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Vector field methods for kinetic equations with

applications to classical and relativistic systems

Jacques Smulevici∗

in collaboration with David Fajman et Jérémie Joudioux

Abstract

The aim of this talk is to present an extension of the vector field
method of Klainerman, which is typically applied in the context of non-
linear wave equations, to the case of kinetic equations of Vlasov type. We
first describe how our method yields sharp decay estimates for velocity av-
erages for the linear classical and relativistic transport equations and then
explain how it can be applied to various models of mathematical physics,
such as the Vlasov-Poisson, Vlasov-Nordström and Vlasov-Einstein sys-
tems.

1 Introduction: the basic decay estimate

The vector field method of Klainerman [1] is a very powerful tool to obtain
robust decay estimates for solutions to wave equations. The aim of our work is
to explain how such a method can be adapted to the study of kinetic transport
equations. Consider for instance the relativistic transport equation

T (f) :=
[(
m2 + |v|2

)1/2
∂t + vi∂xi

]
(f) = 0, (1)

where the parameter m ≥ 0 is the mass of the particles, f := f(t, x, v) repre-
sents the density of particles with x ∈ Rn and v ∈ Rn if m > 0 corresponding
to massive particles , v ∈ Rn \ {0} if m = 0, corresponding to massless parti-
cles. Since (1) is a transport equation, f is preserved along the characteristics
associated to the equation. However, the macroscopic quantities obtained by
integrating f in v, such as

ρ[f ](t, x) ≡
∫

v

f(t, x, v)
dv√

m2 + |v|2
, (2)

are only conserved as functions of t in L1
x, and will enjoy decay properties as

t→ +∞ in L∞x . To prove this, the standard method, which follows earlier work
of Bardos-Degond for the classical transport operator [2], consists in writing
explicitly the solution in terms of its initial data using the conservation of f
along characteristics, and then estimating directly the v-integral in (2). For the
massive case m > 0, this leads to an estimate of the form, for all t > 0 and all
x ∈ Rnx ,

ρ[|f |](t, x) ≤ C(V )

tn
||f(t = 0)||L1(Rnx×Rnv ),
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where C(V ) is a constant depending on an upper bound V of the size of the
support in v of the initial data, for instance, assuming the data to be smooth
and compactly supported,

V = sup {λ ∈ R+ : ∃(x, v) ∈ Rnx × Rnv : λ = |v| and f(0, x, v) 6= 0} .
Note that C(V ) → +∞ as V → +∞, so that, unless more refined estimates
are used, this method requires compact support of the initial data to work. We
prove instead the estimate

Proposition 1 (Decay estimates for velocity averages of massive distributions
[3]). For any regular distribution function f solution to (1) with m > 0, any
x ∈ Rn and any t ≥

√
1 + |x|2, we have

ρ[|f |](t, x) ≤ C

(1 + t)
n

∑

|α|≤n
Ẑα∈P̂|α|

∥∥∥Ẑα(f)|Hn1 ×Rnv vαν
α
1

∥∥∥
L1(Hn1 ×Rnv )

, (3)

where Hn
1 denotes the unit hyperboloid Hn

1 :=
{

(t, x) ∈ Rt × Rnx / 1 = t2 − x2
}

,

Ẑα(f)|Hn1 ×Rnv is the restriction to Hn
1 ×Rnv of Ẑα(f), vαν

α
1 is the contraction of

(
√
m2 + |v|2, vi) with the unit normal ν1 to Hn

1 and where the Ẑα are differential

operators obtained as a composition of |α| vector fields of the algebra P̂.

The algebra of vector fields P̂ is obtained by taking the complete lifts of the
usual Killing vector fields of Minkowski space, a classical operation in differential
geometry.

Definition 1. Let W be a vector field of the form W = Wα∂xα , then let

Ŵ = Wα∂xα + vβ
∂W i

∂xβ
∂vi , (4)

where
(
vβ
)
β=0,..,n

= (v0, v1, .., vn) with v0 = |v| in the massless case, v0 =√
1 + |v|2 in the massive case, be called the complete lift1 of W .

For instance, the complete lift of a rotation vector field xi∂xj−xj∂xi is given
by the vector field xi∂xj − xj∂xi + vi∂vj − vj∂vi .

Note that in Proposition 1, there is no requirements of compact support in v
of the initial data. Moreover, using finite speed of propagation type arguments,
one can easily see that for solutions arising from smooth initial data of compact
support in x and decaying sufficiently fast in v (but not necessarily of compact
support in v) given at t = 0, the norm on the right-hand side of (3) is finite, so
that the usage of hyperboloids is mostly technical.

In the case of massless particles (m = 0), a similar estimate holds with the
decay rates being weaker near the light-cone, as in the case of the wave equation.

Proposition 2 (Decay estimates for velocity averages of massless distribution
functions [3]). For any regular distribution function f , solution to (1) with m =
0 and any (t, x) ∈ R+

t × Rnx, we have
∫

v∈Rnv \{0}
|f |(t, x, v)

dv

|v| .
1

(1 + |t− |x| |)(1 + |t+ |x| |)n−1

.
∑

|α|≤n,
Ẑα∈K̂|α|

∥∥∥|v|−1Ẑα(f)(t = 0)
∥∥∥
L1(Rnx×(Rnv \{0}))

,

1This is in fact a small abuse of notation, as, with the above definition, Ŵ actually
corresponds to the restriction of the complete lift of W to the submanifold corresponding to
v0 =

√
1 + |v|2 in the massive case and v0 = |v| in the massless case.
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where the α are multi-indices of length |α| and the Ẑα are differential operators

of order |α| obtained as a composition of |α| vector fields of the algebra K̂.

The algebra of vector fields K̂ contains the complete lifts of the Killing vector
fields as above as well as the scaling vector field (without completion) xα∂xα .

Let us mention that the analogue of the above decay estimates for the clas-
sical transport operator ∂t + vi∂xi was proven in [7].

2 Applications

In the second part of the talk, I presented several applications of these decay
estimates to the Vlasov-Nordström and Vlasov-Poisson systems2. We focus here
on the Vlasov-Nordström system. This mathematical model can be viewed as a
poor’s man version of the Einstein-Vlasov system of general relativity, in which
the tensorial and some non-linear aspects of general relativity are forgotten but
the wave nature of the Einstein equations remain.

More precisely, the Vlasov-Nordström system (for massive particles) is given
with n spatial dimensions by the equations

�φ = m2

∫

v

f
dv√

m2 + |v|2
, (5)

Tφ(f) := T (f)−
(
T (φ)vi +m2∇iφ

) ∂f
∂vi

= (n+ 1)f T (φ), (6)

where m > 0 is the mass of particles, T ≡ vα∂xα , with v0 =
√
m2 + |v|2, is the

relativistic free transport operator, � ≡ −∂2t +
∑n
i=1 ∂

2
xi is the standard wave

operator of Minkowski space, φ is a scalar function of (t, x) and f is a function
of (t, x, vi) with x ∈ Rn, v ∈ Rn. A detailed introduction to this system can be
found in [9]. See also the classical works [10, 12, 11].

In [13], a small data global existence in dimension three was obtained for this
system, deriving in particular decay estimates in time for the wave φ and the
velocity averages of f for data of compact support. The strategy of [13], similar
to the strategy of [14] for the Vlasov-Maxwell system3, consists in using decay
estimates for the velocity averages of f based on the method of characteristics
and the compact support assumptions, together with representation formulae
for the wave equation. In particular, no decay estimates for the derivatives
of the velocity averages of f or the higher order derivatives of the wave were
derived.

2.1 Vector-fields and modified-vector-fields approach

In [3], we introduce a novel approach to the study of coupled systems of wave
and transport equations, based on the vector-field method of Klainerman and
the decay estimates presented above. In particular, this method allows for
a systematic study of systems such as the Vlasov-Nordström system and we
obtain sharp (or almost sharp) asymptotics for the solution and its derivatives
in the case of either massive particles (m > 0) in dimensions n ≥ 4 or massless
particles up to dimension 3. Our strategy is based on commuting the transport
equation by the complete lift Ẑ of the Killing fields Z of Minkowski space.

By construction, the vector fields Ẑ are then differential operators that com-
mute exactly with the free transport operator T . However, for the non-linear

2See for instance the classical work [19] for a presentation of the Vlasov-Poisson system
and other related kinetic systems.

3See also [2] for the Vlasov-Poisson system.
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system, the commutation of Tφ and Ẑ introduces error terms which then need to
be integrable in space-time for the estimates to close. Contrary to, for instance,
a non-linear wave equation of the form �φ = Q(∂φ, ∂φ), the transport equation
(6) enjoys poor commutation properties, in the sense that commuting with any

of the vector fields Ẑ generates error terms of the form (Z∂φ) ·∂vf . These error
terms are problematic because the vector fields ∂vj do not commute4 with the
free transport operator, so that they generate an extra growth which is roughly
proportional to t. Because of this extra growth, the techniques introduced in
[3] could only handle massive particles in high dimensions (n ≥ 4).

In fact, this difficulty is already present for the much simpler Vlasov-Poisson
system. In that case, the difficulty was resolved [7] by modifying the commu-

tation vector fields, replacing the lifted vector fields Ẑ by some Y = Ẑ + Φi∂xi ,
where the coefficients Φi are functions in the variable (t, x, v), depending on
the solution and constructed to cancel the worst error terms in the commutator
formulae. See also [15] for previous results concerning sharp asymptotics for
solutions of the Vlasov-Poisson system based on the method of characteristics.

In [4], we pursue a similar strategy and in particular, construct an algebra
of modified vector fields, specifically designed to obey improved commutation
properties with Tφ, yet to still allow for an (almost) sharp Klainerman-Sobolev
inequality. As in [3], we use the hyperboloidal foliation by the hypersurfaces Hρ

of constant hyperboloidal time ρ :=
√
t2 − |x|2. In particular, all the energies

and norms we consider are constructed with respect to this foliation.
To deal with the wave equation, we therefore consider energy norms EN [φ](ρ)

obtained out of the standard energy momentum tensor integrated on Hρ. In
order to close the basic estimates for the Vlasov field5, the only multiplier that
we consider here is ∂t and the only decay estimate required for φ is given by
a standard Klainerman-Sobolev inequality (associated to the hyperboloids). In
particular, we only use an interior (i.e. away from the light cone) decay estimate
for φ of the type t3/2|∂φ| + t1/2|φ| . 1 which is much weaker than the interior
decay used for instance in [13].

For the distribution function, our norm, denoted EN [f ](ρ), is constructed
out of modified vector fields Y. Moreover, we actually consider weighted norms,

where the extra weights are of the form z = t v
i

v0 − xi. Note that these weights
are actually propagated by the linear flow, i.e. they solve T (z) = 0. The norm
EN [f ](ρ) is thus constructed out of L1-type norms on Hρ×R3

v of zqY α(f). The
z-weights appear naturally in the commutator formula in conjunction with our
choice of modified vector fields.

The main theorem of [4] then establishes the asymptotic stability of the triv-
ial solution to the Vlasov-Nordström system with respect to a strong topology
(since we control many derivatives), and provides in particular an almost sharp
description of the asymptotic behaviour of the fields.

Theorem 1. Let N ≥ 10. There exists an ε0 > 0 so that, for any initial data
(φ0, φ1, f0) on the hyperboloid H1, satisfying

EN [φ0, φ1] + EN+3[f0] ≤ ε,

the unique maximal solution (φ, f) to the Cauchy problem (5) satisfying the

4In the case of massless particles m = 0, the exact vector field hitting f in these error
terms would be vi∂vi , which actually commutes with the free, massless, transport operator,
which explains (partly) why the massless case is much easier than the massive one. See [3] for
more on the massless Vlasov-Nordström system.

5In order to close the top order estimate for the wave, we need to remove all losses when
the Vlasov field is hit by a small number of commutation vector fields. For this, we need tδ

stronger interior decay, for any δ > 0.
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initial conditions

φH1
= φ0, ∂tφH1

= φ1, fH1×R3
v

= f0

is defined globally in the future of H1 and verifies, for all ρ ≥ 1,

EN [f ](ρ) . ερδ(ε).

EN [φ](ρ) . ερδ(ε).

EN−1[φ](ρ) . ε,

where 0 ≤ δ(ε)→ 0, as ε→ 0.

From the above statement and Klainerman-Sobolev inequalities, one then
obtains decay estimates for φ and velocity averages of f (and their derivatives),
which are sharp in the case of φ (since there is no loss apart from the top order
energy estimate) and almost sharp for f , in the sense that there is a ρδ(ε) loss
compared to the linear estimate. Moreover, we also have bounds without loss
for low derivatives of f , using improved improved interior decay for φ.

2.2 Elements and difficulties of the proof

2.2.1 Large velocities

An important aspect of Theorem 1 is that no compactness assumptions on the
v support of the solutions6 are required. The only v decay that we need is that
the initial norms, which are integrals in v (and x) with polynomial weights, are
bounded.

A strong advantage of compact support assumptions is that they allow for
a clean separation of the characteristics associated with the wave equation (the
null geodesics) and the characteristics of the distribution function (which are
timelike). This means that, in that situation, when estimating products of
the form ∂Zα(φ)Y β(f), because of the support assumptions, one can always
assume that one lies far from the light cone t ≡ |x|, since otherwise one must
be away from the support of f (for t sufficiently large). In our case, no such
separation occurs. Essentially, for large v,

√
m2 + |v|2 ∼ |v| holds, so that the

characteristics of the distribution function converge in some sense to that of
the wave. Using the hyperboloidal foliation, the present norms for f contain
the weight vρ := vαnα, where n is the future unit normal to the hyperboloid.
Moreover, one can prove an estimate of the form t/ρv0 . vρ. Since a weight t
is stronger than a weight ρ, this allows to extract more decay from the wave to
estimate the above products, but at a cost of losing in powers of v0, consistent
with the fact that at large v our estimates get worse. Thus, we need to carefully
take into account powers of v in all the equations. Looking at the structure of
the transport operator on the left-hand side of (6), we notice that two different
terms arise, T (φ)vi∂vif and ∂xiφ · ∂vif , which have different homogeneity in
v, the second term being better in this regard. A basic application of our
estimates would in fact not allow to estimate the error terms coming from this
first term due to the high number of powers of v. Instead, the structure of
this term plays an important role. A heuristic picture of this structure is the
following. As discussed earlier, the difficulty originates in large v and, at large
v, v0 ∼ |v| holds, meaning that it becomes increasingly hard to distinguish
massive from massless particles. However, the vector field vi∂vi , which appears

6We do not also assume any compact support in x, but we do start from some hyperboloid.
To go from an initial t = const slice to a future hyperboloid typically requires strong initial
decay in x, see the discussion in [3, Appendix A].
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in the error terms coming from the product T (φ)vi∂vif , actually commutes with
the massless transport operator |v|∂t + vi∂vi . This implies that, even though
vi∂vi does not commute with the massive transport operator, the error terms
generated have strong decay properties in v (they indeed contain negative powers
of v0).

2.2.2 Modified vector fields

It turns out that a first modification allows to capture the aforementioned mech-
anism concerning the vector field vi∂vi and provides already an improved com-
mutator. We replace each translation ∂xα by a generalized translation

eα ≡ ∂xα − (∂xαφ) · vi∂vi . (7)

We then replace, in each of the Killing fields and complete lifts of the Killing
fields the usual translations by their generalized versions. For instance, for a
Lorentz boost Ω0i = t∂xi + xi∂t, we obtain the field te0 + xiei. The use of
the generalized translations then implies that the resulting commutators have
improved properties in terms of powers of v (though still bad in terms of space-
time decay). In a second step, we further modify the vector fields coming
from the homogeneous vector fields (rotations, boost and scaling). If Z denotes
any of these fields, the modification takes the form Y = Z + ΦiXi, where

Xi = ei + e0
vi

v0 . The reason for the introduction of the fields Xi is that, when
applied to φ, a decomposition of the form

Xi(φ) =
Z(φ)

t
+

z

t
∂φ, (8)

holds, where the right-hand side enjoys improved decay. This is due to the
overall t−1 factor and, in the second term, the fact that the weight z is one of
the weights discussed above which are propagated by the linear flow. Together,
this implies a strong improved decay for velocity averages of products of type
Xi(Z

β(φ))Y α(f). Finally, the coefficient Φi appearing in the definition of the
modified vector fields are designed to cancel the worst terms in the original
commutation formula. To this end, we define Φi as the solution to an equation
of the form (we neglect some structural properties here for simplicity in the
exposition)

Tg(Φ) = t∂Z(φ), (9)

with zero initial data. Expanding the commutator, we have schematically,

[Tφ, Y ] = [Tφ, Ẑ] + Tφ(Φ).X + Φ.[Tφ, X].

The RHS of (9) is chosen so that we get a cancellation with the worse terms

arising from [Tφ, Ẑ], while we can verify a posteriori that the terms coming from
Φ.[Tφ, X] have enough decay to be integrated.

2.2.3 The z weights

As explained above, our choice of modified vector fields naturally introduces
the additional z weights. However, in order to avoid having to estimate L1

norms of zqY α(f) in terms of zq+1Y α(f), which would not allow us to close
the estimates, the number of weights q depends on the multi-index α. Essen-
tially, generalized translations have better commutation properties and allow
for additional z weights.
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2.2.4 Hierarchy

Due to the presence of weights z and because of the small loss for the norm
of f , it is important to exploit a certain hierarchy to close the estimates. For
instance, despite the growth of the norm of f , the energy estimates for φ can
still close, without any loss, up to order N − 1. However, this relies on a crucial
integration by parts which, at top order, can no longer be used due to a lack of
regularity. This eventually results in the growth of the top order energy for the
solution to the wave equation. In the argument, it is essential that the worse
source terms in the wave equation at top order always contain Yα(f) with |α|
small (say less than N/2), or otherwise the top order estimate would not close.

2.2.5 L1-estimates for high-low products

Recall that Φ are coefficients obtained by solving inhomogeneous transport equa-
tions of the form (9). After commutation by differential operator Yα of order
|α|, we can easily prove pointwise estimates on Yα(Φ), as long as we have access
to pointwise bounds on t∂Z|α|+1(φ), where Z |α|+1 is a differential operator of
order |α|+ 1.

In the analysis, to close the top order estimates, we need L1-estimates on
products of type Yα(Φ)Yβ(f) and |Yα(Φ)|2Yβ(f), in the situation when α is
so large than one does not have access to pointwise estimates on Yα(Φ). To
estimate those, we consider these products as solutions to transport equation,
to which we can again apply energy estimate for Vlasov fields. This strategy
was originally developed in [7].

2.2.6 L2-decay estimates

We rely on L2-decay estimates to control the velocity averages of Yα(f) for α
large. The use of such L2-decay estimates was first introduced in [3] and further
expanded in [4].

Let us explain the main ideas behind in the L2 estimates for the velocity
averages of Yα(f) for α large on a simple model problem.

Assume that T is a transport operator such as the relativistic transport op-
erator or even just the classical one and that f is a function of (t, x, v) satisfying

T (f) = hg, f(t = 0) = 0

where h = h(t, x) is uniformly bounded in L2
x and such that g is itself a so-

lution to the free transport equation T (g) = 0 with g regular enough so that
L1
x,v-bounds hold for g and decay estimates similar to our Klainerman-Sobolev

inequality can be applied for the velocity averages of g. The aim is to prove L2
x-

decay estimates on
∫
v
|f |dv, the difficulty being that h has very little regularity

so that we cannot commute the equation. Instead, note that, by uniqueness,
f = gH, where H is the solution to the inhomogeneous transport equation
T (H) = h with zero data. Indeed,

T (gH) = T (g)H + gT (H) = gh,

since T (g) = 0. Now, note that

∥∥∥∥
∫

v

gHdv

∥∥∥∥
L2
x

.
∥∥∥∥∥

(∫

v

|g|dv
)1/2(∫

v

|g|H2dv

)1/2
∥∥∥∥∥
L2
x

.
∥∥∥∥∥

(∫

v

|g|dv
)1/2

∥∥∥∥∥
L∞
x

.

∥∥∥∥
∫

v

|g|H2dv

∥∥∥∥
1/2

L1
x

.
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Since we have assumed g to solve the free transport equation and to be as reg-

ular as needed, we know that we have some decay for
∥∥∥
(∫
v
|g|dv

)1/2∥∥∥
L∞
x

. Thus,

it remains only to prove boundedness for
∥∥∫
v
|g|H2dv

∥∥
L1
x
. This can be obtained

using again the transport equation for gH and the associated approximate con-
servation laws. Indeed, we have

T (gH2) = 2ghH

and thus, we need to estimate an integral of the form
∫
t,x,v
|ghH|dtdxdv. This

is done as follows. First,
∫

t,x,v

|ghH|dtdxdv =

∫

t

∫

x,v

|g|1/2|h| · |g|1/2Hdxdvdt

.
∫

t

(∫

x,v

|g||h|2dxdv
)1/2(∫

x,v

|g|H2dxdv

)1/2

dt.

It follows that, if one can obtain enough decay for
(∫

x,v
|g|(x, v)|h|2(x)dxdv

)1/2
,

then the estimate can close via a Grönwall type inequality. For the decay esti-
mate, simply note again that

∣∣∣∣
∫

x,v

|g|(t, x, v)|h|2(t, x)dxdv

∣∣∣∣ .
∥∥∥∥
∫

v

gdv

∥∥∥∥
L∞
x

‖h(t, x)‖2L2
x
.

This concludes the discussion of the estimates for the model problem.
To estimate the velocity averages of Y α(f), |α| ≥ N−2, we essentially follow

this strategy except that

• we need to work with systems instead of scalar equations.

• Y α(f) have non trivial initial data, so we first need to split Y α(f) into
three parts

1. A part satisfying a homogeneous equation with regular data.

2. A part satisfying a homogeneous equation with non-regular data (but
a good structure).

3. A part satisfying an inhomogeneous equation with zero data, for
which we use estimates inspired by the above model case.

• the operator T needs to be replaced by Tφ (or rather Tφ + A for some
matrix potential A satisfying decay estimates in L∞x ).

• the matrix B replacing h is not uniformly bounded in L2
x (there is a t-loss).

• the vector replacing g does not satisfy a homogeneous transport equation
(there is an error term).

• and finally, in all steps, we need to keep track of the exact decay rates in
ρ to make sure the time integrals converge.

2.3 Perspectives of the method and the Einstein-Vlasov
system

One of the main motivations for the present work comes from the Einstein-
Vlasov system, which can be written as

Ric(g)− 1

2
gR(g) = T [f ], (10)

(
vα∂xα − vαvβΓiαβ∂vi

)
(f) = 0. (11)

Jacques Smulevici
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Here g is a Lorentzian metric on a 4 dimensional manifold, Ric(g) and R(g) the
Ricci and scalar curvatures of g, f is a Vlasov field, T [f ] its energy-momentum
tensor and Γiαβ are the Christoffel symbols of g, which we recall depend on g
and ∂g. The Minkowski space is then the simplest solution to these equations
with f = 0.

In Minkowski space, the energy momentum tensor of f for particles of mass
m can be written as the tensor

T [f ] =

∫

v∈R3

vαvβf
dv√

m2 + |v|2
,

where v0 = −
√
m2 + |v|2. Since the Einstein equations can be recast as a system

of wave equations, the above system is again a system of coupled wave/Vlasov
equations, where the coupling in the wave equations is through the velocity av-
erages given by the tensor T [f ]. Note that (11) simply means that f is conserved
by the geodesic flow, which confers a beautiful geometric interpretation to this
system.

We refer to the recent book7 [16] for a thorough introduction to this system.
The small data theory around the Minkowski space is still incomplete for the
Einstein-Vlasov system. The spherically symmetric cases in dimension (3 + 1)
have been treated in [17] for the massive case and in [5] for the massless case
with compactly supported initial data. A proof of stability for the massless case
without spherical symmetry but with compact support in both x and v has been
given in [6]. As in [5], the compact support assumptions and the fact that the
particles are massless are important as they allow to reduce the proof to that
of the vacuum case outside from a strip going to null infinity.

We consider the present work as a first step towards a proof of stability
of the Minkowski space for the massive Einstein-Vlasov system. Indeed, due
to the highly non-linear structure of the Einstein equations, any precise global
analysis of the solutions relies on commuting the Einstein equations and by
the coupling, one is forced to estimate derivatives of velocity averages of the
distribution function as well. Note that our method only uses mostly basic
energy techniques to estimate the solution to the wave equations and is therefore
fully compatible with the relevant techniques used in the study of the Einstein
equations.

Let us finally mention that the vector-field method introduced in [3] has
been extended to prove decay of massless distribution functions on Kerr black
holes [18], as well as to derive decay estimates for other dispersive partial dif-
ferential equations [8].
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