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Solution to the semilinear wave equation with
a pyramid-shaped blow-up surface
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Hatem Zaag*
Université Paris 13, Sorbonne Paris Cité,
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Abstract

We consider the semilinear wave equation with subconformal power nonlinear-
ity in two space dimensions. We construct a finite-time blow-up solution with an
isolated characteristic blow-up point at the origin, and a blow-up surface which is
centered at the origin and has the shape of a stylized pyramid, whose edges fol-
low the bisectrices of the axes in R2. The blow-up surface is differentiable outside
the bisectrices. As for the asymptotic behavior in similarity variables, the solution
converges to the classical one-dimensional soliton outside the bisectrices. On the
bisectrices outside the origin, it converges (up to a subsequence) to a genuinely
two-dimensional stationary solution, whose existence is a by-product of the proof.
At the origin, it behaves like the sum of 4 solitons localized on the two axes, with
opposite signs for neighbors.
This is the first example of a blow-up solution with a characteristic point in higher
dimensions, showing a really two-dimensional behavior. Moreover, the points of the
bisectrices outside the origin give us the first example of non-characteristic points
where the blow-up surface is non-differentiable.
This note gives only the main ideas. For details, see [52].

MSC 2010 Classification: 35L05, 35L71, 35L67, 35B44, 35B40

Keywords: Semilinear wave equation, blow-up, higher dimensional case, character-
istic point, multi-solitons.

1 Introduction and history of the problem

We consider the subconformal semilinear wave equation in 2 space dimensions:
{
∂2
t u = ∆u+ |u|p−1u,
u(0) = u0 and ∂tu(0) = u1,

(1.1)

where u(t) : x ∈ R2 → u(x, t) ∈ R, 1 < p < 5, (u0, u1) ∈ H1×L2(R2). The Cauchy prob-
lem is locally wellposed, and we have the existence of blow-up solutions from Levine [28].
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Equation (1.1) can be considered as a lab model for blow-up in hyperbolic equations,
because it captures features common to a whole range of blow-up problems arising in
various nonlinear physical models, in particular in general relativity (see Donninger,
Schlag and Soffer [16]), and also for self-focusing waves in nonlinear optics (see Bizoń,
Chmaj and Szpak [4]).

In this note, we present our results proved in [52]. In that paper, our aim is to con-
struct the first example of a blow-up solution with a truely two-dimensional behavior. In
particular, our solution will be non-radial and will not depend only on a one-dimensional
variable. In fact, we will construct a multi-soliton solution here, since we will have 4 de-
coupled solitons in some backward light cone centered at the origin. As a matter of fact,
there has been many papers addressing the question of multi-solitons in the literature,
for various PDEs: for the generalized KdV equation, see Martel [30, 31], Martel, Merle
and Tsai [33]; for NLS, see Merle [36], Martel and Merle [32], Martel, Merle and Tsai
[34], Côte, Martel and Merle [14] as well as Martel and Raphaël [62]; for water waves,
see Ming, Rousset and Tzvetkov [55]; for the Yamabe flow, see Daskalopoulos, Del Pino
and Sesum; for the subcritical wave equation, see Merle and Zaag [50] as well as Côte
and Zaag [15]; for the critical wave equation, see Duyckaerts, Kenig and Merle [19].

More generally, constructing a solution to some PDE with a prescribed behavior (not
necessarily multi-solitons solutions) is an important question. That question was solved
for (gKdV) by Côte [12, 13], and also for parabolic equations exhibiting blow-up, like
the semilinear heat equation by Bressan [7, 8] (with an exponential source), Merle [37],
Bricmont and Kupiainen [9], Merle and Zaag in [40, 39], Schweyer [59] (in the critical
case), Mahmoudi, Nouaili and Zaag [29] (in the periodic case), the complex Ginzburg-
Landau equation by Zaag [63] and also by Masmoudi and Zaag in [35], a complex heat
equation with no gradient structure by Nouaili and Zaag [57], a gradient perturbed heat
equation in the subcritical case by Ebde and Zaag in [20], then by Tayachi and Zaag
in the critical case in [60] (see also [61]), or a strongly perturbed complex-valued heat
equation in Nguyen and Zaag [56]. Other examples are available for Schrödinger maps
(see Merle, Raphaël and Rodnianski [38]), and also fo the Keller-Segel model (see Raphaël
and Schweyer [58], and also Ghoul and Masmoudi [21]).

x

t

T

0

Du

t=T(x)

light cone

Figure 1: Domain of definition of the semilinear wave equation

If u is a blow-up solution of equation (1.1), we define (see for example Alinhac [1]) a
1-Lipschitz graph x 7→ T (x) such that the domain of definition of u is written as

D = {(x, t) | x ∈ R2 and 0 ≤ t < T (x)}. (1.2)

The graph of T is called the blow-up surface (or curve if N = 1) of u and will be
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denoted by Γ. A point x0 ∈ R2 is a non-characteristic point if there are

δ0 ∈ (0, 1) and t0 < T (x0) such that u is defined on Cx0,T (x0),δ0 ∩ {t ≥ t0} (1.3)

where
Cx̄,t̄,δ̄ = {(x, t) | t < t̄− δ̄|x− x̄|}. (1.4)

If not, we say that x0 is a characteristic point. We denote by R ⊂ R2 the set of non-
characteristic points and by S the set of characteristic points.

t

T

0

t=T(x)

x

Du

a

slope delta <1

(slope 1)light cone

Figure 2: The point a is non-characteristic

The one-dimensional case in equation (1.1) has been understood completely, in a
series of papers by the authors [44, 45, 47, 49, 50] and in Côte and Zaag [15] (see also
the note [47]). This includes the first example of a solution with a characteristic point in
[49] (in dimension one). For a general blow-up solution, we also proved that S is made
of isolated points (see [50]), and that the blow-up curve is of class C1 on R (see [49]).
See Caffarelli and Friedman in [11, 10] for earlier results.

In higher dimensions N ≥ 2, the situation is not as clear.
In fact, the blow-up rate is known (see [41], [43] and [42]; see also the extensions by
Hamza and Zaag in [23] and [22] including the superconformal case in [25] also treated
inKillip, Stoval and Vişan [26]).
For the asymptotic behavior and the regularity of the blow-up surface, the only known
result is at non-characteristic points, where we show in [53] and [51] that Γ is C1, under
a reasonable assumption on the profile. The radial case outside the origin is also com-
pletely understood in [48], since it reduces to a perturbation of the one-dimensional case.
Concerning the behavior of radial solutions at the origin, Donninger and Schörkhuber
were able to prove the stability of the space-independent solution with respect to pertur-
bations in initial data, in the Sobolev subcritical range [17] and also in the supercritical
range in [18]. Some numerical results are available in a series of papers by Bizoń and
co-authors (see [3], [5], [6]). See also Killip and Vişan [27].

In the note, we address the question of the existence of blow-up solutions to equation
(1.1) with S 6= ∅. As asserted above, the first example of such a solution was given
in one space dimension in [49]. Later, Côte and Zaag [15] constructed other examples
showing multi-solitons. Both approaches extend to the radial case and to perturbations
of equation (1.1) with lower order terms (see Merle and Zaag [48], Hamza and Zaag [24]).
Of course, all these one-dimensional examples can be considered as trivial 2-dimensional
solutions, where S is either a line, or a circle. From the finite speed of propagation,

Exp. no VI— Solution to the semilinear wave equation with a pyramid-shaped blow-up surface

VI–3



we may have parallel lines or concentic circles, and the local blow-up behavior is always
rigorously one dimensional. In particular, no example is known in higher dimensions,
with S locally reduced to an isolated point. The aim of this paper is precisely to provide
such an example. Moreover, we will give a sharp description of the blow-up behavior and
the blow-up surface, locally near the characteristic point (this is related to an explicit
description of the instabilities of the 4-soliton solution we construct at the origin).

2 Statement of the results

Before stating our result, let us introduce the following similarity variables, for any
(x0, T0) such that 0 < T0 ≤ T (x0):

wx0,T0(y, s) = (T0 − t)
2

p−1u(x, t), y =
x− x0

T0 − t
, s = − log(T0 − t). (2.1)

If T0 = T (x0), we write wx0 for short. The function wx0,T0 (we write w for simplicity)
satisfies the following equation for all |y| < 1 and s ≥ − log T0:

∂2
sw −Lw +

2(p+ 1)

(p− 1)2
w − |w|p−1w = −p+ 3

p− 1
∂sw − 2y · ∇∂sw (2.2)

where

Lw =
1

ρ
div (ρ∇w − ρ(y · ∇w)y) , ρ(y) = (1− |y|2)α and α =

5− p
2(p− 1)

> 0. (2.3)

Equation (2.2) is studied in the energy space

H = H0 × L2
ρ where ‖q1‖2H0

≡
∫

|y|<1

(
q2

1 + |∇q1|2 − |y · ∇q1|2)
)
ρdy. (2.4)

We also introduce for all |d| < 1 the following stationary solutions of (2.2) (or solitons)
depending only on the one-dimensional variable y ·d (if d 6= 0) and defined for all |y| < 1
by

κ(d, y) = κ0
(1− |d|2)

1
p−1

(1 + d · y)
2

p−1

where κ0 =

(
2(p+ 1)

(p− 1)2

) 1
p−1

, (2.5)

and

d̄(s) = − tanh ζ̄(s) where ζ̄(s) =

(
p− 1

4

)
log s− (p− 1)

4
log

(
p− 1

4c̄

)
(2.6)

which is an explicit solution to the ODE

1

c̄

dζ̄

ds
= e
− 4

p−1
ζ̄

for some c̄(p) > 0. Note that we have for some C0(p) > 0,

1 + d̄(s) = C0s
− p−1

2 +O(s−(p−1)) ∼ C0s
− p−1

2 as s→∞. (2.7)

Let (e1, e2) be the canonical basis of R2. This is the statement of our result:
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Theorem 1 (Existence of a blow-up solution with an isolated characteristic blow-up
point and a blow-up surface which is a pyramid at the first order). There exists u(x, t) a
solution to equation (1.1), which is symmetric with respect to the axes and anti-symmetric
with respect to bisectrices, with the following properties:
(A) (Blow-up with an isolated characteristic point). u(x, t) blows up on some
blow-up graph Γ = {(x, T (x)}, and for some δ > 0, we have S ∩B(0, δ) = {0}.
(B) (The blow-up surface is nearly a pyramid). T is symmetric with respect to the
axes and the bisectrices and C1 outside the bisectrices. Moreover, when 0 ≤ x2 < x1 ≤ δ,
we have for some C0 = C0(p) > 0:

T (x) = T (0)− x1(1− C0| log x1|−
p−1
2 ) + o(x1| log x1|−

p−1
2 ) + o(x2| log x1|−

p−1
4 ),

∇T (x) = −e1(1− C0| log x1|−
p−1
2 ) + o(| log x1|−

p−1
2 )e1 + o(| log x1|−

p−1
4 )e2.

(C) (Blow-up behavior of the solution). We have the following behavior for wx for
0 ≤ x2 ≤ x1 ≤ δ as s→∞:
(i) if x = 0, then
∥∥w0(y, s)−

(
κ(d̄(s)e1, y) + κ(−d̄(s)e1, y)− κ(d̄(s)e2, y)− κ(−d̄(s)e2, y)

)∥∥
H
→ 0 (2.8)

where 1 + d̄(s) ∼ C0s
− p−1

2 as s→∞;
(ii) if x2 < x1, then wx(s) converges as s→ +∞ to κ(d(x)e1), with

d(x) + 1 ∼ C0| log x1|−
p−1
2 as x→0.

(iii) if x 6= 0 with x1 = x2, then wx(sn) converges to some stationary solution w∗x for
some sequence sn →∞, where w∗x is a genuinely two-dimensional stationary of equation
(2.2).

Let us remark that the existence of the new stationary solution of equation (2.2) just
mentioned at the end of this theorem, follows from an indirect argument we use when x
is on the bisectrices.

We would like to mention from the symmetries of the solution that we have u(x, t) = 0
on the bisectrices. In one space dimension, such a property implies that x is a characteris-
tic point. Surprisingly, in our two-dimensional setting, only the origin is a characteristic
point, and the other points on the bisecrtices are non-characteristic blow-up points,
showing a genuinely two-dimensional behavior.

Let us also note that when 0 < x2 = x1 ≤ δ, the estimate on T (x) in part (B) does
hold, by continuity of T . Moreover, we can compute upper and lower left derivatives
for T along any direction non parallel to the bisectrix {x1 = x2}, and the same holds
from the right. In particular, if |ω| = 1 and ω2 − ω1 > 0, then:
∂ω,r,±T (x) = (−1 + C0| log x1|−

p−1
2 + o(| log x1|−

p−1
2 ))ω1 + o(| log x1|−

p−1
4 )ω2;

∂ω,l,±T (x) = (−1 + C0| log x1|−
p−1
2 + o(| log x1|−

p−1
2 ))ω2 + o(| log x1|−

p−1
4 )ω1 as x → 0,

where the subscript r and l stands for “right” and “left”, whereas the subscript ± stands
for “upper” or “lower”.
At the origin, T has a right derivative with respect to x1 whose value is ∂x1,rT (0) = −1,
with similar statements from the left and in the direction x2.
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3 Generalization and extensions of the result

Our result can be generalized to other pyramids, with any regular polygon as a basis.
In higher space dimensions N ≥ 3, we naturally generalize our results to a pyramid
with a hypercube as a basis. Moreover, using a Lorentz transform near some point of
the bisectrices different from the origin, we can tilt the blow-up surface and obtain the
existence of a blow-up solution of equation (1.1), with a tent-shaped (at the first order)
blow-up surface, no characteristic point in some neighborhood, a slope approaching

√
2

2
and an upper edge depending on x2. This tent is in fact new and different from the one
obtained by considering a solution depending only on x1 with a characteristic point at
the origin. Indeed, in two space dimensions, this “naive” tent has a line a characteristic
points on its upper edge, a slope approaching 1, and an upper edge that does not depend
on x2.

4 The strategy of the proof

Our proof relies on 3 main steps, which we present in the following subsections

4.1 Step 1: Construction of a solution for equation (1.1) showing 4 soli-
tons in the backward light cone

In this step, we construct a blow-up solution to equation (1.1) defined only in the back-
ward light cone with vertex (0, T (0)) and showing 4 solitons for w0 at the origin as in
(2.8). Then, using the finite speed of propagation, we derive from the latter a blow-up
solution to the Cauchy problem of equation (1.1). Note that this construction step fol-
lows the classical scheme of a “construction with a prescribed behavior”, which proved to
be efficient for various PDEs, as we already pointed-out in the introduction. Let us give
some details for this method.

In fact, our goal is to construct a solution w0(y, s) for equation (2.2) defined for all
|y| < 1 and s ≥ s0, for some large enough s0 showing 4 solitons as in the following:

w0(y, s) ∼ κ(d̄(s)e1, y) + κ(−d̄(s)e1, y)− κ(d̄(s)e2, y)− κ(−d̄(s)e2, y) as s→∞, (4.1)

in accordance with our statement in Part (C) of Theorem 1, where the soliton κ(d, y) is
introduced in (2.5) and the paramester d̄(s) obeys the law given in (2.6) (here, d ∈ R2

and y ∈ R2), Applying the construction strategy in our setting, we linearize equation
(2.2) around the intended behavior (4.1), and find three regions in the spectrum:
- an infinite negative spectrum, controlled thanks to a linearized version of the well-known
Lyapunov functional associated to equation (2.2) ;
- λ = 0, which is controlled thanks to modulation in the parameter d in κ(d, y) (2.5);
- λ = 1, which is controlled thanks to modulation in the parameter ν in the generalized
solitons:

κ∗(d, ν, y) = κ0
(1− |d|2)

1
p−1

(1 + ν + d · y)
2

p−1

. (4.2)

Note that κ∗(d, µes, s) is a solution of equation (2.2) for any µ ∈ R, which is obtained
from κ(d, y) through the use of the similarity variables’ definition (2.1) back and forth,
with a different scaling time.
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We also would like to point-out that for this construction, we were inspired by the
construction of multi-solitons in 1 space dimension, as performed by Côte and Zaag
in [15].

4.2 Step 2: Instability of the 4-soliton solution when the center of the
backward light cone leaves the origin

This step is the very heart of our argument. Here, we aim at understanding the instability
of the 4-soliton solution of equation (2.2) we have for w0 (4.1), when we move outside
the origin to consider the behavior of wx0 where x0 6= 0. We did that already in one
space dimension in [50], but the situation is much more delicate here, mainly because of
the dynamics at the bisectrices {x0,1 = ±x0,2}.

More precisely, we leave the origin and focus on the behavior of wx0 for x0 6= 0. Using
the decomposition into 4 solitons together with the upper blow-up bounds from [42], we
first derive some rough estimates on the blow-up surface, showing in particular that it is
under some pyramid, with a flatter slope line. Then, we find the behavior of wx0(y, s) for
large s, which turns to be different from the behavior of w0(y, s). This shows in particular
that the 4-soliton solution is unstable. Let us give some details in the following.

Take x0 6= 0. We need to know the behavior of wx0 for |y| < 1 and s ≥ − log T (x0).
This is equivalent to knowing the behavior of u(x, t) in the backward light cone Cx0,T (x0),1

(1.4) with vertex (x0, T (x0)).
It happens that when x0 is small and t < min(T (0), T (x0)), the sections of Cx0,T (x0),1

and C0,T (0),1 are almost the same.
Moreover, we have the following relation between wx0 and w0, from the application of
the similarity variables’ transformation (2.1) back and forth:

wx0(y, s) = (1− T (x0)es)
− 2

p−1w0(Y, S), Y =
y + xes

1− T (x0)es
S = s− log(1− T (x0)es).

Since w0 shows 4 solitons, as in (4.1) and in Part (C) of Theorem 1:

w0(y, s) ∼ κ(d̄(s)e1, y) + κ(−d̄(s)e1, y)− κ(d̄(s)e2, y)− κ(−d̄(s)e2, y) as s→∞,

the function wx0 also shows 4 (generalized) solitons (see (4.2)), though with a defor-
mation. Two cases then arise:

- Case 1: If x0 is not on the bisectrices (say, 0 ≤ x0,2 < x0,1 from the symmetries of
the solution), only one soliton remains at some time t∗ = T (x0)− e−s∗ = T (0)− e−S∗ :

wx0(y, s∗) ∼ κ(d̄(S∗)e1) with S∗ ∼ − log x0,1.

Applying our trapping result near solitons (proved first in one space dimension in [45]
then for higher dimensions in [54]), we see that if x0 is non-characteristic, then

wx0(y, s)→ κ(∇T (x0), y) as s→∞ (4.3)

with

∇T (x0) ∼ d̄(S∗)e1 = (−1 + c0S
∗− p−1

2 + ...)e1 = (−1 + c0| log x1|−
p−1
2 + ...)e1.

Remark. If x0 is characteristic, we have no information; later, we will have to show that
all points outside the bisectrices are non-characteristic.
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Remark. Note the link between the asymptotic behavior of wx0 and the regularity of
T (x0) in (4.3).

- Case 2: If x0 is on the bisectrices (say, x0,2 = x0,1), then wx0 is anti-symmetric with
respect to the bisectrix, therefore, 2 solitons remain at some time t̃ = T (x0) − e−s̃ =

T (0)− e−S̃ :
wx0(y, s̃) ∼ κ(d̄(S̃)e1)− κ(−d̄(S̃)e2)

with
S̃ ∼ − log x0,1.

From the behavior of the neighbors outside the bisectrix, we derive that x0 is non-
characteristic. Therefore, from the existence of a Lyapunov functional in similarity vari-
ables (see Antonini and Merle [2]), we see that

as s→∞, wx0(y, s)→ w∗x0(y),

a stationary solution in similarity variables, with

w∗x0(y) ∼ κ(d̄(S̃)e1)− κ(−d̄(S̃)e2).

Note that this is a new kind of stationary solutions, which are neither radial, nor 1d.

4.3 Step 3: The local behavior of T (x) in connection with the dynamics
of wx

As usual with blow-up problems (heat, wave), the asymptotic behavior of the solution
at blow-up and the regularity of the blow-up set are linked and advanced side by side in
the proof (see [64], [65], [67] and [66] for the semilinear heat equation; see [44], [45], [49],
[50], [47] and [46] for the semilinear wave equation).

The present situation is no exception. As a matter of fact, in this step, we make the
link between dynamics of wx from the previous section and the local behavior of T (x).
This is in fact the new feature of our paper which makes its originality. In particular, we
use families of moving non-characteristic cones together with subtle elementary geometric
methods to derive the pyramid shape of the blow-up surface. The delicate case is the
case where x is on the bisectrices, since this is a new situation, not encountered in
dimension 1. It is worth noticing that the moving cone technique simplifies the “moving
plane” technique we use earlier in one space dimension in [45].

For details and proofs, see [52].
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