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SPATIAL BEHAVIOR FOR NLS AND APPLICATIONS TO

SCATTERING

THIERRY CAZENAVE1 AND IVAN NAUMKIN2

Abstract. We review recent results on the nonlinear Schrödinger equation

iut + ∆u+ λ|u|αu = 0

where λ ∈ C and α > 0. In any space dimension N ≥ 1 and for any α > 0,

we construct a class of (arbitrarily large) initial values for which there exists
a local solution. Moreover, if α > 2/N , we construct a class of (arbitrarily

large) initial values for which there exists a global solution that scatters as

t → ∞. If α = 2/N and =λ ≤ 0, we construct a class of (arbitrarily large)
initial values for which there exists a global solution, of which we give a precise

asymptotic expansion as t → ∞ (of modified scattering type). These results
rely on the construction of solutions that do not vanish, so as to avoid any
issue related to the lack of regularity of the nonlinearity at u = 0. To study

the asymptotic behavior, we apply the pseudo-conformal transformation. This
yields the desired asymptotic behavior if α > 2/N . In the case α = 2/N , a

further step is required, and we estimate the solutions by allowing a certain

growth of the Sobolev norms, which depends on the order of regularity through
a cascade of exponents.

In this note, we review recent results [6, 7] on the local Cauchy problem and the
asymptotic behavior of solutions for the nonlinear Schrödinger equation{

iut + ∆u+ λ|u|αu = 0

u(0, x) = u0

(1)

on RN , where α > 0 and λ ∈ C.
The Cauchy problem (1) is locally well-posed in L2 if α ≤ 4/N (see [34, 9]), in

H1 is α ≤ 4/(N − 2) (see [13, 9]), and in H2 if α ≤ 4/(N − 4) (see [19, 9, 5]). More
generally, (1) is locally well-posed in Hs if

either s ≥ N

2
, or 0 ≤ s < N

2
and α ≤ 4

N − 2s
(2)

(see [8, 14, 20, 24]), but under the additional condition

α > [s] (3)

if s > 1 and α is not an even integer. (Here, [s] the integer part of s.) Condition (3)
appears because solutions are constructed by a fixed-point argument, for which
one is led to estimate derivatives of order up to s of |u|αu. Indeed, even if u is
smooth, |u|αu need not be smooth if α is not an even integer. For instance in

dimension 1, u(x) = xe−x
2

belongs to H∞(R), but if 0 < α ≤ 1/2, then |u|αu 6∈
H2(R). Assumption (3) ensures that the map u 7→ |u|αu is sufficiently smooth for
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hospitality.

Séminaire Laurent-Schwartz — EDP et applications
Institut des hautes études scientifiques, 2017-2018
Exposé no I, 1-11

I–1



the appropriate estimates to hold. Condition (3) was improved in certain cases,
see [27, 11], but not eliminated except for s ≤ 2. We emphasize the fact that, even
if condition (3) is not optimal, some regularity condition like (3) is necessary. For
instance it follows from [4, Theorem 1.5] that if 0 < α < 1 and s > 3 + α + N/2,
then the Cauchy problem (1) is ill posed in Hs(RN ), even though condition (2) is
clearly satisfied.

If α is sufficiently small (α ≤ 4/(N − 4), say), then one can apply the local L2,
H1 or H2 theories, which do not require any regularity condition like (3). On the
other hand, if α is sufficiently large (say, α > N/2), then the local Hs theory applies
for some s > N/2. However, in large dimensions there is a gap for intermediate
values of α for which none of these theories apply. For instance, it seems that no
available local theory applies if N = 12 and α = 1. (Except for the case λ ∈ R and
λ < 0, where the existence of a global weak solution for u0 ∈ H1(RN ) ∩ Lα+2(RN )
follows from compactness arguments, see [30, 32].)

Our first goal is to establish a local existence result for (1) that applies in any
dimension N ≥ 1 and for any α > 0, for an appropriate class of initial data u0.
The following observation is crucial: Since the possible defect of smoothness of
the nonlinearity |u|αu is only at u = 0, there is no obstruction to regularity for a
solution that does not vanish. This suggests to look for such solutions.

In order to determine an appropriate class of initial values, we consider the linear
Schrödinger equation {

iut + ∆u = 0

u(0, x) = u0(x)
(4)

with an initial value u0 ∈ L2(RN ) such that1 inf〈x〉n|u0(x)| > 0, where n > N/2
(so that 〈x〉−n ∈ L2(RN )). We want to estimate infx∈RN 〈x〉n|u(t, x)| and we note
that

u(t) = u0 + i

∫ t

0

∆u(s) ds; (5)

so that

inf
x∈RN

〈x〉n|u(t, x)| ≥ inf
x∈RN

〈x〉n|u0(x)| − t‖〈x〉n∆u‖L∞((0,t)×RN ). (6)

We now must estimate the last term on the right-hand side of (6). We cannot
simply use Sobolev’s embedding Hs ↪→ L∞ for s > N/2. Indeed, this would
require in particular 〈x〉n∆u0 ∈ L2(RN ). In the model case u0 = 〈·〉−n, this means
〈·〉−2 ∈ L2(RN ), which fails if N ≥ 4. On the other hand, still for u0 = 〈·〉−n, we
see that |〈x〉n∆m+1u0| ≤ C〈x〉−2m−2, which belongs to L2(RN ) if m is sufficiently
large. Therefore, we estimate the last term on the right-hand side of (6) by applying
Taylor’s formula with integral remainder

u(t) =

m∑

j=0

(it)j

j!
∆ju0 +

im+1

m!

∫ t

0

(t− s)m∆m+1u(s)

with m sufficiently large (for instance m > N/2). Applying the Laplacian, we
obtain

‖〈x〉n∆u(t)‖L∞ ≤
l+1∑

j=1

(it)j

j!
‖〈x〉n∆ju0‖L∞

+
im+1

m!

∫ t

0

(t− s)m‖〈x〉n∆m+2u(s)‖L∞ .

(7)

1We use the notation 〈x〉 =
√

1 + |x|2
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We now can estimate ‖〈x〉n∆m+2u(t)‖Hs with s > N/2 by energy estimates. More
precisely, we apply a derivative Dβ of order 2m + 4 to (4) and we multiply by
〈x〉2nDβu. Integrating by parts yields

1

2

d

dt
‖〈x〉nDβu‖2L2 = −=

∫
Dβu∇Dβu · ∇〈x〉2n.

Since |∇〈x〉2n| ≤ C〈x〉2n−1, we deduce by applying Cauchy-Schwarz that

d

dt
‖〈x〉nDβu‖L2 ≤ C‖〈x〉n−1∇Dβu‖L2 .

We now can iterate this estimate. Every such integration by parts will decrease
by 1 the power of 〈x〉 which is involved in the estimate, but will at the same time
increase by 1 the number of derivatives. At the last step, it only remains to estimate
a derivative of u with no weight, and this is a standard energy estimate. Thus we
see that we can obtain an estimate of infx∈RN 〈x〉n|u(t, x)| for t sufficiently small
by using (6), (7) and energy estimates. The requirements on the initial value u0

are that 〈x〉n∂βu0 ∈ L∞(RN ) for |β| ≤ 2m for some sufficiently large m, that
〈x〉n∂βu0 ∈ L2(RN ) for 2m + 1 ≤ |β| ≤ 2m + 2 + k with k sufficiently large, and
then 〈x〉n+2m+2+k−|β|∂βu0 ∈ L2(RN ) for 2m+ 3 + k ≤ |β| ≤ 2m+ 2 + k + n.

The above calculations motivate the following definition. We fix α > 0, we
consider three integers k,m, n such that

k >
N

2
, n > max

{N
2

+ 1,
N

2α

}
, 2m ≥ k + n+ 1 (8)

and we let

J = 2m+ 2 + k + n. (9)

We define the space X by

X = {u ∈ HJ(RN ); 〈x〉nDβu ∈ L∞(RN ) for 0 ≤ |β| ≤ 2m,

〈x〉nDβu ∈ L2(RN ) for 2m+ 1 ≤ |β| ≤ 2m+ 2 + k,

〈x〉J−|β|Dβu ∈ L2(RN ) for 2m+ 2 + k < |β| ≤ J}
(10)

and we equip X with the norm

‖u‖X =

2m∑

j=0

sup
|β|=j

‖〈x〉nDβu‖L∞ +

k+1∑

ν=0

n∑

µ=0

∑

|β|=ν+µ+2m+1

‖〈x〉n−µDβu‖L2 (11)

so that (X , ‖ · ‖X ) is a Banach space. Calculations similar to those sketched above
show that, given ψ ∈ X , the map2 t 7→ eit∆ψ is continuous R → X . Moreover,
there exists a constant C1 such that

‖eit∆ψ‖X ≤ C1(1 + |t|)m+n+1‖ψ‖X (12)

for all t ∈ R and all ψ ∈ X . Estimates (6) and (12) imply that if u0 ∈ X , then

inf
x∈RN

〈x〉n|eit∆u0| ≥ inf
x∈RN

〈x〉n|u0(x)| − C1t(1 + |t|)m+n+1‖u0‖X . (13)

In particular, if

inf
x∈RN

〈x〉n|u0(x)| > 0 (14)

then

inf
x∈RN

〈x〉n|eit∆u0| > 0 (15)

for all sufficiently small t. See [6, Proposition 1] for details and complete proofs of
the above statements.

2We denote by (eit∆)t∈R the Schrödinger group on RN
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Estimate (15) indicates that X might be a relevant space for solving the Schrödin-
ger equation (1) by a perturbation argument. Indeed, if u0 satisfies (14), then u(t) =
eit∆u0 does not vanish for t small, so that there is no obstruction in differentiating
|u|αu. In fact, one can prove that if u ∈ X satisfies (14) and if η > 0 is sufficiently
large so that

η inf
x∈RN

〈x〉n|u(x)| ≥ 1 (16)

then |u|αu ∈ X . Moreover, there exists a constant C2 such that

‖ |u|αu‖X ≤ C2(1 + η‖u‖X )2J‖u‖α+1
X (17)

for all u ∈ X satisfying (16). In addition, if u1, u2 ∈ X both satisfy (16), then

‖ |u1|αu1 − |u2|αu2‖X
≤ C2

(
(1 + η(‖u1‖X + ‖u2‖X )

)2J+1
(‖u1‖X + ‖u2‖X )α‖u1 − u2‖X .

(18)

The proof of (17)-(18) follows from elementary (but tedious) calculations based on
the fact that if |β| ≥ 2, then the development of Dβ(|u|αu) contains on the one
hand the term

A =
(

1 +
α

2

)
|u|αDβu+

α

2
|u|α−2u2Dβu, (19)

and on the other hand, terms of the form

B = |u|α−2pDρu

p∏

j=1

Dγ1,juDγ2,ju (20)

where γ + ρ = β, 1 ≤ p ≤ |γ|, |γ1,j + γ2,j | ≥ 1,
∑p
j=0(γ1,j + γ2,j) = γ , and

|γi,j | ≤ |β| − 1 for i = 1, 2. See [6, Proposition 2] for details.
A standard fixed-point argument, based on Duhamel’s formula and on esti-

mates (12), (17) and (18) yields the following local well-posedness result. (This
is [6, Theorem 1], except for the blowup alternative (22).)

Theorem 1. Let N ≥ 1, α > 0 and λ ∈ C. Assume (8)-(9) and let X be defined
by (10)-(11). If u0 ∈ X satisfies (14), then there exist T > 0 and a unique solution
u ∈ C([0, T ],X ) of (1) satisfying

inf
0≤t≤T

inf
x∈RN

(〈x〉n|u(t, x)|) > 0. (21)

Moreover, u can be extended on a maximal existence interval [0, Tmax) with 0 <
Tmax ≤ ∞ to a solution u ∈ C([0, Tmax),X ) satisfying (21) for all 0 < T < Tmax;
and if Tmax <∞, then

‖u(t)‖X +
(

inf
x∈RN

〈x〉n |u(t, x)|
)−1

−→
t↑Tmax

∞. (22)

Sketch of the proof of Theorem 1. We write equation (1) in the equivalent form

u(t) = eit∆u0 + iλ

∫ t

0

ei(t−s)∆(|u|αu)(s) ds, (23)

so we look for a fixed point of the map Φ defined by

Φ(u)(t) = eit∆u0 + iλ

∫ t

0

ei(t−s)∆(|u|αu)(s) ds

on some appropriate set. We let T, η,M > 0 and we define the set E by

E =
{
u ∈ C([0, T ],X ); sup

0≤t≤T
‖u(t)‖X ≤M and η inf

x∈RN
0≤t≤T

〈x〉n|u(t, x)| ≥ 1
}

Thierry Cazenave and Ivan Naumkin
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It easily follows from (6), (12), (17) and (18) that

‖Φ(u)‖L∞((0,T ),X ) ≤ KT ‖u0‖X + T |λ|KT (1 + ηM)2JMα+1

‖Φ(u)− Φ(v)‖L∞((0,T ),X ) ≤ T |λ|KT (1 + 2ηM
)2J+1

(2M)α‖u− v‖L∞((0,T ),X )

inf
x∈RN
0≤t≤T

〈x〉n|Φ(u)(t, x)| ≥ inf
x∈RN

〈x〉n|u0(x)| − TKT (‖u0‖X + |λ|(1 + ηM)2JMα+1)

for every u, v ∈ E , where

KT = (1 + C1)(1 + C2)(1 + T )m+n+1 (24)

Given T > 0 and u0 ∈ X such that (14) holds, we let

η = 2
(

inf
x∈RN

〈x〉n|u0(x)|
)−1

(25)

M = 2KT ‖u0‖X . (26)

In particular, if u(t) ≡ u0, then u ∈ E so that E 6= ∅. It follows easily from the
above estimates that if

T
(
η + (1 + η)|λ|KT (1 + 2ηM

)2J+1
(2M)α(1 +M)

)
≤ 1

2
(27)

then Φ is a strict contraction E → E . Thus Φ has a fixed point u ∈ E , which
is a solution of (23). Since u ∈ E , u satisfies (21). Uniqueness easily follows
from (18) and Gronwall’s inequality. As a matter of fact, X ↪→ L2(RN )∩L∞(RN ),
so uniqueness also follows from [20, Theorem 2.1]. Note that (27) is achieved if
T > 0 is sufficiently small. The extension of the solution to a maximum interval and
the blowup alternative follow from standard arguments, see [7, Proposition 4.1]. �

Remark 2. Here are some comments on Theorem 1.

(i) The space X is determined by the parameters k, n,m, which can be chosen
arbitrarily, as long as they are sufficiently large to satisfy assumption (8).

(ii) Since X ↪→ L2(RN ) ∩ L∞(RN ), it makes sense to say that u ∈ C([0, T ],X ) is
a solution of (1). See e.g. [20, Section 2].

(iii) Theorem 1 shows the existence of solutions of (1) for 0 ≤ t ≤ T . The existence
of solutions for negative t also follows from Theorem 1. Indeed, u(t) is a
solution of (1) on [0, T ], if and only if u(−t) is a solution for −T ≤ t ≤ 0
of equation (1) with λ replaced by λ. Note that changing u0 to u0 does not
change the X -norm, nor the left-hand side of (14). Therefore, if u0 ∈ X
satisfies (14), then u0 ∈ X and u0 also satisfies (14). Therefore, Theorem 1
yields a solution of (1) for −T ≤ t ≤ T for some T > 0.

(iv) It is immediate that S(RN ) ⊂ X . Furthermore, it is not difficult to show
that 〈x〉−p ∈ X if p ≥ n. Therefore, if u0 = c(〈·〉−n + ϕ) with c ∈ C, c 6= 0,
ϕ ∈ S(RN ), and ‖〈x〉nψ‖L∞ < 1, then u0 ∈ X and u0 satisfies (14). In
particular, Theorem 1 applies to such initial values.

We now discuss the low-energy scattering problem. It is a natural conjecture that
if α > 2/N , then small initial values (in an appropriate sense) give rise to global
solutions of (1) that are asymptotically free, i.e. u(t) ∼ eit∆u+ as t→∞ (in some
norm) for some asymptotic state u+. This property is known in dimension N =
1, 2, 3, see [33, 10, 12, 25]. However, in larger dimension, the available methods leave
a gap. This gap is not only due to the limitations discussed above, but also concerns
values of α close to 2/N , for which local existence is not an issue. The reason for
this difficulty is better seen by using the pseudo-conformal transformation. Let
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u ∈ C([0,∞), L2(RN ) ∩ L∞(RN )), b > 0, v ∈ C([0, 1/b), L2(RN ) ∩ L∞(RN )), and
suppose that

u(t, x) = (1 + bt)−N/2eib|x|
2/4(1+bt)v

( t

1 + bt
,

x

1 + bt

)
(28)

for t > 0 and x ∈ RN . It follows that u is a solution of (1) for t > 0 if and only if
v is a solution of the non-autonomous equation

{
ivt + ∆v + λ(1− bt)−(4−Nα)/2|v|αv = 0

v(0, x) = v0(x)
(29)

or its equivalent integral formulation

v(t) = eit∆v0 + iλ

∫ t

0

(1− bs)−(4−Nα)/2ei(t−s)∆|v(s)|2/Nv(s) ds (30)

for 0 < t < 1/b. In addition, u ∈ C([0,∞),Σ) if and only if v ∈ C([0, 1/b),Σ),
where

Σ = H1(RN ) ∩ L2(RN , |x|2dx) (31)

and e−t∆u(t) has a limit in Σ as t → ∞ if and only if v(t) has a limit in Σ as
t → 1/b. Therefore, an asymptotically free solution u of (1) corresponds, via the
pseudo-conformal transformation (28), to a solution v of (29) that exists up to
t = 1/b. (See e.g. [10, Section 3].) The problem is then to solve (29) on [0, 1/b).
If α > 2/N , then the non-autonomous factor (1 − bt)−(4−Nα)/2 in (29) may be
singular at t = 1/b (if α < 4/N), but is integrable. If we use the approach used for
proving Theorem 1, we obtain the following result.

Theorem 3 ([6], Theorem 2). Let N ≥ 1, α > 2/N and λ ∈ C. Assume (8)-(9),
let X be defined by (10)-(11) and Σ by (31). Let ϕ ∈ X satisfy (14), and let

u0 = eib|x|
2/4ϕ, where b > 0. If b is sufficiently large, then there exists a unique,

global solution u ∈ C([0,∞),Σ) ∩ L∞((0,∞) × RN ) of (1). Moreover u scatters,
i.e. there exists u+ ∈ Σ such that e−it∆u(t) → u+ in Σ as t → ∞. In addition,
supt≥0(1 + t)N/2‖u(t)‖L∞ <∞.

Sketch of the proof of Theorem 3. We solve equation (30) on [0, 1/b] with v0 = εϕ.
This amounts to finding a fixed point, in some appropriate set, of the map Φ defined
by

Φ(v)(t) = eit∆u0 + iλ

∫ t

0

(1− bs)−(4−Nα)/2ei(t−s)∆(|v|αv)(s) ds.

Arguing as in the proof of Theorem 1, we obtain a solution v ∈ C([0, 1/b],X )
provided

2

b(Nα− 2))

(
η + (1 + η)|λ|K1/b(1 + 2ηM

)2J+1
(2M)α(1 +M)

)
≤ 1

2
. (32)

(Indeed, T =
∫ T

0
ds in (27) has to be replaced by

∫ 1/b

0
(1 − bs)−(4−Nα)/2ds =

2/b(Nα− 2)).) We see that (32) is satisfied if b > 0 is sufficiently large. Since v ∈
C([0, 1/b],X ), the corresponding u given by (28) is in C([0,∞),Σ)∩L∞((0,∞)×RN )
and scatters as t→∞. The property supt≥0(1 + t)N/2‖u(t)‖L∞ <∞ follows from
the boundedness of v and formula (28). �

Remark 4. Here are some comments on Theorem 3.

(i) It follows from Remark 2 (iv) that Theorem 3 applies to the initial value

u0 = zeib|x|
2/4(〈x〉−n + ψ) where n > max{(N/2) + 1, N/2α}, ψ ∈ S(RN )

satisfies ‖〈x〉nψ‖L∞ < 1, z ∈ C and b > 0, provided b is sufficiently large.
(ii) There are no restrictions on the size of the initial value in Theorem 3. Instead,

b must be large.

Thierry Cazenave and Ivan Naumkin
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(iii) Theorem 3 does not say anything on what happens to the solution u for t < 0.
In fact, one cannot in general expect that the initial values considered in Theo-
rem 3 give rise to global solutions for negative times. See [6, Remark 1.4 (ix)].

(iv) We can apply Theorem 3 to construct solutions of (1) that exist for all t < 0
and scatter as t→ −∞. Indeed, it suffices to apply Theorem 3 to equation (1)
with λ replaced by λ. If u0 satisfies the assumptions of Theorem 3 (for λ) and
u is the corresponding solution, then we see that v(t) = u(−t) is a solution
of (1) (with λ) for t < 0, which scatters as t → −∞, and with initial value
u0. Of course, one cannot expect in general that v is global for positive times,
since this would mean that u is global for negative times. (See (iii) above.)

If α ≤ 2/N , then scattering (including low energy scattering) cannot be expected,
see Strauss [31], Theorem 3.2 and Example 3.3, p. 68. See also [1] for the one-
dimensional case. Therefore,

α = 2/N (33)

is a limiting case, for which the relevant notion is modified scattering, i.e. standard
scattering modulated by a phase. When =λ = 0, the existence of modified wave
operators was established in [26] in dimension N = 1. More precisely, for all
sufficiently small asymptotic state u+, there exists a solution of (1) which behaves
as t→∞ like eiφ(t,·)et∆u+, where the phase φ is given explicitly in terms of u+. (See
also [2]. See [18, 29] for extensions in dimension N = 2.) Conversely, for small initial
values, it was proved in [15] that the asymptotic behavior of the corresponding
solution has this form when =λ = 0, in dimensions N = 1, 2, 3. (See also [21].)
If =λ < 0, then the nonlinearity has some dissipative effect, and an extra log
decay (and also a log correction in the phase) appears in the description of the
asymptotic behavior of the solutions. This was established in space dimensions
N = 1, 2, 3 in [28]. (See also [16, 17] for related results.)

Our main results in the case (33) are the following.

Theorem 5 ([7], Theorem 1.1). Let N ≥ 1, α = 2/N and

λ ∈ R.

Assume (8), (9), let X be defined by (10)-(11), and Σ by (31). Suppose that u0(x) =

eib|x|
2/4v0(x), where b > 0, and v0 ∈ X satisfies (14). If b is sufficiently large, then

there exists a unique, global solution u in the class C([0,∞),Σ)∩L∞((0,∞)×RN )∩
L∞((0,∞), H1(RN )) of (1). Moreover, there exist δ > 0 and w0 ∈ L∞(RN ) with
〈·〉nw0 ∈ L∞(RN ) and h 6≡ 0 such that

‖u(t, ·)− z(t, ·)‖L2 + (1 + t)N/2‖u(t, ·)− z(t, ·)‖L∞ ≤ C(1 + t)−δ (34)

where

z(t, x) = (1 + bt)−N/2eiΦ(t,·)w0

( ·
1 + bt

)

and

Φ(t, x) =
b|x|2

4(1 + bt)
+
λ

b

∣∣∣w0

( x

1 + bt

)∣∣∣
2/N

log(1 + bt).

In addition,

tN/2‖u(t)‖L∞ −→
t→∞

b−N/2‖w0‖L∞ . (35)

Theorem 6 ([7], Theorem 1.2). Let N ≥ 1 and

λ ∈ C with =λ > 0.

Assume (33), (8), (9), let X be defined by (10)-(11), and Σ by (31). Suppose

u0(x) = eib|x|
2/4v0(x), where b > 0, and v0 ∈ X satisfies (14). If b is sufficiently

large, then there exists a unique, global solution u ∈ C([0,∞),Σ)∩L∞((0,∞)×RN )∩
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L∞((0,∞), H1(RN )) of (1). Moreover, there exist δ > 0 and f0, w0 ∈ L∞, with f0

real valued, ‖f0‖L∞ ≤ 1/2, w0 6≡ 0 and 〈·〉nw0 ∈ L∞(RN ) such that

‖u(t, ·)− z(t, ·)‖L2 + (1 + t)N/2‖u(t, ·)− z(t, ·)‖L∞ ≤ C(1 + t)−δ (36)

where

z(t, x) = (1 + bt)−N/2eiΘ(t,·)Ψ
(
t,

·
1 + bt

)
w0

( ·
1 + bt

)

with

Θ(t, x) =
b|x|2

4(1 + bt)
− <λ=λ log

(
Ψ
(
t,

x

1 + bt

))

and

Ψ(t, y) =
( 1 + f0(y)

1 + f0(y) + (2|=λ|/Nb)|v0(y)|2/N log(1 + bt)

)N/2
.

In addition,
(t log t)N/2‖u(t)‖L∞ −→

t→∞
(α|=λ|)−N/2. (37)

The proofs of Theorems 5 and 6 are unfortunately rather technical, so we only
give a very brief sketch below. To prove Theorems 5 and 6, we first apply the same
strategy we use for proving Theorem 3. We apply the pseudo-conformal transfor-
mation (28), which yields equation (30). In the present case (33), equation (30)
takes the form

v(t) = eit∆v0 + iλ

∫ t

0

(1− bs)−1ei(t−s)∆|v(s)|2/Nv(s) ds (38)

In the case α > 2/N , a solution v of (30) can be constructed on the interval [0, 1/b)
by a fixed point argument. In the present case (33), this argument cannot be
applied since (1 − bt)−1 is not integrable at 1/b. We therefore have to modify the
arguments used in the proof of Theorem 3.

We fix v0 ∈ X satisfying (14), and we let u0(x) = eib|x|
2/4v0(x), where b > 0. We

note that it suffices to construct a solution v ∈ C([0, 1/b),X ) of (38) which is not
too singular as t ↑ 1/b. The asymptotic behavior of v as t ↑ 1/b (hence the behavior
of u as t → ∞, where u is given by (28)) is determined by standard arguments.
See [7, Sections 5 and 6].

Arguing as in the proof of Theorem 1, we construct a solution of (38) defined
on a maximal interval [0, Tmax) with Tmax ≤ 1/b. Moreover, if Tmax < 1/b, then v
satisfies (22). (See [7, Proposition 4.1].) We then need to show that if b is sufficiently
large, then Tmax = 1/b and v(t) satisfies appropriate estimates as t ↑ Tmax.

Crucial in our analysis is the elementary estimate
∫ t

0

(1− bs)−1−µds =
1

bµ
[(1− bt)−µ − 1] ≤ 1

bµ
(1− bt)−µ (39)

for every µ > 0 and t < 1/b. Inequality (39) implies that if a certain norm of
ei(t−s)∆|v|αv is estimated by C(1− bt)−σ, then the same norm of the integral term
in (38) is estimated by (C/bσ)(1 − bt)−σ. Our strategy is to allow the norms
‖〈x〉nDβu‖L∞ , ‖〈x〉nDβu‖L2 , ‖〈x〉J−|β|Dβu‖L2 to have a growth like (1 − bt)−σ
as t → 1/b, with σ depending on the norm under consideration. This requires a
refinement of both the linear estimate (12) and the nonlinear estimates (17) (16).
For the linear estimate, one shows that the solution of ivt + ∆v = f , v(0) = v0

satisfies

‖|〈x〉νDβv(t)‖| ≤ ‖v0‖X + C

∫ t

0

(‖v(s)‖X + ‖|〈x〉νDβf(s)‖|) (40)

where ‖| · ‖| is either the L∞ or L2 norm, and ν = n or ν = J − |β|. See [7,
Proposition 2.1]. For the nonlinear estimate, one observes that Dβ(|v|αv) contains
on the one hand terms estimated by |v|α|Dβv|, and on the other hand terms that
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contain products of derivatives of lower order. See [7, Formulas (3.11) and (3.12)].
It follows that if u satisfies (16) for a certain η > 0, then

‖|〈x〉νDβ(|v|αv)‖| ≤ C‖v‖αL∞‖|〈x〉νDβv‖|+W (41)

where ‖| · ‖| is either the L∞ or L2 norm, and ν = n or ν = J − |β|; and W
depends on η and on norms like the one on the left-hand side, but involving deriva-
tives of (strictly) lower order. (See [7, Proposition 3.1].) Assuming ‖|〈x〉νDβv‖| ≤
C(1− bt)−σ|β| and inf〈x〉n|v(t, x)| ≥ C(1− bt)σ̃, we deduce from (40) and (41) that

‖|〈x〉νDβv‖| ≤ C +
C

b
‖v‖αL∞(1− bt)−σ|β| +

C

b
(1− bt)−µ(|β|) (42)

where µ(|β|) is a combination of σ̃ and σ|γ| with |γ| < |β| We then construct
by induction 0 = σ0 < σ1 < · · · < σJ such that σJ < 1 and σ` ≥ µ`. The
factor 1/b in the right-hand side of (42) is what allows us to obtain an estimate
of (1 − bt)σ|β|‖|〈x〉νDβv‖| provided b is sufficiently large. Using this estimate, we
deduce that Tmax = 1/b, hence the desired conclusion. See [7, Proposition 4.3] for
details.

Remark 7. Here are some comments on the above Theorems 5 and 6.

(i) Like Theorem 3, Theorems 5 and 6 do not provide any information on the
behavior of the solution for t < 0.

(ii) It follows from Remark 2 (iv) that Theorems 5 and 6 apply to the initial value

u0 = ceib|x|
2/4(〈x〉−n + ψ) where n > max{(N/2) + 1, N/2α}, ψ ∈ S(RN )

satisfies ‖〈x〉nψ‖L∞ < 1, c ∈ C and b > 0, provided b is sufficiently large.
(iii) One can express formula (34) in the form of the standard modified scattering,

see [7, Remark 1.3 (vi)].

Remark 8. Here are some open questions related to Theorems 5 and 6.

(i) We do not know what happens if =λ > 0. Let us observe that if α < 2/N and
=λ > 0, then it follows from [3, Theorem 1.1] that every nontrivial solution
of (1) either blows up in finite time or else is global with unbounded H1 norm.
The proof in [3] apparently does not apply to the case α = 2/N . See also [7,
Remark 4.4].

(ii) If α < 2/N and =λ ≤ 0, it seems that no precise description of the asymptotic
behavior of the solutions of (1) is available. When λ ∈ R, λ > 0, it is
proved in [35] that all H1 solutions converge strongly to 0 in Lp(RN ), for
2 < p < 2N/(N − 2), but even the rate of decay of these norms seems to be
unknown.

Remark 9. The strategy of constructing solutions of (1) that do not vanish was
adapted to the derivative Schrödinger equations [23], and to generalized KdV equa-
tions [22].
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