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THE STABILITY OF THE MINKOWSKI SPACE

FOR THE EINSTEIN–VLASOV SYSTEM

JACQUES SMULEVICI

Abstract. This text serves as an introduction to the article [23] written in collaboration
with David Fajman and Jérémie Joudioux, and presented at the Laurent Schwarz Seminar
in March 2018. In [23], we establish the global stability of the Minkowski space viewed as
the trivial solution of the Einstein-Vlasov system. To estimate the Vlasov field, we use the
vector field and modified vector field techniques developed in [21, 22]. In particular, the
initial support in the velocity variable does not need to be compact. To control the effect
of the large velocities, we identify and exploit several structural properties of the Vlasov
equation to prove that the worst non-linear terms in the Vlasov equation either enjoy a
form of the null condition or can be controlled using the wave coordinate gauge. The basic
propagation estimates for the Vlasov field are then obtained using only weak interior decay
for the metric components. Since some of the error terms are not time-integrable, several
hierarchies in the commuted equations are exploited to close the top order estimates. For
the Einstein equations, we use wave coordinates and the main new difficulty arises from
the commutation of the energy-momentum tensor, which needs to be rewritten using the
modified vector fields.

1. Introduction

This text serves as an introduction to the article [23] written in collaboration with David
Fajman and Jérémie Joudioux, and presented at the Laurent Schwarz Seminar in March
2018. In [23], we establish the global stability of the Minkowski space (R1+3, η), where η is
the Minkowksi metric given in global Cartesian coordinates by diag(−1, 1, 1, 1), viewed as the
trivial solution of the Einstein-Vlasov system

Ric(g)− 1

2
R(g)g = T [f ],(1.1)

Tg(f) = 0.(1.2)

Here g is a Lorentzian metric on a 4-dimensional manifold, Ric(g) and R(g) the Ricci and
scalar curvatures of g, f is a massive Vlasov field, T [f ] its energy-momentum tensor and Tg
is the geodesic spray vector field. The Minkowski space is then the simplest solution to these
equations with f = 0.

We refer to Section 5.1 below as well as [48, 19, 49] for a presentation of the equations
and the terminology used here. We recall that the system (1.1)-(1.2) admits an initial value
problem formulation which is, at least when the initial data enjoy sufficient regularity, locally
well-posed [11, 49]. We are therefore interested in the global Cauchy problem for this system,
that is to say we want to understand the asymptotics of the solutions.

The Einstein-Vlasov system is actively used in astrophysics and cosmology. It describes
a statistical ensemble of self-gravitating particles which interact only indirectly through the
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Einstein equations. It is in fact the natural fully general relativistic analogue of the Vlasov-
Poisson system1, replacing Newtonian mechanics by general relativity.

2. The vacuum problem

At least from a PDE perspective, there are two fundamental differences between the Poisson
and the Einstein equations. The Poisson equation is elliptic and linear in the gravitational
potential, while the Einstein equations are (after a suitable gauge choice) hyperbolic and non-
linear in the metric components. In particular, in Newtonian mechanics, no matter source
implies no gravitational force, while in general relativity, there are plenty of non-trivial,
vacuum solutions to the Einstein equations Ric(g) = 0. Thus, the stability of the Minkowski
space for the vacuum Einstein equations is a necessary starting point. This problem was
solved in full generality by Christodoulou and Klainerman [13] (see also [41, 8] and [40, 24]).

Let us recall some of the main features of the problem and its proof. The vacuum Einstein
equations can be recast in so-called wave coordinates as a system of quasilinear wave equations
and the stability of the Minkowski space then corresponds to a small data global existence
result for this system. For any quasilinear system of wave equations, controlling the non-
linearities requires higher order estimates of the solutions, that is to say estimates obtained
after commutation of the equations with well chosen vector fields, so as to control a high
number of derivatives of the solutions. These vector fields typically arise from the symmetries
of the linearised equations. For the wave equation, they are thus the Killing and (some of the)
conformal Killing fields of Minkowski space. One then combines these higher order estimates
with weighted Sobolev inequalities linked to the equations (this is the vector field method of
Klainerman [34]) to prove decay estimates for the non-linear terms2.

It is well known that the case of three spatial dimensions is critical for this type of ques-
tions. In higher spatial dimensions, linear waves enjoy stronger decay properties, so that such
small global existence results always hold for general quasilinear wave equations [34], while
in dimension 3, small data global existence is linked to structural properties of the equations
and blow up is known to occur in some cases [33]. A general criterion that guarantees small
data global existence is the null condition of Klainerman [35]. Essentially, for a solution to
the free wave equation, it is well known that derivatives tangential to the light-cone decay
faster than the transversal ones and the null condition ensures that each non-linear product
contains derivatives tangential to the light-cone.

The null condition is however not satisfied in the wave coordinate formulation of the Ein-
stein equations [12]. Thus, the strategy of [13] exploits another formulation of the Einstein
equations, where the main energy estimates control the curvature rather than the metric it-
self. Another key element of [13] is the construction of an optical function, and then vector
fields, which are tied to the characteristics of the spacetime, or equivalently, to the null cones
of the metric3.

1We refer to the classical [27] for a presentation of the Vlasov-Poisson and related kinetic systems.
2There are many other ways to establish decay estimates, though the vector field method is certainly the

most robust one. In particular, we stress that a standard strategy for quasilinear wave equations consists in
using the basic vector field method and energy estimates to obtain first, rough, decay estimates for the solutions
under weak assumptions, and, only in a second step, use another method, for instance, integral estimates and
representation formulas, to obtain improved decay estimates.

3Interestingly, the null cones of the constructed spacetimes eventually diverge logarithmically compared to
the cones of Minkowski space, as a remnant of the failure of the null condition.
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Even though the Einstein equations in wave coordinates do not satisfy the null condition,
the stability of the Minkowski space was subsequently obtained in this gauge in [40, 41]. The
key observation is that the Einstein equations still enjoy a weak version of the null condition,
of which a trivial example is provided by the system

�u = ∂tv · ∂tv,(2.1)

�v = 0,

where u and v are two scalar functions defined on Rt × R3. The second equation is linear,
thus the first is simply a linear inhomogenous wave equation and obviously the solutions of
this system do not blow up.

In the case of the Einstein equations, this trivial example is replaced by a hierarchy of wave
equations for the metric components. Moreover, in order to control the non-linear terms not
satisfying the null condition, the wave gauge condition �gxα = 0 for the coordinates xα is
used extensively.

3. The mass problem

Recall that an initial data set for the vacuum Einstein equation Ric(g) = 0 is given by
(Σ, g0, k), where (Σ, g0) is a smooth Riemannian manifold and k is a symmetric 2-tensor field,
such that (Σ, g0, k) solves the constraint equations

R(g0)− |k|2 + trg0(k)2 = 0,

divk − d(trg0k) = 0,

where R(g0) is the scalar curvature of (Σ, g0), |k|2 = kijk
ij , trg0k = kijg

ij
0 , [divk]j = ∇(g0) ikij ,

with ∇(g0) the Levi-Civita connection of g0.
In the case of perturbations of the Minkowski space, one considers initial data such that

Σ = R3 and the data are asymptotically flat i.e. g0 tends to the Euclidean metric and k
tends to 0 as |x| = r → ∞. The positive mass theorem [51, 60] then implies that g0 =
δE(1 + 2m/r) + o(r−1−ρ), where δE is the Euclidean metric, ρ > 0 and where m > 0 unless
the initial data correspond to an initial data set induced by the Minkowski space, in which
case the solution of the evolution problem must naturally coincide with Minkowski space.

The positive mass theorem limits the possible radial decay of the initial data. In particular,
one cannot consider compact initial data, for which the metric perturbations would be all
contained in some ball of finite radius. The closest one can get from those are initial data
corresponding to the Schwarzschild metric outside from some compact set. We refer to [15,
14, 16] for general methods leading to the construction of such data.

For a solution of the linear wave equation in Minkowski space �ψ = 0, the interior decay
of ψ, i.e. estimates of the form |ψ(t, x)| . C(R) 1

(1+t)p for |x| < R, is directly related to the

amount of radial decay of the initial data for ψ. The stronger the decay, the higher the value
of p. In view of the r−1 behavior of the initial data for the perturbations, this implies that,
even at the linearised level, we cannot expect interior decay faster than t−1 for the metric
perturbations |g − η| and t−2 for their first derivatives |∂g|.

4. Einstein-matter systems

Consider now a coupled system of the form

Ric(g)− 1

2
gR(g) = T [ψ],(4.1)

Ng(ψ) = 0,(4.2)
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where T [ψ] is the energy-momentum tensor of some matter field ψ, itself subject to an evo-
lution equation depending on the metric g, which we write schematically as (4.2).

If ψ solves a wave equation, as in the scalar field case �gψ = 0 or the Maxwell equations,
the matter equation (4.2) can be treated by the same methods as the Einstein equations
themselves. In particular, one can commute the Einstein equations and the matter equations
by the same vector fields and thus extend the vacuum stability results to these cases [41, 8,
43, 53].

One of the simplest models for which this approach does not readily work is the Einstein-
Klein-Gordon system, where the matter field ψ is a scalar function solving the Klein-Gordon
equation

(4.3) �gψ − ψ = 0,

and where the energy momentum tensor is given by

T [ψ] = dψ ⊗ dψ − 1

2
g
(
g(∇ψ,∇ψ) + ψ2

)
.

The Klein-Gordon equation shares many properties with the wave equation, but it has less
symmetries. In particular, it enjoys poor commutation properties with respect to the scaling
vector field S = xα∂xα . Moreover, in dimension 3, the interior decay for ∂ψ is limited by 1

t3/2
,

which is weaker than the maximal interior decay one can obtain for the first derivatives of
the metric components in the vacuum case. It does enjoy on the other hand stronger decay
near the light cone than a pure wave. Finally, the classical vector field method of Klainerman
for Klein-Gordon fields [36] typically requires the use of a hyperboloidal foliation, while the
analysis of the vacuum Einstein equations as in [13, 41] uses only a foliation by standard,
asymptotically flat, spacelike hypersurfaces as well as a foliation by null cones.

In view of (or despite) the above difficulties, the stability of the Minkowski space for the
Einstein-Klein-Gordon system was only recently obtained in [38] (see also [56]). In some sense,
this is the first stability result (in three spatial dimensions, without symmetry or cosmological
constant) for an Einstein-matter system which cannot be obtained by a direct extension of
the methodology of the vacuum case.

5. The Einstein-Vlasov system

The Einstein-Vlasov system (1.1)-(1.2) couples the Einstein equations to kinetic theory.
The necessary notions as well as the notation we use here, in particular, the definition of the
submanifold P and the transport operator Tg is reviewed in the next section.

For particles of mass mp, the Vlasov field f is then a non-negative function defined on the
submanifold P of the tangent bundle4 corresponding to future-directed causal vectors normal-
ized to −m2

p. The Vlasov field f then is, at each point of P, the density of particles with given
position and velocity (or momentum). The Vlasov equation Tg(f) = 0 is the conservation of
this particle density by the geodesic flow. The local Cauchy theory for the Einstein-Vlasov
system was treated in [11] (see also [49], Chapter 6). In particular, to any given appropri-
ate initial data set (Σ, g0, k, f0), one can associate a unique (up to diffeomorphism) maximal
Cauchy development (M, g, f), where (M, g) is a Lorentzian manifold and f a Vlasov field.

4Since we can use the metric to identify the tangent and cotangent bundles, we can also consider f as a
function on a submanifold of the cotangent bundle. While this is perhaps less common, we shall actually use
this formulation here, see Section 5.1.
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5.1. Vlasov fields in the cotangent bundle formulation. Let (M, g) be a smooth time-
oriented, oriented, 4-dimensional Lorentzian manifold.

We denote by P the mass-shell. While it is generally considered as a submanifold of the
tangent bundle TM , we shall, equivalently, consider here P as a subset of the cotangent
bundle5 T ?M , defined by

P :=
{

(x, v) ∈ T ?M : g−1x (v, v) = −1 and v future oriented
}
.

Given a coordinate system on M , (U, xα), for any x ∈ U ⊂M , any v ∈ T ?xM can be written
as

v = vα[dxα]x
and the functions v → vα can be used to define a coordinate system on T ?xM called conjugates
to the coordinates (xα). In the following, we consider such coordinate systems even if it is
not stated explicitly. We denote by π the canonical projection

π : P →M.

For x ∈M , we define a metric on T ?xM by

g−1T ?xM = gαβdvαdvβ,

where gαβ are the components of g−1 in a local coordinate system (U, xα) and vα are conjugate

to the xα. Let dµT ?xM be the associated volume form, i.e. dµT ?xM =
√
−g−1dv0∧dv1∧dv2∧dv3

and let qx be the map

qx : T ?xM → R,
v 7→ g−1T ?xM (v, v).

Let dq be its differential (in v). Since π−1(x) = q−1 ({−1}) is a level set of q, dq = 2dvαvβg
αβ

is normal to π−1(x) and on π−1(x), there is a unique volume form denoted dµπ−1(x) such that

dµT ?xM =
1

2
dq ∧ dµπ−1(x).

We assume that there exist local coordinates such that x0 = t is a smooth temporal function,
i.e. it is strictly increasing along any future causal curve and its gradient is past directed and
timelike6. In that case, the algebraic equation

vαvβg
αβ = −1 and vα future directed

can be solved for v0 by

(5.1) v0 = −(g00)−1
(
g0jvj −

√
(g0jvj)2 + (−g00)(1 + gijvivj)

)
.

It follows that (xα, vi), 1 ≤ i ≤ 3 are smooth coordinates on P and for any x ∈ M , (vi),
1 ≤ i ≤ 3 are smooth coordinates on π−1(x). With respect to these coordinates, the volume
form dµπ−1(x) reads

dµπ−1(x) =

√
−g−1
vβgβ0

dv1 ∧ dv2 ∧ dv3.

5This formulation is linked with the Hamiltonian property of the equations, cf [19].
6The fact that the gradient of t is timelike is equivalent to g00 < 0 and the property of being strictly

increasing along any future causal curve implies that the induced metric on each level set of t has to be
positive.
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For any sufficiently regular7 distribution function f : P → M , we define its energy-
momentum tensor as the tensor field

(5.2) Tαβ[f ](x) =

∫

π−1(x)
vαvβfdµπ−1(x).

In the following, to simplify the notation, we write∫

π−1(x)
as

∫

v
and dµv for the measure dµπ−1(x).

Even on a curved spacetime, we use another reference measure, namely that corresponding
to the Minkowski space dv√

1+|v|2
. When we do so, we write the measure explicitly.

The Vlasov field f is required to solve the Vlasov equation, which can be written in the
(xα, vi) coordinate system as

(5.3) Tg(f) := gαβvα∂xβf −
1

2
vαvβ∂xig

αβ∂vif = 0.

It follows from the Vlasov equation that the energy-momentum tensor is divergence free
for solutions of the Vlasov equation. More generally, for any sufficiently regular distribution
function k : P → R,

∇αTαβ[k] =

∫

v
Tg[k]vβdµv.

5.2. Previous results on the stability of the Minkowski space for the Einstein-
Vlasov system. The stability of the Minkowski space for the spherically symmetric Einstein-
Vlasov system in dimension 3 + 1 has been treated in [45, 47] for the massive case and in
[17] for the massless case with compactly supported initial data. A proof of stability for the
massless case without spherical symmetry and with compact support in both x and v has been
given in [55]. As in [17], the compact support assumptions and the fact that the particles are
massless are important as they allow to reduce the proof to that of the vacuum case outside
from a strip going to null infinity.

In [23], we prove the stability of the Minkowski space for the Einstein-Vlasov system in the
case of a Vlasov field corresponding to massive particles. For simplicity, we assume that all
particles have the same mass mp and we later fix mp = 1.

5.3. Statement of the results. The main result of [23] can then be stated as follows.

Theorem 5.1. Let (Σ = R3, g0, k, f0) be an initial data set for the Einstein-Vlasov system
which coincides with a Schwarzschild initial data set of mass m ≥ 0 outside from a ball of
radius R > 0.

Let (M, g, f) be the unique8 maximal globally hyperbolic development of the given initial
data set and denote by i : Σ→M the embedding of Σ into a Cauchy hypersurface of M given
by the local existence theorem.

7By “sufficiently regular”, we mean that f is smooth enough and decays in v sufficiently fast so that
T [f ] is well-defined and the necessary integration by parts in v can be performed. Later, we also perform
integration in x, so we also require the regular distribution function f to obey decay in the x variable along
each hyperboloid. In any case, one can assume for simplicity that all distribution functions are smooth and
compactly supported for all computations to hold.

8As usual, by uniqueness, we mean uniqueness up to diffeomorphism.
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Let N ≥ 14, q ≥ 3 and ε > 0. Assume that

||g0 − δE ||HN (|x|<R) + ||k||HN−1(|x|<R) +m2

+||(1 + |v|2)qf0||WN+3,1(T ?R3) + ||(1 + |v|2)q+2f0||WN−2,1(T ?R3) ≤ ε,
where δE is the Euclidean metric and m the mass of the Schwarzschild metric for |x| ≥ R.

Then, there exists ε0(R) > 0 such that if ε ≤ ε0(R), there exists a global system of wave
coordinates (t, x) on R4 ' M such that, t is a temporal function, i(Σ) = {t = 2} and with
K := {(t, x) / |x| < t−1}, for (t, x) ∈ J+(i(Σ))\K, g coincides with the Schwarzschild metric
of mass m, while for (t, x) ∈ K ∩ J+(i(Σ)), we have

EN [g](ρ) ≤ DN ερ
DN ε

1/2
,

EN−2,q+2[f ](ρ) ≤ DN ερ
DN ε

1/2
,

EN,q[f ](ρ) ≤ DN ερ
DN ε

1/2
,

||g(t, x)− η||L∞x ≤ DN ε
1/2(1 + t)−1+DN ε

1/2
,

where ρ =
√
t2 − |x|2 denotes a hyperboloidal time function, DN is a constant depending only

on N and EN [g], EN,q[f ] are energy norms depending on up to N derivatives of f and g.
In particular, (M, g) is future causal geodesically complete.

Remark 5.2. A similar stability result has been obtained independently by Lindblad and
Taylor [42].

Remark 5.3. A similar statement holds for the past of i(Σ). Moreover, redefining some of
the coordinates, we can shift the slice {t = 2} to any other t = const slice.

Remark 5.4. We refer to [23], Section 2.9 and 2.10 for a precise definition of the norms
EN (g) and EN,q(f). Roughly speaking, EN (g) is a natural energy norm for g associated to
the hyperboloidial foliation, obtained by from a first order energy norm by commutation with
Minkowskian vector fields. For the Vlasov fields, we use on the other hand modified vector
fields, as explained below in Section 5.4.3.

The index q in EN,q(f) refers to the number of additional v weights, so that E0,0(f)
correspond to the natural energy norm of f . The norms ||.||HN and ||.||WN+3,1 which we use
for the initial data are standard Sobolev norms.

Remark 5.5. When |α| ≥ N − 2, we prove L2 decay estimates for source terms of the form

T [K̂α(f)] arising in the wave equations. These require more regularity for the Vlasov field,
hence three extra derivatives are required for the initial datum of f .

Remark 5.6. We refer to the body of the proof for many extra details concerning the asymp-
totics of the solutions. For instance, for q′ ≥ 0 sufficiently small (in particular q′ = 0, corre-
sponding to the basic energy norm), we prove bounds EN−2,q′(f) . ε without growth. More-
over, we obtain sharp pointwise decay estimates on the components of the energy-momentum
tensor T [f ] as well as its derivatives.

Remark 5.7. The geodesic completeness is a direct consequence of the asymptotics of the
metric and its derivatives. See for instance [40], Section 16.

Remark 5.8. For simplicity, we have considered initial data which coincides with the
Schwarzschild data outside of a compact set. Since we use a hyperboloidal foliation, our
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results do not extend immediately to more general data that would allow the Vlasov field
to have non-compact support in the x variable. We note however that the method of this
paper are readily applicable (with slightly different asymptotics) for initial data such that f
is initially supported in Bx × R3

v, for some compact set Bx, and the data for the metric is
such that the analysis of [13] or [41] is applicable. Indeed, in that case, using a standard
domain of dependence argument, the solution is vacuum outside from the domain of influence
of Bx and we can repeat the analysis of [13] or [41] in that region. As is clear from the
proof of our theorem, the techniques we use do not depend on the exact nature of the
asymptotics of the metric at spatial and null infinity. In particular, we prove our main
propagation estimates for the Vlasov field using only weak interior decay for the metric
coefficients (|∂g|(t, x) . t−3/2+δ for |x| < t

2). See also the recent work of Bigorgne [9] for
the Vlasov-Maxwell in dimension greater than 4 and those of Wang [58, 59] concerning
the Vlasov-Norström and the Vlasov-Norström system in dimension 3, where no compact
support in both x and v are assumed.

5.4. Key elements of the proof and main difficulties.

5.4.1. The coupling. At the linear level, the Vlasov equation is given by the free transport
equation on Minkowski space

vα∂xαf = 0,

for f := f(t, x, v), (xα) = (t, x) ∈ R1+3, (vα) =
(
v0, vi

)
, with v0 =

√
m2
p + |v|2, (vi) ∈ R3.

In particular, for massive particles, mp > 0, the characteristics of the Vlasov equation are
the timelike geodesics, while for massless particles mp = 0, the characteristics are the null
geodesics, as for the wave or the Einstein equations.

As in the case of the Einstein-Klein-Gordon equations (4.1)-(4.3), the coupling is non-
trivial.

• Kinetic equations such as the Vlasov equation are intrinsically of different nature
compared to wave equations. The domain of definition of the unknown f is a different
manifold (P) and the coupling through the energy-momentum tensor T [f ] takes the
form of velocity averages of f , i.e. (weighted) integrals in v of f . In fact, the Einstein-
Vlasov system is a system of integro-partial-differential equations and not a pure PDE
system.
• For massive particles, the characteristics are different from those of the wave equation.

For the free transport operator, they are given by the timelike curves

(
t, t vi√

1+|v|2

)
.

Note that for high velocities |v| → +∞, these curves approach the null curves (t, ωit),

where ωi = vi

|v| ∈ S2. For low |v|, we do expect to face the difficulty of an equation

that does not share the characteristics of the wave equation. On the other hand,
for large |v|, we expect the difficulties associated with pure wave equations, such
as the slow decay of transversal derivatives to the light-cone, to also be an issue.
This difficulty naturally disappears for distributions which are of compact v support
initially, but we treat here initial data which are merely integrable in v against a
measure (1 + |v|2)k/2dv.

5.4.2. Commuting the Vlasov equation using complete lifts. Another important difficulty arise
from commuting the Vlasov equation.

Jacques Smulevici
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Recall that we cannot expect to control the behaviour of the metric components without
commuting the Einstein equations. In view of the coupling, this implies that we must estimate
KNT [f ], where KN is a differential operator of order N . In flat space, where g is the
Minkowski metric η, we have

Tαβ[f ] =

∫

v∈R3

fvαvβ
dv√

m2
p + |v|2

,

so that, for any vector field K = Kα∂xα ,

KT [f ] = T [K(f)].

The vector fields K are those that commute with the flat wave operator, i.e. the Killing and
conformal Killing fields9 of Minkowski space.

In general, if K is a Killing vector field on a Lorentzian manifold, K(f) does not readily
make sense, since f is defined on a different manifold. Thus, one needs first to lift K to P.
There are several such possible lifts, but the one we consider here is the complete lift of K,

denoted K̂. Complete lifts have the following properties.

• The complete lift operation lifts vector fields on M to vector fields on TM .

• If K is Killing, then K̂ is tangent to the submanifold P of TM . In particular, for any

regular distribution f defined on P, K̂(f) is well-defined.

• If K is Killing, K̂ commutes with the geodesic spray vector field Tg.

• If K is Killing, LKT [f ] = T [K̂(f)], where LK is the Lie derivative in the direction
of K.

In [21], we exploited such a geometric treatment of the commutation properties of the Vlasov
equation to extend the traditional vector field method of Klainerman for wave equations to
the class of transport equations of Vlasov type10. In particular, we established Klainerman-
Sobolev inequalities for velocity averages of Vlasov fields and gave an illustration of our
method to obtain (almost) sharp asymptotics for the 3-dimensional massless and the n ≥ 4
massive Vlasov-Nordström systems.

5.4.3. Non-integrable decay and the modified vector fields. While it seems that working with
complete lifts would thus solve the difficulties involved with commuting the Vlasov equation
and the energy-momentum tensor, for a general perturbation of Minkowski space, one should
not expect any of the original Killing fields to remain Killing, so that none of the above
properties can be directly applied. As a first step, one can write the Vlasov equation in coor-
dinates, and then commutes the Vlasov equation with coordinate equivalents of the original
vector fields of Minkowski space. For instance, let us write schematically the Vlasov equation
as

Tg(f) = vα∂xαf +Q(∂g, v, v)∂vf,

for some multi-linear form Q, and consider a Lorentz boost Zi = t∂xi + xi∂t. In Minkowski

space, the restriction to P of its complete lift would be given by Ẑi = t∂xi + xi∂t + v0∂vi .

9We note that they are many variants of these methods. In particular, one can commute only with a
subalgebra of the full algebra of Killing and conformal Killing fields (see for instance [37]), or, in another
setting, one can commute with vector fields containing only radial weights, as in [18].

10See [62] for an extension of these methods to other dispersive PDEs.
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Commuting the above equation, we obtain

Tg(Ẑif) = −[Ẑi, Q(∂g, v, v)∂v]f.

Neglecting the v components, the right-hand side leads to error terms of the form ∂Z(g) ·∂vf .
On the other hand, for a solution of the free transport operator, ∂vf behaves essentially
like t∂xαf . If we expect to prove boundedness for some norms of |∂xαf |, then t∂Z(g) needs

to be time integrable in order to control Ẑf . Assuming that the interior decay for the
metric components11 can readily be used, in three spatial dimensions, |t∂Z(g)| . 1

t leads to
logarithmic divergences. Any loss in the Vlasov estimates would limit the interior decay for
the metric even further, since in order to obtain sharp, or almost sharp, interior decay, one
already needs sharp estimates on the source terms KNT [f ] arising in the equations for the
metric components.

This interesting issue is in fact already present in the much simpler Vlasov-Poisson system,
where it was solved in [52] by modifying the commutation vector fields, replacing the lifted

vector fields Ẑ by some Y = Ẑ + Φi∂xi , where the coefficients Φi are functions in the variable
(t, x, v), depending on the solution and constructed in order to cancel the worst error terms
in the commutator formulas12. The method of modified vector fields was adapted to a basic
model of wave/kinetic interaction, namely the 3-dimensional Vlasov-Nordström system, in
[22]. Many of the difficulties described above are in fact present for this system. In particu-
lar, important strutural properties of the system where used in [22] in order to account for
difficulties arising for large v.

In [23], we thus also consider commuting the Vlasov equation with modified vector fields.
The use of modified vector fields is however not without drawbacks. Since the coefficients of
these vector fields depend on the solution itself, they need to be estimated. Moreover, these
coefficients depend on (t, x, v) and as a consequence, these modified vector fields cannot be
used in return in the wave equations. Thus, an important effort is made to rewrite source
terms of the form KNT [f ], that arise after commuting the wave equations, in terms of the
modified vector fields. Here, the integration in v present in the definition of T [f ] is crucially
used. Finally, the Klainerman-Sobolev inequalities must also be rewritten using the modified
vector fields.

5.4.4. Hierarchy of equations and the null structure. We first prove energy estimates for the
Vlasov field assuming weak interior decay for the metric components. With only these weak
estimates for the metric coefficients at our disposal, some of the error terms in the commuted
Vlasov equation fail to be time-integrable. To close the estimates, we exploit a hierarchy in the
commuted equations. More specifically, we first find replacements for the spatial translations
that enjoy improved commutation properties with the Vlasov equation. These vector fields13,

denoted Xi, are simply given by Xi = ∂xi + vi√
1+|v|2

∂t and the improvement results from the

11For some metric components, there is already a logarithmic divergence for the interior decay estimates,
so that the expected behaviour is in fact worse than the one presented here. Moreover, as the name indicates,
the interior decay estimates are only valid in the interior region and the fact that they are not global is another
source of difficulty that we neglected in this informal discussion, linked with the null structure of the equations.

12See also [31] for previous results concerning sharp asymptotics for solutions of the Vlasov-Poisson system
based on the method of characteristics.

13We already used a version of these vector fields in [22].
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identity

Xi =
Zi
t

+
vi
w0
∂t,

where vi = vi − xi

t v
0. Using this identity, one can prove that a product of the form Xi(ψ) · k

for ψ a solution to the wave equation and k a solution to the Vlasov equation enjoys better
decay properties compared to an arbitrary product ∂ψ · k.

Assuming weak bounds on the first order energy, we then prove that commuting with Xi

only produces integrable error terms, and thus obtain estimates for E[Xi(f)]. We then con-
sider commuting with ∂t. Only one term is not time-integrable (because of a lack of null
structure), but it can be estimated using the bounds on E[Xi(f)] and thus produces only a
mild growth ρδ, for some small δ > 0. We then commute with the modified vector fields Y
and again find that the terms which are not time-integrable only depend on E[Xi(f)] and
E[∂t(f)], which allows us to close the first order estimates. This hierarchy is then extended
to the higher order estimates. It is in fact very reminiscent of similar hierarchies present in
the context of the weak null condition, as in the system (2.1).

Once the basic energy estimates for the Vlasov field have been established, one can prop-
agate stronger weighted norms, which then imply, together with the improved decay for the
metric coefficients, energy and decay estimates for the Vlasov field without loss.

5.4.5. The Einstein equations and the top order estimate. The analysis of the Einstein equa-
tions in wave coordinates is now classical and we follow the approach of [40, 41] and its
adaptation to the hyperboloidal foliation in [38]. The major new difficulty consists in rewrit-
ing and estimating the source terms coming from the Vlasov field in terms of the modified
vector fields without any hard14 loss of decay. However, the key step to avoid loss of decay
involves an integration by parts in v, which, in turn, implies a loss of regularity. At top order,
we therefore must allow for some hard loss of decay. The worst source term in the top order
estimate for the metric coefficients then implies another source of small growth at top order.

5.5. Related works. We present here some previous works to put our results in context.

5.5.1. Stability problems for Vlasov systems without sharp decay. There is a large number of
results concerning small data global existence for various systems of Vlasov type, as in [7, 28,
25]. In these works, the gravitational or electromagnetic fields satisfy a linear, inhomogeneous
equation, whose source term is given by velocity averages of the Vlasov field. The linear aspect
of the field equations implies that one can control the system at a much lower level of regularity
than for a system of quasilinear wave equations. Moreover, these systems typically exhibit
a gain of regularity, either because of the elliptic nature of the Poisson equation, or using a
non-resonant phenomenon due to the difference between the characteristics of the waves and
that of the massive particles. This allows to close the estimates without understanding sharp
decays for the velocity averages of the Vlasov field and its derivatives.

5.5.2. Sharp decay for derivatives. The first work establishing sharp decay for derivatives of
velocity averages of the Vlasov field is [31]. The question was revisited using vector field
techniques in [52]. In [21] and [22], we developed and tested a vector field approach to derive
sharp asymptotics for the Vlasov-Nordström system. The techniques of [31] have also been
extended to the so-called Poisson-Yukawa system in dimension 2 [10]. More recently, they
have been further study of these types of problems in order to consider data with more general

14We can afford a ρDδ for δ > 0 small enough in these estimates and D being a positive constant.

Exp. no XV— The stability of the Minkowski space for the Einstein–Vlasov system

XV–11



asymptotics (and no compact support assumptions in x or v). In [9], Bigorgne first proved
sharp decay for the Vlasov-Maxwell system in dimension greater than 4 using an extension
of the vector field method for Vlasov field and an analysis of the null structure of the system.
Wang has since obtained similar results for the Vlasov-Poisson [57], Vlasov-Norström [58]
and Vlasov-Maxwell systems [59] (all in dimension 3), by combining the vector field and the
analysis of the null structure with Fourier analytic techniques insprired by works such as [32].

5.5.3. Non-trivial stationary states and further stability results. The strongest results con-
cerning the stability of non-trivial stationary solutions of the gravitational Vlasov-Poisson
system have been obtained in [39]. They are not based on decay estimates but on a varia-
tional characterisation of the stationary solutions. On the other hand, this type of method
does not provide asymptotic stability of the solutions but orbital stability. It is likely that any
result addressing the question of asymptotic stability will need to go back to an appropriate
linearization of the equations combined with robust decay estimates15.

There is a large literature concerning the construction of stationary states for the Einstein-
Vlasov system [46, 44, 5, 6, 3, 4, 61]. We refer to the living review [2], Section 5, for a detailed
discussion of those results. Naturally, it would be interesting to understand the stability
properties of any of these stationary solutions.

The vector field method has also been extended to the Kerr background to prove Morawetz
estimates for massless Vlasov fields, see [1]. The approach relies on the use of multiplicative
symmetries for massless fields.

5.5.4. The cosmological case. There is also a large amount of works concerning solutions
to the Einstein-Vlasov system arising from initial data given on a compact manifold. Let us
mention in particular the work of Ringström [49], concerning the study of expanding solutions
with de-Sitter like asymptotics, as well as the stability result [20], where the slower expansion
only provides polynomial decay for perturbations.

5.5.5. Coupled systems. There are several recent works involving coupled systems of equa-
tions for which the coupling is non-trivial, beyond the Einstein-Klein-Gordon system already
mentioned. Let us mention in particular [29, 32, 26] concerning coupled systems of equations
with different characteristics.

5.5.6. Introductory materials on kinetic theory in general relativity. There are many such
materials but we would like to mention the classical texts [19, 48, 54] as well as the elegant
geometric treatment of the Vlasov equation in [50].
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and Département de mathématiques et applications, École Normale Supérieure, CNRS, PSL
Research University, 75005 Paris, France.

E-mail address: jacques.smulevici@math.u-psud.fr

Exp. no XV— The stability of the Minkowski space for the Einstein–Vlasov system

XV–15


