take ~η
′
1 = ~η1 (the trivial coupling). Then

‖u1 − v1‖ = ‖S(u0, ~η1)− S(v0, ~η1)‖ ≤ C‖u0 − v0‖ = Cδ,

where C is the Lipchitz constant. If still ‖u1−v1‖ ≤ δ0, we play the same game.
If ‖u1 − v1‖ > δ0, we play the game a), i.e., choose ~η

′
1 to be an independent

copy of ~η1.
Answer to 2). Despite D(~η

′
1) 6= D(~η1), these two laws turn out to be close:

‖D(~η
′
1)−D(~η1)‖var ≤ Cδa, a > 0.

This is enough for us: careful analysis, similar to that in Sections 3.2.2–3.2.3
of [4], shows that iterating a) and b) we prove the theorem.
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