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Large deviations results for the stochastic

Navier–Stokes equations

Vahagn Nersesyan ∗

Abstract

In this note, we discuss the problem of large deviations for the stochas-
tic 2D Navier–Stokes equations. We show that the occupation measures
of the trajectories of the system satisfy a large deviations principle, pro-
vided that the noise acts on all Fourier modes. In the case when the noise
is more degenerate and acts on all the determining modes, we obtain an
LDP of local type. The proofs use the methods introduced in [13, 20]
based on a Kifer-type sufficient condition for LDP and a multiplicative
ergodic theorem.

AMS subject classifications: 35Q30, 60B12, 60F10

Keywords: Navier–Stokes system, white-in-time noise, large deviations
principle, occupation measures, coupling

0 Introduction

In this note, we review the results of the paper [21], where the large deviations
principle (LDP) is studied for the stochastic 2D Navier–Stokes (NS) equations
driven by a white-in-time noise

∂tu+ 〈u,∇〉u− ν∆u+∇p = f(t, x), div u = 0, u
∣∣
∂D

= 0, (0.1)

u(0, x) = u0(x), x ∈ D. (0.2)

This system describes the motion of an incompressible fluid in a bounded do-
main D ⊂ R2 with a smooth boundary ∂D, where ν > 0 is the kinematic
viscosity, u = (u1(t, x), u2(t, x)) and p = p(t, x) are unknown velocity field and
pressure of the fluid, f is the external (random) force, and 〈u,∇〉 = u1∂1 +u2∂2.

Before stating our results, let us make some comments about this system
and recall some previous results on its ergodicity. The system is considered in
the usual space of divergence-free vector fields

H = {u ∈ L2(D,R2) : div u = 0 in D, 〈u,n〉 = 0 on ∂D},
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where n stands for the outward unit normal to ∂D. By projecting (0.1) to H,
we eliminate the pressure and obtain an evolution equation for the velocity field1

(e.g., see Section 6 in Chapter 1 of [19])

u̇+B(u) + Lu = Πf(t, x), (0.3)

where L = −Π∆ is the Stokes operator, B(u) = Π(〈u,∇〉u), and Π is the
orthogonal projection onto H in L2 (Leray projector).

Structure of the noise. We assume that f is of the form

f(t, x) = h(x) + η(t, x),

where the functions h and η are, respectively, the deterministic and random
components of the external force with h ∈ H and

η(t, x) = ∂tW (t, x), W (t, x) =

∞∑

j=1

bjβj(t)ej(x). (0.4)

Here {bj} is a sequence in R+ such that B0 =
∑∞
j=1 b

2
j <∞, {βj} is a sequence

of independent standard Brownian motions defined on a filtered probability
space (Ω,F , {Ft},P) satisfying the usual conditions (see Definition 2.25 in [14]),
and {ej} is an orthonormal basis in H consisting of the eigenfunctions of L with
eigenvalues {αj}.

Under these conditions, problem (0.3), (0.2) admits a unique solution and de-
fines a Markov family (ut,Pu) parametrised by the initial condition u = u0 ∈ H.
The corresponding Markov semigroups are given by2

Pt : Cb(H)→ Cb(H), Pkf(u) =

∫

H

f(v)Pt(u,dv),

P∗t : P(H)→ P(H), P∗tσ(Γ) =

∫

H

Pt(v,Γ)σ(dv),

where Pt(u,Γ) = Pu{ut ∈ Γ} is the transition function. Recall that a mea-
sure µ ∈ P(H) is stationary if P∗tµ = µ for any t > 0. The existence of a
stationary measure is a relatively simple question, it is proved by using the clas-
sical Bogolyubov–Krylov argument. The uniqueness and the mixing are much
more difficult problems which have been extensively studied in recent years. We
refer the reader to the papers [7, 16, 6, 17, 2, 11, 22] and the book [18] for a
detailed discussion of this topic. In particular, as it is stated in the following
theorem, if η is sufficiently non-degenerate, then the family (ut,Pu) admits a
unique stationary measure, which is exponentially mixing (see Theorem 3.5.2
in [18]).

1To simplify the notation, we shall assume that ν = 1.
2P(H) is the set of probability Borel measures on H endowed with the topology of the

weak convergence.
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Theorem 0.1. Under the above conditions, there is an integer N=N(ν,B0, ‖h‖)
such that if

bj 6= 0 for j = 1, . . . , N, (0.5)

then the Markov process (ut,Pu) admits a unique stationary measure µ ∈ P(H).
Moreover, µ is exponentially mixing, i.e., there are constants C > 0 and α > 0
such that

‖P∗tσ − µ‖∗L ≤ Ce−αt
(

1 +

∫

H

‖u‖2σ(du)

)

for any σ ∈ P(H) and t ≥ 0, where ‖ · ‖∗L is the dual-Lipschitz norm.

This exponential mixing property has many important consequences, such
as the strong law of large numbers (SLLN), the law of the iterated logarithm,
the central limit theorem, etc. (see Chapter 4 in [18]).

Our goal is to study the large-time behavior of the probabilities of large
deviations of trajectories from the stationary measure µ. To be more precise,
recall that by the SLLN,

Pu
{

1

t

∫ t

0

f(us)ds→ 〈f, µ〉
}

= 1 as t→∞

for any Hölder-continuous function f : H → R. This limit implies that for any
open set O ⊂ R such that 〈f, µ〉 /∈ O, we have the following limit

Pu
{

1

t

∫ t

0

f(us)ds ∈ O
}
→ 0, t→∞.

The large deviations results presented in this note give, in particular, a charac-
terisation of the rate of this convergence: they provide an asymptotic formula
of the form

Pu
{

1

t

∫ t

0

f(us)ds ∈ O
}

= exp(−c t+ o(t)), t→∞

with a constant c = c(f,O) ≥ 0 that can be expressed in terms of the rate
function I that governs the LDP.

Acknowledgments

This research was supported by the ANR grant NONSTOPS ANR-17-CE40-
0006-02 and CNRS PICS grant Fluctuation theorems in stochastic systems.

1 Statement of the result

Given a measure ν ∈ P(H), we set Pν(Γ) =
∫
H
Pu(Γ)ν(du) for any Borel sub-

set Γ ⊂ H and introduce the following family of occupation measures

ζt =
1

t

∫ t

0

δus
ds, t > 0
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defined on the probability space (Ω,F ,Pν). Here δu is the Dirac measure con-
centrated at u ∈ H. We shall say that a mapping I : P(H)→ [0,+∞] is a good
rate function if the level set {σ ∈ P(H) : I(σ) ≤ α} is compact for any α ≥ 0.
For any numbers κ > 0 and M > 0, we denote

Λ(κ,M) =

{
ν ∈ P(H) :

∫

H

eκ‖v‖
2

ν(dv) ≤M
}
.

The following theorem is our main result.

Theorem 1.1. Assume that
∑∞
j=1 αjb

2
j < ∞, bj > 0 for all j ≥ 1, and h ∈

H1 := H1(T2,R2) ∩ H. Then, there is κ > 0 such that for any M > 0, the
family {ζt, t > 0} satisfies an LDP, uniformly with respect to ν ∈ Λ(κ,M), with
a good rate function I : P(H) → [0,+∞] not depending on ν. More precisely,
the following two bounds hold

Upper bound. For any closed subset F ⊂ P(H), we have

lim sup
t→∞

1

t
log sup

ν∈Λ
Pν{ζt ∈ F} ≤ − inf

σ∈F
I(σ).

Lower bound. For any open subset G ⊂ P(H), we have

lim inf
t→∞

1

t
log inf

ν∈Λ
Pν{ζt ∈ G} ≥ − inf

σ∈G
I(σ).

Furthermore, I is given by

I(σ) = sup
V ∈Cb(H)

(
〈V, σ〉 −Q(V )

)
, σ ∈ P(H),

where Q : Cb(H)→ R is a 1-Lipschitz convex function such that Q(C) = C for
any C ∈ R.

This type of large deviations results have been first obtained by Donsker and
Varadhan [5] and later extended by many others (see the books [8, 4, 3] and
the references therein). The LDP is well understood in the case of finite-dimen-
sional diffusions and Markov processes with compact phase space, provided that
the randomness is sufficiently non-degenerate and ensures mixing in the total
variation norm. In the context of randomly forced PDE’s, the problem of large
deviations is mostly considered in the case of vanishing random perturbations
and provides estimates for the probabilities of deviations from solutions of the
limiting deterministic equations. For the stochastic Burgers and NS equations,
the large deviations from a stationary measure is first considered in [9, 10]. In
these papers, the force is assumed to be of the form (0.4) with the following
condition on the coefficients:

cj−α ≤ bj ≤ Cj−
1
2−ε,

1

2
< α < 1, ε ∈

(
0, α− 1

2

]
. (1.1)
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Note that the lower bound in this condition does not allow the coefficients bj to
converge to zero sufficiently fast. So the external force f is irregular with respect
to the space variable, which is not very natural from the physical point of view.
The proof is based on a general sufficient condition established in [23], and it
essentially uses the strong Feller property. The main novelty of Theorem 1.1 is
that it proves LDP without a lower bound on the coefficients bj as in (1.1) (so
we do not have a strong Feller property).

We use the methods introduced in the papers [12, 13], where the LDP is
established for a family of dissipative PDE’s with parabolic regularisation and
a perturbation which is a regular random kick force. The proofs of these papers
are based on an extension of Kifer’s criterion for non-compact spaces and a
result on large-time behaviour of generalised Markov semigroups. These results
have been later extended in [20] to the case of the stochastic damped nonlinear
wave equation (NLW) driven by a spatially regular white noise. The main result
of that paper is an LDP of local type.

2 Scheme of the proof

Let us briefly present the main ideas of the proof of Theorem 1.1.

Step 1: Reduction. The proof is derived from the following three properties.

Property 1. For any V ∈ Cb(H) and σ ∈ Λ(κ,M), the following limit exists
(called pressure function)

Q(V ) = lim
t→+∞

1

t
logEσ exp

(∫ t

0

V (us)ds

)
, (2.1)

it does not depend on the initial measure, and is uniform in σ ∈ Λ(κ,M).
Here Eσ denotes the expectation with respect to Pσ.

If this property is satisfied, then Q : Cb(H)→ R is a convex 1-Lipschitz function,
and its Legendre transform is given by

I(σ) :=

{
supV ∈Cb(H)

(
〈V, σ〉 −Q(V )

)
for σ ∈ P(H),

+∞ for σ ∈M(H) \ P(H),

whereM(H) is the vector space of signed Borel measures on H with finite total
mass. The function I :M(H)→ [0,+∞] is convex lower semicontinuous in the
weak topology, and Q can be reconstructed by the formula

Q(V ) = sup
σ∈P(H)

(
〈V, σ〉 − I(σ)

)
for any V ∈ Cb(H).

We shall say that a measure σ ∈ P(H) is an equilibrium state for V ∈ Cb(H) if
it verifies the following equality

Q(V ) = 〈V, σ〉 − I(σ).
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Property 2. There is a vector space V ⊂ Cb(H) such that, for any compact
set K ⊂ H, the family of restrictions to K of the functions in V is dense in
C(K), and for any V ∈ V there is a unique equilibrium state σV ∈ P(H).

Property 3. There is a function Φ : H → [0,+∞] with compact level sets
{u ∈ H : Φ(u) ≤ α} for any α ≥ 0 such that

Eσ exp

(∫ t

0

Φ(us)ds

)
≤ Cect, σ ∈ Λ(δ,M), t > 0, (2.2)

for some positive constants C and c.

Properties 1-3 ensure that the conditions of Kifer’s criterion are satisfied, which
immediately implies the LDP. Here we use a non-compact version of the cri-
terion, which is established in Theorem 3.3 in [13] (see Theorem 2.1 in [15]
for Kifer’s original result in the compact case). The main part of the proof of
Theorem 1.1 is the verification of these three properties.

Step 2: Proof of Properties 1-3. Property 3 is the easiest one. Using some
standard a priori estimates for the stochastic NS system, one can see that (2.2)
holds with Φ(u) = κ‖u‖21 if the number κ > 0 is sufficiently small. The func-
tion Φ has compact level sets, since it is continuous on H1 and the embed-
ding H1 ⊂ H is compact.

Properties 1 and 2 are derived from a multiplicative ergodic theorem. In
order to state that result, let us introduce some notation. Let us define the
following two weight functions

wm(u) = 1 + ‖u‖2m,
mκ(u) = exp(κ‖u‖2), u ∈ H

for any numbers m > 0 and κ > 0. To avoid triple subscripts, we shall
write Cm(H) and Pm(H) instead of Cmκ (H) and Pmκ (H). Recall that the
Feynman–Kac semigroup associated with (0.3), (0.4) is defined by

PV
t f(u) = Eu

{
f(ut) exp

(∫ t

0

V (us)ds

)}
.

For sufficiently small κ and for any V ∈ Cb(H), the application PV
t maps Cm(H)

into itself. Let PV ∗
t :M+(H) →M+(H) be its dual. A measure µ ∈ P(H) is

an eigenvector if there is λ > 0 such that PV ∗
t µ = λtµ for any t > 0. Similarly,

a function h ∈ Cm(H) is an eigenvector if PV
t h = λth. Let V be the set of

functions V ∈ Cb(H) of the form V (u) = F (PNu) for some integer N ≥ 1 and a
bounded Lipschitz function F : HN → R, whereHN = span{e1, . . . , eN} and PN
is the orthogonal projection onto HN in H. We have the following result.

Theorem 2.1 (Multiplicative ergodic theorem). Under the conditions of The-
orem 1.1, for any V ∈ V, there are positive numbers m and κ, such that the
following assertions hold.
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Existence and uniqueness. The semigroup PV ∗
t admits a unique eigenvec-

tor µV ∈ Pm(H) corresponding to an eigenvalue λV > 0. Moreover, the
semigroup PV

t admits a unique positive eigenvector hV ∈ Cw(H) corre-
sponding to λV normalised by the condition 〈hV , µV 〉 = 1.

Convergence. For any f ∈ Cm(H), ν ∈ Pw(H), and R > 0, we have

λ−tV PV
t f → 〈f, µV 〉hV in Cb(BH(R)) ∩ L1(H,µV ) as t→∞, (2.3)

λ−tV PV ∗
t ν → 〈hV , ν〉µV in M+(H) as t→∞. (2.4)

Moreover, for any M > 0, the limit

λ−tV Eν
{
f(ut) exp

(∫ t

0

V (us)ds

)}
→ 〈f, µV 〉 〈hV , ν〉, t→∞ (2.5)

holds uniformly in ν ∈ Λ(κ,M).

For any V ∈ V, the existence of limit (2.1) is established by taking f = 1
in (2.3). Then the case of an arbitrary V ∈ Cb(H) is obtained by using a
simple approximation argument. To show Property 2, we first prove that any
equilibrium state σV is a stationary measure for the following Markov semigroup:

S V
t g = λ−tV h−1

V PV
t (ghV ), g ∈ Cb(H).

We then deduce the uniqueness of stationary measure for S V
t from limit (2.4),

by showing that σV (dv) is given by the formula hV (v)µV (dv).

Thus Theorem 2.1 plays a central role in the proof of the LDP. It is estab-
lished using an abstract result on large-time asymptotics of generalised Markov
semigroups established in Theorem 4.1 in [13] in the discrete-time case and gen-
eralised to continuous-time in Theorem 7.4 in [20]. The main ingredients are the
following four properties: uniform irreducibility, exponential tightness, growth
conditions, and uniform Feller property. The verification of the last property
is the most technical part of the proof. In the case of the stochastic NS sys-
tem there are important differences compared to the stochastic damped NLW
equations studied in [20]. Here we prove a global LDP, so we need to study the
large-time asymptotics of the Feynman–Kac semigroup without any restriction
on the smallness of the potential. In particular, this leads to some technical dif-
ficulties in the proof of the uniform Feller property. To establish this property,
we construct coupling processes using a new auxiliary equation, which allows
to have an appropriate Foiaş–Prodi estimate for the trajectories. Let us also
mention that the multiplicative ergodic theorem proved in our case is of slightly
more general form and works for a more general class of initial measures.

3 Generalisation

In this section, we discuss what happens when the noise does not affect all the
Fourier modes, but it is still sufficiently non-degenerate to imply exponential
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mixing as in Theorem 0.1. More precisely, we assume that the noise perturbes
directly all the determining modes. In this case it is possible to derive an LDP
of level 1 type, provided that the system is considered on the torus T2. We have
the following result.

Theorem 3.1. Assume that B0 =
∑∞
j=1 b

2
j < ∞ and h ∈ H. Then there

is an integer N = N(ν,B0, ‖h‖) ≥ 1 such that if (0.5) holds, then for any
non-constant function ψ ∈ V, there is a number ε = ε(ψ) > 0 and a convex
function Iψ : R→ R+ such that, for any3 u ∈ H and any open subset O of the
interval (〈ψ, µ〉 − ε, 〈ψ, µ〉+ ε), we have

lim
t→∞

1

t
logPu

{
1

t

∫ t

0

ψ(us)ds ∈ O
}

= − inf
α∈O

Iψ(α). (3.1)

Moreover, this limit is uniform with respect to u in a bounded set of H.

The proof of this result is obtained by extending the techniques introduced
in [20]. According to a local version of the Gärtner–Ellis theorem, limit (3.1)
will be established if we show that for some β0 > 0 the following limit exists

Q(β) = lim
t→+∞

1

t
logEu exp

(∫ t

0

βψ(us)ds

)
, |β| < β0

and it is differentiable in β on (−β0, β0). Both properties are derived from a
multiplicative ergodic theorem similar to Theorem 2.1. Under condition (0.5),
we are able to prove limits (2.3)-(2.5) provided that the potential V has a suffi-
ciently small oscillation. We work on the torus T2 since in the case of a degen-
erate noise the uniform irreducibility property is deduced from an approximate
controllability result established in [1].

The global LDP under condition (0.5) or, more generally, for a highly degen-
erate noise (i.e., when the integer N does not depend on the parameters ν,B0,
and ‖h‖) is an interesting open problem.
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