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SPECTRAL STATISTICS OF NON-SELFADJOINT OPERATORS
SUBJECT TO SMALL RANDOM PERTURBATIONS

MARTIN VOGEL

Abstract. In this review paper we present recent results concerning the local eigen-
values statistics of non-selfadjoint one-dimensional semiclassical pseudo-differential op-
erators subject to small random perturbations. We compare the eigenvalue statistics
for perturbations by random matrix and by random potential. We show that they are
universal in the sense that they only depend on the principal symbol of the operator
and the type of perturbation and that they are independent of the distribution of the
perturbation.

Moreover, we will outline the the proof of the principal results in the case of a model
operator. The discussed results are joint work with Stéphane Nonnenmacher [22].
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1. Introduction

It is well known that the spectrum non-selfadjoint operators can be highly unstable
even under tiny perturbations, see [12, 6] for a very good overview. Figure 1 illustrates
the phenomenon of spectral instability in the case of a semiclassical differential operator.
We see that even a small perturbation can suffice to change the spectrum of the operator
significantly.

Spectral properties of non-self-adjoint operators subject to random perturbations have
been studied from various perspectives: In numerical analysis small random perturbations
of large non-selfadjoint matrices have been studied to model the numerical rounding error,
see for instance the works of von Neumann and Goldstine [37], Spielmann and Teng [31]
and Edelman and Rao [11].

In random matrix theory random perturbations of large non-selfadjoint matrices have
been studied with a focus on the outlying eigenvalues. These are eigenvalues which are
found away from the bulk of the spectrum.

Perturbations of large random matrices by deterministic matrices of finite rank have
been studied extensively by Tao [32] and Tao and Vu [33]. The case of large non-selfadjoint
deterministic matrices perturbed by random matrices with coupling constants of order 1
where studied by Bordenave and Capitaine [4]. The regime of small coupling constants
tending to 0 as the dimension of the matrix gets large, have been considered by Davies and
Hager [8], Guionnet, Matchett-Wood and Zeitouni [14] and Sjöstrand and Vogel [28, 27, 29]
in the case of large non-selfadjoint Toeplitz matrices.

In this paper we will, however, focus more on the aspects of spectral instability of
non-selfadjoint semiclassical (pseudo-)differential operators. We consider certain classes
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Figure 1. On the left hand side the red line shows the spectrum of the discreti-
sation of Ph = hD+ e−ix on S1 (approximated by a 3999× 3999-matrix) and the
blue points show the spectrum of Ph perturbed with a random Gaussian matrix
δQ with h = 2 · 10−3 and δ = 2 · 10−12. The right hand side shows the integrated
experimental density of eigenvalues (in the black box), averaged over 400 realisa-
tions of random Gaussian matrices, and the integrated Weyl law, cf Theorem 4.
These figures were presented in [36].

of non-normal semiclassical (pseudo-)differential operator subject to small random per-
turbations. We present a review of recent results which are joint work with Stéphane
Nonnenmacher. Most of the discussion here can be found in [22]. Our main interest lies
in universality properties of the eigenvalue statistics on the scale of their average spacing.

A major tool for studying the region of spectral instability originates from the field of
numerical analysis, see for instance [34, 12]: the so-called ε-pseudospectrum. Roughly
speaking, it consists of the regions in the complex plane where the norm of the resol-
vent of the operator is large and thus indicates how far the eigenvalues can spread under
perturbations.

For P : L2 → L2, a densely defined closed linear operator with resolvent set ρ(P ) and
spectrum Spec(P ) = C\ρ(P ), and for any ε > 0, we define the ε-pseudospectrum of P by

Specε(P ) := Spec(P ) ∪ {z ∈ ρ(P ); ‖(P − z)−1‖ > ε−1}. (1.1)

The set (1.1) describes precisely the region of spectral instability of the operator P , since
any point in the ε-pseudospectrum of P lies in the spectrum of some small bounded per-
turbation of P , see for example [12]. More precisely, we have that

Specε(P ) =
⋃

Q∈B(L2)
‖Q‖<ε

Spec(P + εQ). (1.2)

A third, equivalent definition of the ε-pseudospectrum of P is via the existence approximate
solutions to the eigenvalue problem P − z. More precisely, we have that

z ∈ Specε(P )⇐⇒ ∃uz ∈ D(P ) s.t. ‖(P − z)uz‖ ≤ ε‖uz‖, (1.3)

where D(P ) denotes the domain of P . Such a state uz is called an ε-quasimode or simply
a quasimode.
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1.1. Framework. We begin by fixing the type of the unperturbed operators considered
in this paper: Write ρ = (x, ξ) ∈ R2

x,ξ for a point in phase space and let S(R2,m) denote
a class of smooth symbols whose derivatives are controlled by a smooth order function
m ∈ C∞(R2; [1,+∞[) of polynomial growth, see for instance [38, 10].

Let h ∈]0, 1] and consider symbols admitting the h-asymptotic development

p(ρ;h) ∼ p0(ρ) + hp1(ρ) + . . . in S(R2,m), (1.4)

where p0, p1, p2, . . . are independent of h > 0. We call p0 the semiclassical principal symbol
of p and define the sets

Σ := p0(R2) ⊂ C, Σ∞ := {z ∈ Σ; ∃ρj s.t. p0(ρj)→ z, |ρj | → ∞}. (1.5)

Furthermore, we suppose that the principal symbol p0 is elliptic in a point zout ∈ C\Σ, in
the sense that there exists a constant C0 > 0 such that

|p0(ρ)− zout| ≥ m(ρ)/C0, ∀ρ ∈ R2. (1.6)

Moreover, we assume that

dp0, dp0 are linearly independent at every point ρ ∈ p−1
0 (Ω). (1.7)

For h > 0 small enough, we let pw denote the h-Weyl quantization of the symbol p,

Phu(x) = pw(x, hDx;h)u(x) =
1

2πh

∫∫
e
i
h

(x−y)·ξ p
(
x+ y

2
, ξ;h

)
u(y)dydξ, (1.8)

for u ∈ S(Rd), the Schwartz functions. The closure of Ph, as an unbounded operator in
L2 with domain S(Rd), has domain H(m) := (Ph − zout)−1(L2(R)) ⊂ L2(R) and will be
denoted as well by Ph. Moreover, we write ‖u‖m := ‖(Ph − zout)−1u‖, with u ∈ H(m), for
the associated generalised Sobolev norm.

Due to the ellipticity assumption (1.6) and the growth condition on the weigth m, one
can show the following result by an argument based on a compact deformation of Fredholm
operators, see [15, 17].

Proposition 1. Let Ω̃ ⊂ C\Σ∞ be open simply connected, not entirely contained in Σ and
such that Ω̃∩Σ∞ = ∅. Then, for h > 0 small enough, the spectrum of Ph inside Ω̃ is purely
discrete, comprised only of eigenvalues of finite algebraic multiplicities and contained in a
small neighbourhood of Σ.

We are interested in the spectrum of small random perturbations of Ph in the semiclas-
sical limit h→ 0.

1.2. Spectral instability for semiclassical pseudo-differential operators. Let Ω̃ be
as above and let

Ω b Ω̃ ∩ Σ̊, be open, simply connected, relatively compact with dist (Ω, ∂Σ) ≥ 1

C
. (1.9)

Dencker, Sjöstrand and Zworski [9], and Sjöstrand [26] observed that since Ω is relatively
compact and simply connected, (1.7) implies that there exists J = J(Ω) ∈ N\0 so that

∀z ∈ Ω : p−1
0 (z) = {ρj±(z); j = 1, . . . , J}, with ± {Re p, Im p}(ρj±(z)) < 0,

and ρi±(z) 6= ρj±(z), i 6= j,
(1.10)

Exp. no XIX— Spectral statistics of non-selfadjoint operators subject to small random perturbations
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where {·, ·} denotes the Poisson bracket. Moreover, the phase space points ρj±(z) ∈ R2

depend smoothly on z. For simplicity, we suppose from now on that

∀z ∈ Ω : xi±(z) 6= xj±(z), i 6= j. (1.11)

The Poisson bracket condition (1.10) implies for each j that there exists an h∞-quasimode
for the problems Ph− z and (Ph− z)∗, for z ∈ Ω, microlocalized on ρj±(z), see [7, 9]. More
precisely, assuming (1.10), we have that for all z ∈ Ω and all j = 1, . . . , J , there exist
ej± = ej±(x, z;h) ∈ L2(R), ‖ej±‖ = 1, such that

‖(Ph − z)ej+‖ = O(h∞) and WFh(ej+) = {ρj+(z)}, (1.12)

and
‖(Ph − z)∗ej−‖ = O(h∞) and WFh(ej−) = {ρj−(z)}. (1.13)

We recall that for v = v(h), ‖v‖L2(R) = O(h−N ), for some fixed N , the semiclassical wave
front set of v is defined by

ρ0 /∈WFh(v)
def⇐⇒ ∃a ∈ C∞c (T ∗R) s.t a(ρ0) = 1 and ‖awv‖L2 = O(h∞)

where aw denotes the h-Weyl quantization of a.

In view of the characterisation (1.3) of the pseudospectrum, we see that the assumption
(1.7) implies that Ω is contained in the h∞-pseudospectrum of Ph, a spectrally highly
unstable region.

1.3. Adding a random perturbation. Motivated by Figure 1, we are interested in
the spectral distribution of a "generic" perturbation of Ph. Therefore, it is natural to
consider small random perturbations of the operator Ph. In particular, we are interested
in perturbations by

(1) Random matrix
(2) Random potential.

There is a fundamental difference between those two types of perturbation: a potential,
being a multiplication operator, is a local operator and hence it doesn’t change the wave
front set of the function it acts upon. A matrix, as defined below, on the other hand
can change the wave front set. This will ultimately lead to a different behaviour in the
statistics of the eigenvalues of the perturbed operator.

We will construct the perturbations in the following way:
Let H = −∂2

x + x2 on L2(R) be the Harmonic oscillator, which is a positive self-adjoint
elliptic operator with compact resolvent. Let {ek}k∈N0 denote an orthonormal basis of
L2(R) comprised out of the eigenfunctions of H associated to 0 < λ0 ≤ λ1 ≤ . . . , the
corresponding increasing sequence of eigenvalues of H.

Let (M,F ,P) be some probability space and let E[·] denote the expectation with respect
to the probability measure µ. Let α be a complex-valued random variables defined on
(M,F ,P) such that

E[α] = 0, E[α2] = 0, E[|α|2] = 1, E[|α|4+ε0 ] < +∞, (1.14)

where ε0 > 0 is an arbitrarily small but fixed constant. As a consequence, the Markov
inequality implies the following tail estimate: there exists a constant κα > 0 such that

P[|α| ≥ γ] ≤ κα γ−(4+ε0), ∀γ > 0. (1.15)

Martin Vogel
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Remark 2. For instance, a complex centred Gaussian random variable would satisfy the
above assumptions.

1) Random Matrix Let N(h) = C1/h
2, C1 > 0 large enough. Let qj,k, 0 ≤ j, k < N(h)

be independent and identically distributed complex-valued random variables satisfying the
condition (1.14) and set

Mω =
1

N(h)

∑

0≤j,k<N(h)

qj,kej ⊗ e∗k, (RM)

where ej ⊗ e∗ku = (u|ek)ej for u ∈ L2(R). Moreover, for 0 < δ � 1, we write

P δM = Ph + δMω. (1.16)

2) Random Potential Let N(h) = C1/h
2, C1 > 0 large enough. Let vj , 0 ≤ j < N(h)

be independent and identically distributed complex-valued random variables satisfying
condition (1.14) and set

Vω =
1

N(h)

∑

0≤j<N(h)

vjej . (RP)

Moreover, for 0 < δ � 1, we write

P δV = Ph + δVω. (1.17)

When we use a random potential as a perturbation, we will make the additional symmetry
assumption on (1.4)

p(x, ξ;h) = p(x,−ξ;h). (1.18)
This hypothesis implies that we can group the points ρj±, (1.10), such that ρj± = (xj ,±ξj).
This implies that the centres of microlocalization of the quasimodes ej+ and ej− are located
on the same fibre T ∗

xj
R ' R in phase space.

Restricting the random variables qj,k, vj to a complex disk of radius C/h, C > 0 large
enough, centred at 0, we can show that both Mω and Vω are bounded operators with
probability close to one. Since we are interested in small perturbations, we assume that
for some fixed, but arbitrarily large M � 1

hM ≤ δ ≤ hκ, κ > 5/2. (1.19)

Remark 3. Suppose additionally that the symbol p of the operator Ph, cf (1.4), (1.8), is
analytic in {ρ ∈ C2; |Im ρ| ≤ 1/C}, a small tubular complex neighbourhood of R2 in C2,
and that it satisfies a suitable growth condition there, for instance |p(ρ)| ≤ m(Re ρ). Then,
we can replace the O(h∞) error in (1.12) and (1.12) by an error of O(e1/Ch), see [9]. In
this case we can then allow for coupling constants δ satisfying

e1/Ch ≤ δ ≤ hκ, κ > 5/2.

with C > 1 large enough.

Applying the resolvent of Ph at zout to P δM and P δV , one can show that their spectra in
Ω are purely discrete.

The principal aim of this paper is to show that the statistical properties of these spectra
in Ω are universal in a sense that we will specify later on.

Since p0 − z is elliptic for every z ∈ C\Σ, we have that the resolvent norm
‖(Ph − z)−1‖ = O(1), uniformly as h→ 0. Therefore, in view of the characterisation (1.2)
of the pseudospectrum, the spectra of P δM and P δV are contained in any neighbourhood
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of Σ, for h > 0 small enough. Moreover, since Ω is contained in the h∞-pseudospectrum
of Ph, we will not encounter effects due to the pseudospectral boundary, see [36] for a
discussion. Therefore, we will simply say that Ω is in the bulk of the spectrum of the
perturbed operator.

1.4. Macroscopic spectral distribution: A probabilistic Weyl law. In a series of
works by Hager [16, 15, 17] and Sjöstrand [25, 24], the authors considered randomly per-
turbed operators P δ of the types given in (1.16) and (1.17). Under more restrictive as-
sumptions on the random variables, than (1.14), they have shown the following result.

Theorem 4 (Probabilistic Weyl law). Let Ω be as in (1.9), (1.7). Let Γ b Ω be open with
C2 boundary. Let P δ be either of the randomly perturbed operators P δM or P δV with δ as in
(1.19) with κ > 0 sufficiently large. Then,

#(Spec(P δ) ∩ Γ) =
1

2πh

(∫∫

p−1
0 (Γ)

dxdξ + o(1)

)
(1.20)

with probability
≥ 1− Chη, for some η > 0.

Hager [16, 15, 17] and Sjöstrand [25, 24] give explicit control over both, the error term
in the Weyl law, and the error term in the probability estimate. Similar results have also
been obtained by Christiansen and Zworski [5], Bordeaux-Montrieux [2] and Bordeaux-
Montrieux and Sjöstrand [3].
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Figure 2. Numerically computed spectrum of the operator −h2∂2x + e3ix + δQω
on S1 with h = 10−3 and δ = 10−12. The left hand side shows the case where
Qω is given by a complex Gaussian random matrix and the right hand side the
case where Qω is given by a random potential as in (RP) with coefficients given
by complex Gaussian random variables. This Figure was taken from [22].

This probabilistic Weyl law shows that, with probability close 1, the number of eigen-
values of the perturbed operator P δ in any compact subset Ω of the h∞-pseudospectrum,
away from the boundary ∂Σ (1.5), is of order � h−1. Hence, the spectrum of P δ will spread

Martin Vogel
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out in Ω with an average spacing of the eigenvalues of order h1/2. Figure 1 illustrates this
behaviour: we see that the density simulated eigenvalues of the perturbed operator are
nicely described by a Weyl law. It only breaks down close to the boundary ∂Σ.

1.5. Microscopic spectral distribution: local statistics. Figure 2 compares the spec-
tra of the perturbed operators P δM and P δV . We notice in Figure 2 that in the case of P δV
the distribution of the spectrum is much coarser than in the case of P δM . We can even
observe the formation of small clusters of eigenvalues.

To study this difference in the spectral distribution of the perturbed operators P δM
and P δV we study the local statistics of eigenvalues. That is to say the statistics of the
eigenvalues on the scale of their mean level spacing:

Fix a z0 ∈ Ω. In the case P δM , (1.16), where we perturb the operator Ph with the random
matrix δMω, we study the rescaled point process of eigenvalues of P δM , defined by

ZMh,z0 :=
∑

z∈Spec(P δM )

δ(z−z0)h−1/2 . (1.21)

where the eigenvalues are counted according to their algebraic multiplicity.
This rescaling can be seen as a magnification of the eigenvalues around z0, which after

rescaling have a mean spacing of order � 1.
Similarly, in the case P δV , (1.17), where we perturb the operator Ph with the random

potential Vω, we consider the rescaled point process of eigenvalues of P δV , given by

ZVh,z0 :=
∑

z∈Spec(P δV )

δ(z−z0)h−1/2 . (1.22)

We want to show that under the assumption (1.14) on the random coefficients, in the limit
h→ 0 the correlation functions of the eigenvalues of P δM and P δV in Ω are universal, in the
sense that they are the correlation functions of a point process which

• depends only on the structure of the energy shell p−1
0 (z) and on the type of random

perturbation used, either (RM) or (RP);
• is independent of the probability distribution of the random variables qj,k and vj
used to define the random perturbations, (RM) and (RP), as long as they satisfy
(1.14).

Finally, let us stress once more that our results concern solely the eigenvalues in the bulk
of the spectra of the randomly perturbed operators, that is to say in the interior of the
h∞-pseudospectrum of Ph.

Close to the boundary of pseudospectrum we expect the statistical properties of the
eigenvalues to change drastically. It has been shown in [36] in the case of a model operator,
that close to boundary of pseudospectrum the probabilistic Weyl law for the perturbed
operator breaks down, see Figure 1. In fact, the eigenvalues accumulate there.

1.6. Gaussian analytic functions. Let (αn)n∈N be independent and identically dis-
tributed normal complex Gaussian random variables, i.e. αn ∼ NC(0, 1) for every n ∈ N.
Consider

C 3 z 7→ gσ(z) :=
∞∑

n=0

αn
σn/2zn√

n!
, σ > 0, (1.23)

which is a certain Gaussian analytic function (GAF) on C, in the sense that gσ is a
random variable with values in the space of entire functions so that for any n ∈ N and

Exp. no XIX— Spectral statistics of non-selfadjoint operators subject to small random perturbations
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all z1, . . . , zn ∈ C the random vector (g(z1), . . . , g(zn)) has a centred complex Gaussian
law, i.e.

(gσ(z1), . . . , gσ(zn)) ∼ NC(0,Γ), (1.24)
where the covariance matrix Γ ∈ GLn(C) admits the entries

Γi,j = E
[
gσ(zi)gσ(zj)

]
def
= K(zi, zj) = exp(σzizj). (1.25)

The function C2 3 (z, w) 7→ K(z, w) is called the covariance kernel of the GAF gσ and
it completely determines its distribution as random variable with values in the space of
holomorphic functions on C. Moreover, K completely determines the distribution of

Zgσ =
∑

z∈g−1
σ (0)

δz,

the random point process given by zeros of the GAF gσ. See for instance [20] for a review
of many notions and results concerning these random analytic functions.

2. Main Results

2.1. Perturbation by random potential. We begin with the case P δV , (1.17), where we
perturb the operator Ph by a random potential Vω. By (1.10), we have that

(p0)∗(|dξ ∧ dx|) =
J∑

j=1

(σj+(z) + σj−(z))L(dz), σj±(z) =
1

∓{Re p0, Im p0}(ρj±(z))
(2.1)

where p0 is the principal symbol of Ph as in (1.4), |dξ ∧ dx| denotes the measure induced
by the symplectic volume form on T ∗R ∼= R2 and σj±(z) depend smoothly on z.

If we additionally assume the symmetry hypothesis (1.18), then we can group the
points ρj± such that ρj± = (xj ,±ξj) which implies that σj+(z) = σj−(z).

2.1.1. Universal limiting point process.

Theorem 5. Let Ω b Σ̊ be as in (1.9). Let p be as in (1.4) satisfying (1.7) and (1.18).
Let z0 ∈ Ω. Then, for any open, connected, relatively compact domain O b C, we have
that

ZVh,z0
d−→ ZGz0 on O, as h→ 0,

in the sense that for all φ ∈ Cc(O)

〈ZVh,z0 , φ〉 =
∑

z∈Spec(P δh)

φ((z − z0)h−1/2)
d−→ 〈ZGz0 , φ〉 =

∑

z∈G−1
z0

(0)

φ(z), as h→ 0,

where the convergence is in distribution. Moreover,

Gz0(z) =
J∏

j=1

gjz0(z), z ∈ C,

where gj, for 1 ≤ j ≤ J , are independent Gaussian analytic functions on C with covariance
kernel

Kj
z0(z, w) := eσ

j
+(z0)zw,

with σi+(z0) as in (2.1).

Martin Vogel
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We recall that convergence of random variables in distribution means that the induced
probability measures of the random variables converge in the weak-* topology, see for
instance [21].

Notice that since the gj are Gaussian analytic functions with covariance kernel Kj
z0 , we

have in view of (1.23) and (1.25) that

gjz0(z)
d
=
∞∑

n=0

αn
(σj+(z0))n/2zn√

n!
, αn ∼ NC(0, 1) (iid). (2.2)

Here, the equality is in distribution, which is to say that the induced probability measures
of those two random variables coincide.
Theorem 5 tells us that:

(1) at any given point z0 ∈ Ω in the bulk of the pseudospectrum, the local rescaled
point process of eigenvalues is given, in the limit h→ 0, by the point process given
by the zeros of the product of J independent Gaussian analytic functions.

Hence, near z0 the eigenvalues are given by the superposition of J indepen-
dent sets of zeros coming from J independent Gaussian analytic functions of the
form (2.2). Due to the independence, it is clear that the formation of clusters of
eigenvalues is possible.

(2) The distribution of each of these functions, determined by their covariance kernels,
depends only on the part of the volume form p∗(|dξ ∧ dx|) coming from the pair of
points ρj± = (xj ,±ξj).

In other words, the rescaled point process ZVh,z0 of the eigenvalues of the per-
turbed operator P δV has a universal limit, which is independent of the specific
probability distribution of the potential Vω satisfying (1.14) and depends only on
the densities {σj+(z0); j = 1, . . . , J}.

2.1.2. Scaling limit k-point measures. An explicit way to obtain information about the
statistical interaction of k eigenvalues of the perturbed operator P δV is by analysing the
k-point measures of the point process ZVh,z0 . They express correlations within k-point
subsets of the point process. These are positive measures µk,V,z0h on Ok\∆, where O is as
in Theorem 5 and ∆ = {z ∈ Ck;∃ i 6= j s.t. zi = zj}, defined by

E
[
(ZVh,z0)⊗k(φ)

]
= E


 ∑

z1,...,zk∈Spec(P δ)

φ
(

(z1 − z0)h−1/2, . . . , (zk − z0)h−1/2
)



=

∫
φ(z)µh,Vk (dz), ∀φ ∈ Cc(Ok\∆),

(2.3)

We have stamped out the diagonal ∆ in order to avoid trivial self-correlations. When these
k-point measures are absolutely continuous with respect to the Lebesgue measure on C,
we call their densities k-point functions.

Theorem 6. Let µk,V,z0h be the k-point measure of ZVh,z0, defined in (2.3), and let µkz0 be
the k-point measure of the point process ZGz0 , given in Theorem 5. Then, for any O b C
relatively compact connected domain, and for all ϕ ∈ Cc(Ok\∆),

∫
ϕ(z)µk,V,z0h (dz) −→

∫
ϕ(z)µkz0(dz), h→ 0.
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Moreover, µkz0 is absolutely continuous with respect to the Lebesgue measure on C with
continuous density dk(z), given by

dk(z) =
∑

α∈NJ0 ,|α|=k
0≤αj≤J

∑

τ∈Sk

1

α!

J∏

j=1

d
αj
gj (zτ(αj−1+1), . . . , zτ(αj)) (2.4)

where α0 = 0, Sk is the symmetric group of k elements, and for all 1 ≤ j ≤ J and all
r ∈ N,

drgj (z) =
perm[Crj (z)−Br

j (z)(A
r
j)
−1(z)(Br

j )
∗(z)]

detπArj(z)
. (2.5)

Here, perm denotes the permanent of a matrix and Arj , B
r
j , C

r
j are complex r × r-matrices

given by

(Arj)n,m = Kj(zn, zm), (Br
j )n,m = (∂zK

j)(zn, zm), (Crj )n,m = (∂zwK
j)(zn, zm),

with Kj as in Theorem 5.

The function drgj (z) in (2.5) is the r-point function of the Gaussian analytic function gj ,
see (2.2). Theorem 6 tells as that the limiting k-point measures admit densities with
respect to the Lebesgue measure and that those can be determined by concatenating the
r-point functions, for 1 ≤ r ≤ k, of each Gaussian analytic function gj .

A result by Nazarov and Sodin [13, Theorem 1.1] implies that there exists a posi-
tive constant C = C(r, gj , O) such that, for any configuration of pairwise distinct points
z1, ..., zk ∈ O,

C−1
∏

i<j

|zi − zj |2 ≤ drgj (z1, . . . , zk) ≤ C
∏

i<j

|zi − zj |2. (2.6)

Using this, we immediately conclude from Theorem 6 the following

Corollary 7. Let O b C be a compact set, let k > J and let dk(z) be as in (2.4). Then
there exists a positive constant C = C(r,O) such that, for any configuration of pairwise
distinct points z1, ..., zk ∈ O,

0 ≤ dk(z1, . . . , zk) ≤ C
∑

i<j

|zi − zj |2.

We have seen by Theorem 6 that the limiting point process of the rescaled eigenvalues
is given by the superposition of J independent processes given by the zeros of independent
Gaussian analytic functions. Therefore, we expect that the formation of clusters of
eigenvalues is possible and that the eigenvalues do not statistically repel each other,
meaning that the limiting k-point functions do not decay to zero as the distance between
the k-points gets smaller. This is made explicit in the case of two eigenvalues in the
example below. However, Corollary 7 tells us that, in the limit h → 0, the probability
to find more than J eigenvalues close together decays quadratically with the distance.
Therefore, finding clusters of more than J eigenvalues very close together is highly unlikely.

2-point correlation function The 2-point correlation function of a point process
is given by the normalised 2-point function of the eigenvalues of P δV . We can show that
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Figure 3. Plot of the scaling limit function κ(t2), see (2.7).

for z1 6= z2 ∈ O

K2(z1, z2) =
d2(z1, z2)

d1(z1)d1(z2)
= 1 +

J∑

j=1

(σj+(z0))2

(∑J
j=1 σ

j
+(z0)

)2

[
κ

(
σj+(z0)|z1 − z2|2

2

)
− 1

]

where

κ(t) =
(sinh2 t+ t2) cosh t− 2t sinh t

sinh3 t
, t ≥ 0. (2.7)

The function κ
(
σj+(z0)|z1 − z2|2/2

)
describes the 2-point correlation function of the zeros

of the Gaussian analytic function (2.2), see Figure 3. Moreover, κ describes the scaling
limit 2-point correlation function of the zeros of certain random polynomials describing
random spin states, see J.H. Hannay [18]. In the work by P. Bleher, B. Shiffman and
S. Zelditch [1] κ describes the scaling limit 2-point correlation function of the zeros of
random holomorphic sections of the N-th power of a positive Hermitian line bundle over
a compact complex Kähler manifold. The 2-point correlation function K2 reveals precise
information about the limiting statistical interaction between two eigenvalues of the
perturbed operator P δV :

Long range decorrelation: For |z1 − z2| � 1, in the limit h → 0, we have expo-
nential decay to 1 of the 2-point correlation function, i.e. :

K2(z1, z2) = 1 +O
(

e
−min

j
σj+(z0)|z1−z2|2

)
.

This means, that at large distances, two eigenvalues are placed in a decorrelated way.

Absence of close range repulsion: For |z1 − z2| � 1, in the limit h → 0, there
is a weak form of repulsion between two eigenvalues at close range,

K2(z1, z2) = 1−
J∑

j=1

(σj+(z0))2

(∑J
l=1 σ

l
+(z0)

)2

[
1− σj+(z0)|z1 − z2|2

2

(
1 +O

(
|z1 − z2|4

))
]
. (2.8)

This means that the probability to find two eigenvalues at very short distances of each
other is less than to find them at larger distances. However, the probability is not zero at
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Figure 4. The left hand side compares the scaling limit 2-point correlation func-
tion K2 (2.8) of P δh,1 (2.9) as a function of |z1− z2|2 (in red) with the numerically
obtained 2-point correlation function (blue circles). The right hand side shows the
same for the operator Ph,3. This Figure was taken from [22].

zero distance as the 2-point density remains strictly positive when |z1 − z2| → 0. Hence,
pairs of rescaled eigenvalues show only very weak repulsion at close distance. In fact,
the larger the number of quasimodes J gets, the weaker this repulsion at close distances
becomes.

The behaviour of the 2-point correlation function K2 is illustrated in Figure 4 where we
compare the scaling limit 2-point correlation functionK2, at z0 = 1.6, with the numerically
obtained 2-point correlation function in the case of two different operators given by

P δh,q = −h2∂2
x + e−iqx + δVω, q = 1, 3 on S1, (2.9)

with h = 10−3, δ = 10−12 and with Vω as in (RP) with the vj given by independent and
identically distributed complex Gaussian random variables. Notice that for the numerical
experiments we use operators on S1 as they are numerically easier to treat than operators
on R. The operator P 0

h,1 admits 2 quasimodes and P 0
h,3 admits 6 quasimodes. Figure 4

compares the numerically obtained 2-point correlation functions (shown as blue dots) of
the operators P δh,1, on the left hand side, and P δh,3, on the right hand side, with the scaling
limit 2-point correlation K2 in (2.8). We see our results fits very nicely with the numerical
experiment and indeed Figure 4 suggests that our results can be extended to the case of
operators on S1.

2.2. Perturbation by random matrix.

2.2.1. Universal limiting point process. In the case P δM , as in (1.16), where we perturb the
operator Ph with a random matrix δMω.
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Theorem 8. Let Ω b Σ̊ be as in (1.9). Let p be as in (1.4) satisfying (1.7). Let z0 ∈ Ω.
Then, for any O b C open connected relatively compact domain, we have that

ZMh,z0
d−→ ZGz0 on O, as h→ 0, (2.10)

in the sense that for all φ ∈ Cc(O)

〈ZMh,z0 , φ〉 =
∑

z∈Spec(P δh)

φ((z−z0)h−1/2)
d−→ 〈ZGz0 , φ〉 =

∑

z∈G−1
z0

(0)

φ(z), as h→ 0, (2.11)

where the convergence is in distribution. Moreover,

Gz0(z) := det(gi,jz0 (z))1≤i,j≤J , z ∈ C,

where gi,jz0 , for 1 ≤ i, j ≤ J , are independent Gaussian analytic functions on C with covari-
ance kernel

Ki,j
z0 (z, w) = e

1
2

(σi+(z0)+σj−(z0))zw, (2.12)

with σi±(z0) as in (2.1).

Since the gi,jz0 are Gaussian analytic functions with covariance kernel Ki,j
z0 , we have in

view of (1.23) and (1.25) that

gi,jz0
d
=
∞∑

n=0

αn
(σi+(z0) + σj−(z0))n/2zn

2n/2
√
n!

, αn ∼ NC(0, 1) (iid). (2.13)

where the equality holds in distribution.
Theorem 8 tells us that
(1) at any given point z0 ∈ Ω in the bulk of the pseudospectrum, the local rescaled

point process of the eigenvalues of P δM is given, in the limit h → 0, by the point
process given by the zeros of the determinant of a J × J matrix whose entries are
independent Gaussian analytic functions. Notice in particular, that the distribution
of the function positioned at the i-th row and j-th column, determined by their
covariance kernels, depends only on the part of the volume form p∗(|dξ∧dx|) coming
from ρi+(z) and ρj−(z).

(2) We see that the rescaled point process ZMh of the eigenvalues of the perturbed
operator P δM has a universal limit, which is independent of the specific probability
distribution of the potential Mω (1.14) and depends only on the structure of the
energy shell p−1

0 (z), i.e. it depends only on the densities {σj±(z0); j = 1, . . . , J}.
Furthermore, this universal limit is different from the universal limit of ZVh , where
we used a random potential Vω as perturbation.

2.2.2. Scaling limit k-point measures. We will see that the k-point measures of the point
process ZMh converge to those of the limiting point process.

Corollary 9. Let µk,M,z0
h be the k-point density measure of ZMh,z0, defined as in (2.3), and

let µk be the k-point density measure of the point process ZGz0 , given in Theorem 8. Then,
for any O b C open, relatively compact connected domain and for all ϕ ∈ Cc(Ok\∆),

∫
ϕ(z)µk,M,z0

h (dz) −→
∫
ϕ(z)µk(dz), h→ 0.
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Figure 5. The left hand side compares the conjectured scaling limit 2-point cor-
relation functionK2 at z0 = 1.6 (2.15) of P 0

h,1+δMω (2.9) as a function of |z1−z2|2
(in red) with the numerically obtained 2-point correlation function (blue circles).
Here, Mω is a complex Gaussian random matrix. The right hand side shows the
same for the operator P 0

h,3 + δMω. This Figure was taken from [22].

One can calculate the Lebesgue densities of the limiting 1-point measures µ1, which is
given by

d1(z) =

J∑

i=1

σi+(z0) + σj+(z0)

2π
, (2.14)

which is precise the average density of eigenvalues at z0 which one would expect from the
probabilistic Weyl law in Theorem 4, see also (2.1).

Calculating the Lebesgue densities of the limiting k-point measures µk remains an open
problem. However, the numerical experiments presented in Figure 5 and the result by
Nazarov and Sodin (2.6) lead us to the following

Conjecture 10. The k-point functions dk(z) of the point process of zeros of Gz0 as in
Theorem 8 exhibit quadratic decay at close range. For any compact set O b C there exists
a positive constant C > 0 depending only on O and k such that for all pairwise distinct
points z − 1, . . . , zk ∈ O

C−1
∏

i<j

|zi − zj |2 ≤ dk(z1, . . . , zk) ≤ C
∏

i<j

|zi − zj |2.

Moreover, the 2-point correlation function of K2 of the point process of zeros of Gz0 is
given by

K2(z1, z2) = 1− exp

[
−π

4

(
J∑

i=1

σi+(z0) + σj+(z0)

)
|z1 − z2|2

]
. (2.15)
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3. Ideas of the proof in a model case

We will outline the basic strategy of the proof of Theorem 5 and 8 in the case of the
following model operator which was already studied in a similar context in [16, 2, 36, 35]:

Let 0 < h� 1, we consider on S1 = R/2πZ the operator Ph : L2(S1)→ L2(S1) given by

Ph := hDx + g(x), Dx :=
1

i

d

dx
, g ∈ C∞(S1;C) (3.1)

where we assume that g ∈ C∞(S1;C) is such that Im g has exactly two critical points
and they are non-degenerate, one minimum and one maximum, say at a, b ∈ S1, with
Im g(a) < Im g(b). The principal symbol of Ph will be denoted by

p(x, ξ) = ξ + g(x), p ∈ C∞(T ∗S1). (3.2)

The spectrum of Ph is discrete and comprised out of simple eigenvalues, indeed

Spec(Ph) = {z ∈ C : z = 〈g〉+ kh, k ∈ Z}, 〈g〉 := (2π)−1

∫ 2π

0
g(y)dy. (3.3)

As in (1.5) we define
Σ := T ∗S1. (3.4)

Theorem 11. Let z0 ∈ Σ̊. Then, any O b C open connected relatively compact domain,
we have that for all φ ∈ Cc(O)

〈Zh,z0 , φ〉
def
=

∑

z∈Spec(P δh)

φ((z− z0)h−1/2)
d−→

∑

z∈g−1
z0

(0)

φ(z)
def
= 〈ZGz0 , φ〉, as h→ 0, (3.5)

where the convergence is in distribution and where gz0 is a Gaussian analytic functions
on C with covariance kernel

Kz0(z, w) = e
1
2

(σ+(z0)+σ−(z0))zw, (3.6)

with σ±(z0) as in (2.1) with J = 1.

Outline of the proof
In Section 3.1 we will construct quasimodes for (3.1) using what is essentially the classical
WKB construction. In Section 3.2 we will discuss the random perturbation added. In the
case of the operator (3.1) we will only discuss the case of perturbation by random matrix
since the symbol p (3.2) does not satisfy the symmetry assumption (1.18). In Section 3.3
we construct a Grushin problem which yields an effective description of the eigenvalues
of the perturbed operator as a random analytic function. In Sections 3.4 to 3.6 we will
show that these random analytic function converge in distribution to a Gaussian analytic
function.

Remark 12. This model case is in many ways easier to treat than the case considered in
[22] since the energy shell p−1(z) for z ∈ Σ̊ contains only two points. However, treating
the model case convays the fundamental strategy to proving Theorems 5 and 8.

3.1. Quasimodes for the unperturbed operator Ph. We follow the construction used
in [35]. Suppose that z0 ∈ Σ̊ and let

Ω b Σ̊ be a small, open, simply connected, relatively compact neighbourhood of z0

s.t. dist (Ω, ∂Σ) > 1/C.
(3.7)
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The energy shell p−1(z) ⊂ T ∗S1, for z ∈ Ω, contains precisely two points and the Poisson
bracket of Re p and Im p evaluated at these points is non-zero. More precisely, we have

p−1(z) = {ρ+(z), ρ−(z)}, ±{Re p, Im p}(ρ±(z)) < 0. (3.8)

Write ρ±(z) = (x±(z), ξ±(z)) and notice that x±(z) only depend on Im z. By the natural
projection Π : R→ S1 = R/2πZ we identify S1 with the interval [b− 2π, b[ and the points
x±, a, b ∈ S1 with points x±, a, b ∈ R so that b− 2π < x+ < a < x− < b.

Let K± ⊂]b− 2π, a[ be open intervals such that

x±(Ω) ⊂ K± and K+ ∩K− = ∅. (3.9)

Let χ± ∈ C∞0 (]b−2π, a[, [0, 1]), such that χ± = 1 in a small neighbourhood of K±. Write
x±0 = x±(Im z) and define for x ∈ R

ẽ±(x, z;h) := χ±(x) exp

(
i

h
ψ±(x, z)

)
, (3.10)

where

ψ+(x, z) :=

∫ x

x+0

(z − g(y)) dy, ψ−(x, z) :=

∫ x

x−0

(z − g(y))dy. (3.11)

Note that ẽ+(x, z;h) depends holomorphically on z and that ẽ−(x, z;h) depends anti-
holomorphically on z. Notice that exp

(
i
hψ+(x, z)

)
is a solution to (Ph − z)u = 0 on

suppχ+, since the phase function ψ+ satisfies the eikonal equation

p(x, ∂xψ+) = z.

Similarly, we have that exp
(
i
hψ−(x, z)

)
is a solution to (Ph − z)∗u = 0 on suppχ−.

By the method of stationary phase, one gets that

‖ẽ±(z)‖2 = e
2
h

Φ±(z;h) (3.12)

with

Φ±(z;h) = Φ±(iIm z;h) = ±Im

∫ x±0

x±(Im z)
(z − g(y))dy +

h

2
lnh1/2A±(z;h)

= 2Φ±,0(z) +
h

2
lnh1/2A±(z;h)

(3.13)

with A±(z;h) ∼ A±0 (z;h) + hA±1 (z) + . . . in C∞(Ω) and

A±0 (z;h) =

(
π

∓{Re p, Im p}(ρ±)

)
.

To normalise the states ẽ± we set

e±(z, x;h) = ẽ±(z, x;h)e−
1
h

Φ±(z;h). (3.14)

By potentially shrinking Ω, K± and the support of χ±, we have that e±(z, x;h) =

O(e−�
1
h

(x−x±(Im z))2). Since dist (suppχ′±,K±) ≥ 1/C, it follows that

‖(P − z)e+‖ = O(e−1/Ch), and ‖(P − z)∗e−‖ = O(e−1/Ch)

and that e± are microlocalized on ρ±(z) ∈ T ∗S1.
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Remark 13. Since p (1.2) is a smooth symbol, the result by Davies [7] and Dencker-
Sjöstrand-Zworski [9] says that as a consequence of (3.8) we can construct quasimodes
e± ∈ L2(S1) for (Ph − z) microlocalized in ρ±(z) such that

‖(Ph − z)e+‖ = O(h∞)‖e+‖, ‖(Ph − z)∗e−‖ = O(h∞)‖e−‖. (3.15)

However, due to the fact that Ph (3.1) is a one dimensional operator and due to the fact
that the imaginary part of g has precisely two critical points, both non-degenerate, we can
construct quasimodes satisfying (3.15) with O(h∞) replaced by the exponentially small error
term O(e−1/Ch). In general this would require an analyticity assumption on the symbol p
(3.2), see [9].

Therefore, any such Ω is contained in the e−1/Ch-pseudospectrum of Ph − z.
Moreover, in the smooth case, the quasimodes ẽ± are not holomorphic respectively anti-
holomorphic in z but rather almost holomorphic respectively almost anti-holomorphic.

3.2. Adding a random perturbation. Let {ej}j∈Z denote the orthonormal basis of
L2(S1) comprised of the normalised Fourier modes. Suppose that qj,k are independent and
identically distributed complex random variables satisfying (1.6), (1.5). Let N(h) = C/h,
with C > 0 sufficiently large, and set

Qω =
1

N(h)

∑

|j|,|k|<N(h)

qj,kej e
∗
k, (3.16)

where e∗u = (u|ek), u ∈ L2(S1). We will study the following random operator

P δh = Ph + δQω, (3.17)

with
e−

1
Ch ≤ δ � hκ, κ > 5/2, (3.18)

where C > 0 is assume sufficiently large. Notice that since Qω is compact L2(S1) →
L2(S1), the spectrum of P δh is discrete. Therefore, we can define the random measure of
eigenvalues of P δh on Ω around z0 and rescaled by h−1/2 by

Zh,z0 =
∑

z∈Spec(P δh)

δ(z−z0)h−1/2 , (3.19)

where the eigenvalues are counted according to multiplicity.

Remark 14. We can allow for an exponentially small coupling constant δ, see (3.18) since
we have O(e−1/Ch)-quasimodes, cf. (3.14). In case of (3.15), we would assume (1.19).

We are interested, in a small perturbation: Therefore, we restrict the random variables
to large discs of radius C/h, centred at 0

qj,k ∈ D(0, C/h), 0 ≤ j, k < C/h.

By the tail estimate (1.15) and by the fact that N(h) = C/h, we have that

P[|qi,j | ≤ C/h, ∀0 ≤ i, j < N(h)] ≥ 1− κN(h)2h4+ε0 = 1−O(h2+ε0). (3.20)

Thus, we have with probability ≥ 1−O(h2+ε0), that

‖Qω‖HS = N(h)−1


 ∑

i,j<N(h)

|qi,j |2



1/2

≤ Ch−1 = O(h−1). (3.21)

Exp. no XIX— Spectral statistics of non-selfadjoint operators subject to small random perturbations

XIX–17



We denote by (Mh,Fh,Ph) the probability space (M,F ,P) restricted to q−1
j,k (D(0, C/h)).

The random variables restricted to this space will be denoted by

qhj,k, j, k ≤ N(h). (3.22)

The restricted probability measure Ph is given by the conditional probability

Ph[ · ] = P[ · | |qj,k| ≤ C/h]. (3.23)

Notice that the qhj,k are distributed independently and identically, since this is the case for
the random variables qj,k. Moreover, by (1.5), (1.14), we can show that

E[qhj,k] = O(h3+ε0), E[|qhj,k|2] = 1 +O(h2+ε0). (3.24)

From now on we will be working with the restricted random variables.

3.3. Grushin Problem for the perturbed operator. In this section we recall the
construction of the Grushin problem. The following has been taken from [35], however,
the ideas go back to [15, 17].

As reviewed in [30], the central idea is to set up an auxiliary problem of the form

P(z)
def
=

(
P (z) R−
R+ 0

)
: H1 ⊕H− −→ H2 ⊕H+,

where P (z) is the operator under investigation and R± are suitably chosen, so that P(z)
is bijective. If dimH− = dimH+ <∞, on typically writes

(
P (z) R−
R+ 0

)−1

=

(
E(z) E+(z)
E−(z) E−+(z)

)
.

The key observation goes back to the Shur complement formula or, equivalently, the
Lyapunov-Schmidt bifurcation method, i.e. the operator P (z) : H1 → H2 is invertible
if and only if the finite dimensional matrix E−+(z) is invertible and when E−+(z) is in-
vertible, we have

P−1(z) = E(z)− E+(z)E−1
−+(z)E−(z).

E−+(z) is sometimes called effective Hamiltonian.

Proposition 15. Let z ∈ Ω be as in (3.7), let e± be as in (3.14) and let P δh be as in (3.17).
Define

R+ : H1(S1) −→ C : u 7−→ (u|e+),

R− : C −→ L2(S1) : u− 7−→ u−f−.

Then
Pδ(z) :=

(
P δh − z R−
R+ 0

)
: H1(S1)× C −→ L2(S1)× C

is bijective with the bounded inverse

Eδ(z) =

(
Eδ(z) Eδ+(z)
Eδ−(z) Eδ−+(z)

)

where Eδ−(z)v = (v|e−) + (O(δh−3/2) +O(e−1/Ch))‖v‖, Eδ+(z)v+ = v+e+ + (O(δh−3/2) +

O(e−1/Ch))|v+|, ‖Eδ(z)‖L2→H1 = O(h−1/2) and

Eδ−+(z) = −δ(Qωe+|e−) +O(e−1/Ch) +O(δ2h−5/2),

where the error estimates are uniform in z ∈ Ω.

Proof. See [36, 35]. �
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Notice that Eδ−+(z) depends smoothly on z ∈ Ω. However, we can make it holomorphic
in z since it satisfies a ∂-equation in z. Taking the z̄-derivative of PδEδ = 1, we get

∂z̄Eδ = −Eδ∂z̄PδEδ.
Hence, by Proposition 15

∂z̄E
δ
−+ = −[(∂z̄R+)Eδ+ + Eδ−(∂z̄R−)]Eδ−+

= −[(e+|∂ze+) + (∂z̄e−|e−) +O(δh−3/2) +O(e−1/Ch)]Eδ−+

def
= −kδEδ−+

(3.25)

where the error estimates are uniform in z ∈ Ω.
Taking the ∂z derivative of the identity ‖ẽ+‖2 = e2Φ+j/h, we get that

h−1∂zΦ+ =
1

2
∂z log ‖ẽ+‖2.

Similarly, we get that

h−1∂z̄Φ− =
1

2
∂z̄ log ‖ẽ−‖2.

Using these identities together with Proposition 15, one computes that

(e+|∂ze+) = ∂z̄ ln ‖ẽ+‖+O(e−1/Ch) (3.26)

and
(∂z̄e−|e−) = ∂z̄ ln ‖ẽ−‖+O(e−1/Ch) (3.27)

Since kδ(z) depends smoothly on z ∈ Ω, we can solve the equation ∂z̄lδ = hkδ in Ω [19]
such that

h−1lδ(z) = ln ‖ẽ+‖‖ẽ−‖+O(e−1/Ch) +O(δh−3/2). (3.28)
Then, by (3.25) we have that

−h−1/2δ−1e
1
h
lδ(z)Eδ−+(z) = e

1
h
lδ(z)

(
(Qωh

−1/4e+|h−1/4e−) +O(δ−1e−1/Ch) +O(δh−3)

)

is holomorphic in z ∈ Ω. By (3.28), we get that

Gδh(z)
def
= −h−1/2δ−1e

1
h
lδ(z)Eδ−+(z)

= (Qωh
−1/4ẽ+|h−1/4ẽ−) + ‖h−1/4ẽ+‖‖h−1/4ẽ−‖

(
O(δ−1e−1/Ch) +O(δh−5/2)

)

def
= gh(z) +R(z;h).

(3.29)

with gh(z)
def
= (Qωh

−1/4ẽ+(z)|h−1/4ẽ−(z)). Hence, by Proposition 15, the eigenvalues
of P δ in Ω are given by the zeros of the holomorphic function Gδh(z) in Ω. Moreover,
gh(z) depends holomorphically on z since that is the case for ẽ+ and ẽ−. Therefore, also R
depends holomorphically on z.

Using (3.19) we conclude that on Ω

Zh,z0 =
∑

z∈(Gδh)−1(0)

δ(z−z0)h−1/2 (3.30)

To simplify the notation we will from now on consider directly the rescaled function: letW
be a suffciently small neighborhood of 0 so that z0 + h1/2W ⊂ Ω. Then, for z ∈W set

G̃δh(z)
def
= Gδh(z0 + h1/2z). (3.31)
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Therefore, we are interested in the point process

Z̃h,z0 =
∑

z∈(G̃δh)−1(0)

δz. (3.32)

3.4. Convergence of random analytic functions. We begin by recalling some basic
notions and facts about random analytic functions.

Let O ⊂ C be an open simply connected domain. Then, we call a random variable f
with values in H(O), the space of holomorphic functions on O, a random analytic function,
see for instance [20].

The distribution of a random analytic function, i.e. the direct image measure f∗P
where P denotes the probability measure of some underlying probability space, is deter-
mined by its finite-dimensional distributions, see e.g. [21]. More precisely, let f and g be
two random analytic functions, then

f
d
= g ⇐⇒ (f(z1), . . . , f(zn))

d
= (g(z1), . . . , g(zn)), ∀z1, . . . , zn ∈ O, ∀n ∈ N, (3.33)

where the symbol d
= means equality in distribution, i.e. that the respective direct image

measures are equal.

Definition 16. (Gaussian analytic function - GAF) Let O ⊂ C be an open simply con-
nected complex domain. A random analytic function f on O is called a Gaussian analytic
function on O if it has centred symmetric complex Gaussian finite-dimensional distribu-
tions, i.e. if for all k ∈ N and all z1, . . . , zk ∈ O the random vectors (f(z1), . . . , f(zk)) ∼
NC(0,Σk).

The matrix Σk depends on (z1, . . . , zk) and its i, j-th entry (Σk)ij is given by the covari-
ance kernel

K(zi, z̄j)
def
= E[f(zi)f(zj)],

which is a zi-holomorphic and zj-anti-holomorphic function on O ×O.

Let f 6≡ 0 be a random analytic function on O. Then, we call

ξf :=
∑

λ∈f−1(0)

δλ (3.34)

the point process of the zeros of f , which is a well-defined random measure on O.
We recall that convergence of random variables in distribution means that the induced

probability measures of the random variables converge in the weak-* topology, see for
instance [21]. Shirai [23] observed that convergence in distribution of a sequence of random
analytic functions {fn}n implies the convergence in distribution of the associated sequence
of point processes {ξfn}n:
Proposition 17. Let O ⊂ C be an open, simply connected domain. Let fn, n ∈ N, and f
be random analytic functions on O, not necessarily defined on the same probability space.
Suppose that f 6≡ 0 almost surely and suppose that fn converges in distribution to f , then
the point process of zeros ξfn converges in distribution to ξf , i.e.

〈ξfn , ϕ〉
d−→ 〈ξf , ϕ〉.

It remains to show that Gδh, seen as a sequence of random analytic function, converges
in distribution, as h→ 0, to the Gaussian analytic function gz0 , as in Theorem 11.

Martin Vogel

XIX–20



By a famous theorem of Prokhorov [21], this is equivalent to showing the following two
points:

1) Tightness of Gδh. This is, roughly speaking, a criterion which ensures that the
sequence of probability measures induced by Gδh does not let any mass escape to infinity.
See [21] for a precise definition. For sequences of random analytic functions there is a
useful criterion for tightness by Shirai [23]:

Proposition 18. Let fn, n ∈ N, and f be random analytic functions on an open simply
connected set O ⊂ C. Suppose that for any compact set K b O

lim
r→∞

lim sup
n→∞

P[‖fn‖L∞(K) > r] = 0.

Then, the sequence {fn}n is tight in the space of random variables on H(O).

2) Convergence in finite dimensional distributions of Gδh. Recall (3.33). We
need to show that Gδh converges in finite dimensional distributions to gz0 . This means that
we need to show that for any k ≥ 1 the Ck-random vectors (Gδh(z1), . . . , Gδh(zk)) converge
in distribution to (gz0(z1), . . . , gz0(zk)). More precisely, we need to show that for all k ≥ 1
and all z1, . . . , zk ∈W

(Gδh(z1), . . . , Gδh(zk))
d−→ (gz0(z1), . . . , gz0(zk)), h→ 0. (3.35)

Recall from the assumptions of Theorem 8 that gz0 is a Gaussian analytic function with
covariance kernel Kz0 . Hence, we have that

(gz0(z1), . . . , gz0(zk)) ∼ NC(0,Γ),

where the covariance matrix Γ ∈ GLk(C) admits the entries

Γi,j = E
[
gσ(zi)gσ(zj)

]
= Kz0(zi, zj).

Therefore, to show (3.35) we need to show that the random vector (Gδh(z1), . . . , Gδh(zk))
converges in distribution to a complex Gaussian random vector with distribution NC(0,Γ).

3.5. Tightness. We begin by studying the covariance of the random analytic functions gh
(3.29). First, recall (3.12) and let us rescale to the local scale of eigenvalues as in the
discussion after (3.30), i.e. for z ∈W set

g̃h(z)
def
= gh(z0 + h1/2z).

Next, recall (3.13). We can show by the method of stationary phase for complex valued
phase functions that for z, w ∈W

(
h−1/4ẽ±(z0 + h1/2z)|h−1/4ẽ±(z0 + h1/2w)

)

= e
1
2
σ±(z0)zw+φ±(z;h)+φ±(w;h)[(1 +O(

√
h)) +O(h∞)].

where
φ±(z;h)

def
=

1

2

[
lnA±(z0;h) + (∂2

zzΦ±,0)(z0)z2
]

and σ±(z0) = ∓[{Re p, Im p}(ρ±(z0))]−1, see also (2.1) for a connection to the symplectic
volume. In view of the discussion after (3.13), we see that

eφ±(z;h) = O(1)

uniformly in z ∈ W and h > 0. This implies in particular that ‖h−1/4ẽ±(z0 + h1/2z)‖ =
O(1) uniformly in z ∈W and h > 0.
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Set
Kz0(z, w)

def
= e

1
2

(σ+(z0)+σ−(z0))zw,

and φ̃(z;h) = φ+(z;h) + φ−(z;h).

Recall from the beginning of Section 3.2 that {ej}j∈Z are the normalised Fourier modes.
Hence, we can show that for h|j| ≥ C, with C > 0 sufficiently large, we have that
(ẽ±|ej) = O(|j|−∞)‖ẽ±‖. It then follows from (3.16), (3.24) that, for C > 0 large enough
and h > 0 small enough,

E
[
g̃h(z)g̃h(w)

]
=
(
ẽ+(z0 + h1/2z)|ẽ+(z0 + h1/2w)

)(
ẽ−(z0 + h1/2w)|ẽ−(z0 + h1/2z)

)

+O(h2)

= K(z, w)eφ̃(z;h)+φ̃(w;h)(1 +O(
√
h))

(3.36)

where in the last line we used as well that φ̃ is a bounded smooth function on C.

Before we continue, let us remark that the exponentials eφ̃(z;h) are strictly positive
and deterministic. They have no influence on the statistics of the zeros of the random
function gz0 . We can therefore see it as a gauge function which we shall get rid of later on.

Let K bW be some compact subset. For ε > 0 let Kε = K +D(0, ε) be the closure of
an ε-neighbourhood of K. Pick ε > 0 small enough so that Kε b O. Thus, by (3.36), we
have for h0 > 0 small enough that

sup
0<h<h0

E
[
‖g̃h‖2L2(Kε)

]
< C(Kε) < +∞. (3.37)

Recall from (3.29) that G̃δh is holomorphic. It has been observed by Shirai [23] that Hardy’s
convexity theorem implies that there exists a positive constant CKε > 0 depending only
on Kε so that

‖G̃δh‖2L∞(K) ≤ CKε
∫

Kε

|G̃δh(z)|2L(dz). (3.38)

By (3.29), (3.18), we have that R is of order O(δh5/2) + O(e−1/Ch). Using Markov’s
inequality in combination with (3.38), one obtains that for h0 > small enough

sup
0<h<h0

P
[
‖G̃δh‖L∞(K) > r

]
≤ r−2CKε sup

0<h<h0

E

[∫

Kε

|G̃δh(z)|2L(dz)

]

≤ O(r−2).

(3.39)

Hence, in view of Proposition 18, we conclude that G̃δh is a tight sequence of random
analytic functions.

3.6. Convergence in finite dimensional distributions. As in [22], we can adapt a
method of Shirai [23] to show the following result using the central limit theorem under
the Lyapunov condition:

Proposition 19. Let G̃z0 be as in (3.31). Then, for all k ≥ 1 and all z1, . . . , zk ∈W

(G̃δh(z1), . . . , G̃δh(zk))
d−→ (g̃z0(z1), . . . , g̃z0(zk)), h→ 0. (3.40)

where g̃z0 is a Gaussian analytic function on W with covariance kernel

K̃z0(z, w) = Kz0(z, w)eφ̃(z;0)+φ̃(w;0).
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Since G̃δh is a tight sequence of random analytic functions, Proposition 19 implies that G̃δh
converges in distribution to the Gaussian analytic function g̃z0 , i.e.

G̃δh
d−→ g̃z0 , as h→ 0, (3.41)

Notice eφ̃(z;0) 6= 0, z ∈W , is a deterministic holomorphic function. Hence,

gz0
def
= g̃z0(z)e−φ̃(z;0), (3.42)

is a Gaussian analytic functions on W with covariance kernel

Kz0(z, w) = e
1
2

(σ+(z0)+σ−(z0))zw.

We can show that every functional πϕ : H(W ) → C, πϕ(f) = 〈ξf , ϕ〉, ϕ ∈ Cc(W ), is
continuous on (H(W )\{0}, d), the space of holomorphic functions onW equipped with the
metric of uniform convergence. It then follows by (3.42) and by the continuous mapping
theorem, see for instance [21], that

∑

z∈g̃−1
z0

(0)

δz
d
=

∑

z∈g−1
z0

(0)

δz.

Hence, by (3.41) and Proposition 17, we see that
∑

λ∈(G̃δh)−1(0)

δλ
d−→

∑

λ∈g−1
z0

(0)

δλ, as h→ 0.

This, together with (3.30), (3.32) and Propositions 17, lets us conclude Theorem 11.
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