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REGULARITY OF FREE BOUNDARIES IN OBSTACLE
PROBLEMS FOR INTEGRO-DIFFERENTIAL OPERATORS

XAVIER ROS-OTON

1. The classical obstacle problem

The obstacle problem is probably the most classic and motivating example in the
study of variational inequalities and free boundary problems. Its simplest mathe-
matical formulation is to seek for minimizers of the Dirichlet energy functional

E(u) =

∫

D

|∇u|2dx (1.1)

among all functions u satisfying u ≥ ϕ in D, for a given smooth obstacle ϕ ∈ C∞.
Here, D ⊂ Rn, and one usually has Dirichlet boundary conditions u = g on ∂D.

free boundary

u

ϕ

Figure 1. The obstacle ϕ and the solution u.

The Euler-Lagrange equations of such minimization problem are

u ≥ ϕ in D

∆u = 0 in {u > ϕ} (1.2)

−∆u ≥ 0 in D.

In other words, the solution u is above the obstacle ϕ, it is harmonic whenever it
does not touch the obstacle, and moreover it is superharmonic everywhere.

The domain D will be split into two regions: one in which the solution u is
harmonic, and one in which the solution equals the obstacle. The latter region is
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known as the contact set {u = ϕ}. The interface that separates these two regions
is the free boundary.

{u = ϕ}
∆u = 0

{u > ϕ}

free boundary

Figure 2. The contact set and the free boundary in the classical
obstacle problem.

From the mathematical point of view, the most challenging question in these
problems is to understand the regularity of free boundaries. Such type of questions
are usually very hard, and even in the simplest cases almost nothing was known
before the 1970s. The development of the regularity theory for free boundaries
started in the late seventies, with the groundbreaking paper of L. Caffarelli [5].
Since then, it has been a very active area of research.

1.1. Regularity theory: known results. Let us next describe the main known
mathematical results on the classical obstacle problem.

Notice that the existence and uniqueness of solutions follows by standard tech-
niques: the solution can be constructed either by minimizing an energy functional
among all functions satisfying u ≥ ϕ, or by using the theory of viscosity solutions
(see e.g. [30, 16]).

The central mathematical challenge in obstacle problems is to understand the
geometry and regularity of the free boundary, i.e., of the interface ∂{u > ϕ}. A
priori such interface could be a very irregular object, even a fractal set with infinite
perimeter. As explained next, it turns out that this cannot happen, and that free
boundaries are smooth (maybe outside a certain set of singular points).

The first results for this problem established the optimal C1,1 regularity of solu-
tions (i.e., second derivatives of u are bounded but not continuous). Then, the first
general result for free boundaries was proved by Kinderlehrer and Nirenberg [27],
who showed that, if the free boundary is C1, then it is C∞. This is a perturbative re-
sult that is proved by flattening the (free) boundary —via a hodograph transform—
and then using a bootstrap argument. The main open problem was still open: to
understand what happens in general with the regularity of the free boundary. As
said before, a priori it could be a very irregular set with infinite perimeter, while
in order to apply the results of [27] one needs the free boundary to be at least C1.
The breakthrough came with the work [5], where Caffarelli developed a regularity
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theory for free boundaries in the obstacle problem, and established the regularity of
free boundaries near regular points.

The main known results from [5, 27, 8, 6, 32] can be summarized as follows:

• At every free boundary point x0 one has

0 < cr2 ≤ sup
Br(x0)

(u− ϕ) ≤ Cr2 r ∈ (0, 1) (1.3)

• If the free boundary is C1, then it is C∞ [27].
• The free boundary is C1 (and thus C∞), possibly outside a certain set of

singular points [5].
• Singular points are those at which the contact set {u = ϕ} has density zero,

and these points (if any) are locally contained in a (n − 1)-dimensional C1

manifold [8, 6, 32].

regular points
singular points

Figure 3. A free boundary with a singular point. The contact set
{u = ϕ} (colored gray) has zero density at the singular point.

• Moreover, similar results hold for the parabolic obstacle problem (Stefan
problem).

To prove such regularity results, one considers blow-ups. Namely, given a free
boundary point x0 one shows that

ur(x) :=
(u− ϕ)(x0 + rx)

r2
−→ u0(x) in C1

loc(Rn),

for some function u0 which is a global solution of the obstacle problem. Notice that
the rescaling parameter r2 comes from the non-degeneracy condition (1.3).

Then, the main difficulty is to classify blow-ups, i.e., show that

regular point =⇒ u0(x) = (x · e)2+ (1D solution)

singular point =⇒ u0(x) =
∑

i

λix
2
i (paraboloid);

see Figure 4. Notice that, after the blow-up, the contact set {u0 = 0} becomes a
half-space in case of regular points, while it has zero measure in case of singular
points.

Finally, once the classification of blow-ups is well understood, then one has to
transfer the information from u0 to u, and show that if x0 was a regular point, then

Exp. no IX— Regularity of free boundaries in obstacle problems

IX–3



u0(x) = (x · e)2+ u0(x) = x21

Figure 4. The blow-up profile u0 at a regular point (left) and at a
singular point (right).

the free boundary is C1 in a neighborhood of x0. We refer to [6] and [33] for more
details.

2. More general obstacle problems

The previous discussion was for the obstacle problem for the Laplacian ∆. Next,
we want to answer the following.

Question: What happens in more general situations, or in other types of obstacle
problems?

We would like to understand the following:

(a) The thin obstacle problem
(b) Obstacle problems for integro-differential operators

Problem (a) arises in Elasticity (the Signorini problem), and in Fluid Mechan-
ics (semipermeable membranes). Problem (b) arises in Probability and Finance
(optimal stopping for jump processes, pricing of options), as well as in Interacting
energies in physical, biological, or material sciences. For a detailed description of
these motivations/applications, we refer to [19], [22], [17], and [15]; see also [35].

3. The thin obstacle problem

The thin obstacle problem (also called the boundary obstacle problem) arises
when minimizing the Dirichlet energy

E(u) =

∫

D+

|∇u|2dx

among all functions u satisfying

u ≥ ϕ on {xn = 0} ∩D+.

Xavier Ros-Oton

IX–4



Here, D+ ⊂ {xn ≥ 0}, and usually one would take either D+ = B+
1 or D+ =Rn

+.
When D+ is bounded, then the Dirichlet boundary conditions are u = g on
∂D+ ∩ {xn > 0}, while when D+ = Rn

+ one simply prescribes u→ 0 at ∞.
A simple variational argument shows that the Euler-Lagrange equations of such

minimization problem are

∆u = 0 in D+ ∩ {xn > 0}
u ≥ ϕ in D+ ∩ {xn = 0}

∂xnu ≤ 0 in D+ ∩ {xn = 0}
∂xnu = 0 in D+ ∩ {xn = 0} ∩ {u > ϕ}.

(3.1)

As in the classical obstacle problem, the existence and uniqueness of solutions for
such problem is standard.

{u = ϕ}

{u > ϕ}
∆u = 0 free boundary

(lower dimensional)

∂xn
u = 0

Figure 5. The contact set and the free boundary in the thin obstacle problem.

The set D+ ∩ {xn = 0} will be split into two regions: one in which ∂xnu is zero,
and one in which u equals the obstacle. The latter region is the contact set. The
interface that separates these two regions is the free boundary.

The equations (3.1) can be written as

∆u = 0 in D+ ∩ {xn > 0}
min

{
−∂xnu, u− ϕ

}
= 0 on D+ ∩ {xn = 0}. (3.2)
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After an even reflection with respect to the hyperplane {xn = 0}, the solution u
will be harmonic across such hyperplane wherever ∂xnu = 0, and it will be super-
harmonic wherever ∂xnu < 0. Thus, such reflected function would formally solve
the classical obstacle problem, but with the restriction u ≥ ϕ only on {xn = 0} (the
obstacle is thin).

3.1. The thin obstacle problem: regularity theory. The regularity theory
for the free boundary differs substantially if we consider the thin obstacle problem
instead of the classical one.

In the classical obstacle problem, all blow-ups are homogeneous of degree 2, and
the full structure of the free boundary is completely understood, as explained above.
In the thin obstacle problem, instead, understanding the regularity of free boundaries
is much harder. An important difficulty comes from the fact that in thin obstacle
problems there is no a priori analogous of (1.3), and thus blow-ups may have different
homogeneities.

The first results for the thin obstacle problem were obtained in the 1960’s and
1970’s. However, even if the regularity of free boundaries in the classical obstacle
problem had been established in 1977 [5], nothing was known for the thin obstacle
problem. Such question remained open for 30 years, and was finally answered by
Athanasopoulos, Caffarelli, and Salsa in [1].

The main result in [1] establishes that if u solves the thin obstacle problem (3.2)
with ϕ ≡ 0, then for every free boundary point x0 we have

(i) either
0 < cr3/2 ≤ sup

Br(x0)

u ≤ Cr3/2 (regular points)

(ii) or 0 ≤ sup
Br(x0)

u ≤ Cr2.

Moreover, they proved that set of regular points (i) is an open subset of the free
boundary, and it is C1,α for some small α > 0.

The proof of this result is strongly related to the theory of minimal surfaces ; see
the survey paper [12]. Namely, to study the regularity of the free boundary they
found a quantity that is monotone as we zoom in a solution at a given free boundary
point. In the theory of minimal surfaces, the corresponding monotonicity formula
implies that the blow-ups of a minimal surface at any point are cones [25]. In case of
harmonic functions or in free boundary problems, the corresponding formula implies
that blow-ups are always homogeneous [10, 33].

In the thin obstacle problem, Athanasopoulos, Caffarelli, and Salsa found that the
Almgren frequency formula, a known monotonicity formula for harmonic functions,
is still valid for solutions to the thin obstacle problem. Such monotonicity formula
states that

r 7→ N(r) :=
r
∫
Br(x0)

|∇u|2
∫
∂Br(x0)

u2
is monotone.
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Thanks to this powerful tool, the blow-up sequence

ur(x) :=
u(x0 + rx)

( ∫
∂Br(x0)

u2
)1/2

converges to a homogeneous global solution u0 of degree µ = N(0+).
Therefore, the characterization of blow-up profiles in the thin obstacle problem

reduces to the characterization of homogeneous blow-up profiles. Analyzing an
eigenvalue problem on the sphere Sn−1, and using the semi-convexity of solutions,
they proved that

µ < 2 =⇒ µ =
3

2
,

and for µ = 3/2 they classified blow-ups. Finally, using again the monotonicity prop-
erty of solutions, and an appropriate boundary Harnack inequality, they established
the result.

After the results of [1], the regularity of the set of regular points (i) was improved
to C∞ in [28, 18] by using higher order boundary regularity estimates. See Garofalo-
Petrosyan [23], our work [2] in collaboration with Barrios and Figalli, and the recent
work of Focardi and Spadaro [21] for a precise description and regularity results on
the set of (non-regular) free boundary points satisfying (ii).

4. Obstacle problems for integro-differential operators

A more general class of obstacle problems is obtained when minimizing nonlocal
energy functionals of the form

E(u) =

∫

Rn

∫

Rn

∣∣u(x)− u(y)
∣∣2K(x− y) dx dy

among all functions u ≥ ϕ in Rn —or with u = g in Dc and u ≥ ϕ in D. Here,
K is a nonnegative and even kernel (K ≥ 0 and K(z) = K(−z)), and the minimal
integrability assumption is

∫

Rn

min
{

1, |z|2
}
K(z)dz <∞.

The most simple and canonical example is

K(z) =
c

|z|n+2s
, s ∈ (0, 1), (4.1)

while a typical “uniform ellipticity” assumption is

λ

|z|n+2s
≤ K(z) ≤ Λ

|z|n+2s
, (4.2)

with s ∈ (0, 1) and 0 < λ ≤ Λ; see for example [4, 14, 34].
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The Euler-Lagrange equations of such minimization problem are

u ≥ ϕ in Rn

Lu = 0 in {u > ϕ}
−Lu ≥ 0 in Rn,

(4.3)

where L is an integro-differential operator of the form

Lu(x) = p.v.

∫

Rn

(
u(y)− u(x)

)
K(x− y)dy

= p.v.

∫

Rn

(
u(x+ z)− u(x)

)
K(z)dz.

(4.4)

In other words, u solves the obstacle problem (1.2) but with the Laplacian ∆ replaced
by the integro-differential operator L in (4.4).

Remark 4.1 (Relation to the thin obstacle problem). When K is given by (4.1), then
L is a multiple of the fractional Laplacian −(−∆)s, defined by

(−∆)su(x) = cn,sp.v.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy.

When s = 1/2 the half-Laplacian (−∆)1/2 can be written as a Dirichlet-to-
Neumann operator in Rn+1

+ : for any function w(x) in Rn, if we consider its harmonic
extension w̃(x, xn+1) in Rn+1

+ then the Neumann derivative ∂xn+1w̃ on {xn+1 = 0} is
exactly the half-Laplacian of w(x) as a function on Rn.

Therefore, the thin obstacle problem (3.2) (with D+ = Rn
+) is the same as

min
{

(−∆)1/2u, u− ϕ
}

= 0 in Rn−1.

Notice that here we just consider the function u on {xn = 0}, and this is why
the problem is in one dimension less, Rn−1. Note also that with this alternative
formulation of the thin obstacle problem the free boundary is not lower-dimensional
anymore, but the operator has changed and it is now (−∆)1/2.

4.1. Regularity theory: known results. In the last decade, there have been
considerable efforts to extend the classical regularity theory for free boundaries of
[5, 6] to the case of integro-differential operators. In the simplest case, L would be
the fractional Laplacian (−∆)s, s ∈ (0, 1). On the one hand, this operator serves as a
model case to study the regularity of the free boundary for general integro-differential
operators (4.4). On the other hand, the obstacle problem for the fractional Laplacian
extends at the same time the classical obstacle problem (which corresponds to the
limiting case s → 1) and the thin obstacle problem (which corresponds to the case
s = 1/2).

The first results in this direction were obtained by Silvestre in [38], who established
the almost-optimal regularity of solutions, u ∈ C1,s−ε for all ε > 0. The optimal C1,s

regularity of solutions, as well as the regularity of the free boundary, were established
later by Caffarelli, Salsa, and Silvestre [11].
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The main result of [11] establishes that if x0 is a regular point then the free
boundary is C1,α in a neighborhood of x0. More precisely, they proved that if u
solves the obstacle problem for the fractional Laplacian (−∆)s in Rn, then u ∈ C1,s,
and for every free boundary point x0 ∈ ∂{u > ϕ} we have

(i) either 0 < cr1+s ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+s (regular points)

(ii) or 0 ≤ sup
Br(x0)

(u− ϕ) ≤ Cr2.

Moreover, the set of regular points (i) is an open subset of the free boundary, and
it is C1,α for some small α > 0.

Notice that the result is completely analogous to the one for the thin obstacle
problem (recall that these two problems coincide if s = 1/2 !).

To establish such result they found a new equivalence between the obstacle prob-
lem for the fractional Laplacian in Rn —for every s ∈ (0, 1)—, and an appropriate
thin obstacle problem in Rn+1. Namely, it turns out that the fractional Laplacian
(−∆)s can be written as a Dirichlet-to-Neumann map in Rn+1

+ for a local operator
with a weight,

div
(
y1−2s∇x,yũ

)
for (x, y) ∈ Rn × R+;

see [13] for more details. When s = 1/2, such Dirichlet-to-Neumann map is exactly
the one in Remark 4.1.

Thanks to such new equivalence between the obstacle problem for the fractional
Laplacian and a (weighted) thin obstacle problem, they found an Almgren-type
frequency formula for the obstacle problem for the fractional Laplacian in terms
of such extension problem in Rn+1

+ . Using such new monotonicity formula, they
extended the regularity theory of [1] to all s ∈ (0, 1), and also to non-zero obstacles ϕ,
as stated above.

After the results of [11], several new results were established concerning the struc-
ture of singular points, the higher regularity of the free boundary near regular points,
or the case of operators with drift; see [2, 21, 28, 26, 24].

4.2. Open questions. Despite all these developments in the last decade, two im-
portant problems remained open.

Open question 1: A very important problem that remained open after these results
was the understanding of obstacle problems for more general integro-differential
operators (4.2).

For the fractional Laplacian, the proofs of all known results relied very strongly
on certain particular properties of such operator. Indeed, the obstacle problem for
this (nonlocal) operator is equivalent to a thin obstacle problem in Rn+1 for a local
operator, for which monotonicity formulas are available.

For more general nonlocal operators these tools are not available, and nothing was
known about the regularity of free boundaries. The understanding of free boundaries
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for more general integro-differential operators was an important problem that was
completely open.

Open question 2: Another key question that remained open was the regularity
of free boundaries in parabolic obstacle problems, even in case of the fractional
Laplacian. The main difficulty in this context was that no parabolic Almgren’s
frequency formula seems to exist for s < 1, and thus the methods of [11] cannot be
used in the parabolic setting.

5. Regularity theory: new results

5.1. Obstacle problems for general integro-differential operators. One of
our main contributions in this context is the understanding of free boundaries in
obstacle problems for general integro-differential operators [9]. In this work we
extend the results of [11] to a much more general context, solving a long-standing
open problem in the field.

Our paper [9], in collaboration with Caffarelli and Serra, introduces a new ap-
proach to the regularity of free boundaries in obstacle problems, and extends the
results of [11] to a general class of integro-differential operators (4.4). The main
difficulty to do so was that for more general nonlocal operators L there are no
monotonicity formulas, while the proofs of [11] relied strongly on such type of for-
mulas.

Our main result in [9] studies obstacle problems for operators (4.4) satisfying

λ

|z|n+2s
≤ K(z) ≤ Λ

|z|n+2s
, with K(z) homogeneous,

and establishes that the set of regular points is open and the free boundary is
C1,α near such points. The first assumption on K is a natural uniform ellipticity
assumption, and the homogeneity of K is equivalent to the fact that L has certain
scale invariance.

More precisely, our result in [9] establishes that, under such assumptions on L, if
u solves the obstacle problem then for every free boundary point x0 ∈ ∂{u > ϕ} we
have:

(i) either 0 < cr1+s ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+s (regular points)

(ii) or 0 ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+s+α,

where α > 0 is such that 1 + s + α < 2. Moreover, we proved that set of regular
points (i) is an open subset of the free boundary, and it is C1,α for all α < s.
Furthermore, we gave a fine description of solutions near all regular free boundary
points in terms of the distance function to the free boundary.

As said before, all this was only known for the fractional Laplacian. For more
general integro-differential operators new techniques had to be developed, since one
does not have any monotonicity formula. Our proofs in [9] are based only on very
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general Liouville and Harnack’s type techniques, completely independent from those
in [11].

Let us briefly explain the global strategy of the proof. Recall that an important
difficulty is that we have no monotonicity formula, and therefore a priori blow-ups
could be non-homogeneous. As we will see, the only property we can use on blow-ups
is that they are convex. Another difficulty is that the nonlocal operator (4.4) makes
no sense for functions that grow too much at infinity. Thus, we need to be very
careful with the growth of functions at infinity, and the meaning of the equation as
we rescale the solution and consider blow-ups.

Sketch of the proof : The general argument goes as follows. Initially, we say that
a free boundary point x0 is regular whenever (ii) does not hold. Then, we have
to prove that all regular points satisfy (i), that such set is open, and that the free
boundary is C1,α near these points.

Thus, we start with a free boundary point x0, and assume that (ii) does not hold
—otherwise there is nothing to prove. Then, the idea is to take a blow-up sequence
of the type

vr(x) =
(u− ϕ)(x0 + rx)

‖u− ϕ‖L∞(Br(x0))

.

However, we need to do it along an appropriate subsequence rk → 0 so that the
blow-up sequence vrk (and their gradients) have a certain good growth at infinity
(uniform in k). We do not want the rescaled functions vrk to grow too much. Once
we do this, in the limit rk → 0 we get a global solution v0 to the obstacle problem,
which is convex and has the following growth at infinity

|∇v0(x)| ≤ C(1 + |x|s+α).

Such growth condition is very important in order to take limits rk → 0 and to show
that v0 solves the obstacle problem. (The fact that v0 solves the obstacle problem
needs to be understood in a certain generalized sense; see [9] for more details.)

Notice that the convexity of v0 comes from the initial assumption that (ii) does not
hold, and is essential in our proof. The idea that blow-ups in the obstacle problem
are convex is first seen in the celebrated article of Caffarelli [5].

The next step is to classify global convex solutions v0 to the obstacle problem
with such growth. We need to prove that the contact set {v0 = 0} is a half-space (a
priori we only know that it is convex). For this, the first idea is to do a blow-down
argument to get a new solution ṽ0, with the same growth as v0, and for which the
contact set is a convex cone Σ. Then, we separate into two cases, depending on
the size of Σ. If Σ has zero measure, by a Liouville theorem we show that ṽ0 would
be a paraboloid, which is incompatible with the growth of ṽ0 (here we use that
s + α < 1). On the other hand, if Σ has nonempty interior, then we prove by a
dimension reduction argument (doing a blow-up at a lateral point on the cone) that
Σ must be C1 outside the origin. After that, we notice that thanks to the convexity
of ṽ0 there is a cone of directional derivatives satisfying ∂eṽ0 ≥ 0 in Rn. Then,
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using a boundary Harnack estimate in C1 domains (which we prove in a separate
paper [36]), we show that all such derivatives have to be equal (up to multiplicative
constant) in Rn, and thus that Σ must be a half-space. Since Σ was the blow-down
of the original contact set {v0 = 0}, and this set is convex, this implies that {v0 = 0}
was itself a half-space. Once we know that {v0 = 0} is a half-space, it follows that v0
is a 1D solution, which can be completely classified.

Once we have the classification of such blow-ups, we show that the free boundary
is Lipschitz in a neighborhood of x0, and C1 at that point. This is done by adapting
techniques from the classical obstacle problem to the present context of nonlocal
operators. Finally, by an appropriate barrier argument we show that the regular
set is open, i.e., that all points in a neighborhood of x0 do not satisfy (ii). From
this, we deduce that the free boundary is C1 at every point in a neighborhood of x0,
and we show that this happens with a uniform modulus of continuity around x0.
Finally, using again the boundary Harnack in C1 domains [36], we deduce that the
free boundary is C1,α near x0.

5.2. Parabolic obstacle problems for integro-differential operators. In col-
laboration with Barrios and Figalli, we studied the parabolic obstacle problem for
the fractional Laplacian in [3].

Despite all the developments for the elliptic problem in the last decade (described
above), much less was known in the parabolic setting. The only result was due to
Caffarelli and Figalli [7], who showed the optimal C1+s

x regularity of solutions in
space. However, nothing was known about the regularity of the free boundary in the
parabolic setting.

Our main theorem in [3] extends the results of [11] to the parabolic setting when
s > 1/2, and establishes the C1,α regularity of the free boundary in x and t near
regular points. The result is new even in dimension n = 1, and reads as follows. Let
us denote Qr(x0, t0) parabolic cylinders of size r around (x0, t0). Then, for each free
boundary point (x0, t0), we have:

(i) either 0 < c r1+s ≤ sup
Qr(x0,t0)

(u− ϕ) ≤ C r1+s,

(ii) or 0 ≤ sup
Qr(x0,t0)

(u− ϕ) ≤ Cε r
2−ε for all ε > 0.

Moreover, the set of points (x0, t0) satisfying (i) is an open subset of the free bound-
ary and it is locally a C1,α graph in x and t, for some small α > 0.

Furthermore, for any point (x0, t0) satisfying (i) there is r > 0 such that u ∈
C1+s
x,t (Qr(x0, t0)), and we have the expansion

u(x, t)−ϕ(x) = c0
(
(x−x0) ·e+κ(t− t0)

)1+s
+

+o
(
|x−x0|1+s+α+ |t− t0|1+s+α

)
, (5.1)

for some c0 > 0, e ∈ Sn−1, and κ > 0.

Remark 5.1 (On the assumption s > 1/2). It is important to notice that the assump-
tion s > 1/2 is necessary for this result to hold. Indeed, the scaling of the equation
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in (x, t) is completely different in the regimes s > 1/2, s = 1/2, and s < 1/2. Since
the analysis of the free boundary is always based on blow-ups, the free boundary is
expected to be quite different in these three regimes.
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