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ON THE HOMOGENIZATION OF THE STOKES EQUATIONS
IN PERFORATED DOMAINS WITH APPLICATION

TO FLUID/SOLID INTERACTION PROBLEMS

M. HILLAIRET

Abstract. In these notes, we consider the Stokes equations on a perforated domain.
The inclusions represent particles moving in a viscous fluid so that the partial differential
equations in the bulk are completed with non-zero boundary conditions simulating the
motion of the particles. We review recent results on the associated homogenization prob-
lem in the regime where the number of particles increases while their diameters converge
to 0.

1. Introduction

Considering the motion of a small number of indeformable particles (Bi(t))i=1,...,N in a
viscous fluid inside a 3D container Ω, one may study the system coupling incompressible
Navier-Stokes equations with Newton laws:{

ρf (∂tū+ ū · ∇ū) = νf∆ū−∇p̄ ,
div ū = 0 ,

in Ω \⋃N
i=1Bi(t)(1)

{
ū(t, x) = ~̇i(t) + ωi × [x− ~i(t)] , on ∂Bi(t) ,

ū(t, x) = 0 , on ∂Ω .
(2)





m~̈i = −
ˆ

∂Bi(t)

(νf (∇ū+∇ū>)− p̄)ndσ,

d

dt
[Jω̄i] = −

ˆ

∂Bi(t)

[x− ~i]× [(2ν(∇ū+∇ū>)− p̄)n]dσ.
(3)

We denote here by (ū, p̄) the fluid velocity-field/pressure whose density ρf , viscosity νf
are assumed to be constant. As for the particle unknowns, we introduce ~i ∈ Ω their
centers of mass and ω̄i ∈ R3 their rotation velocities. The symbol m and J stand for their
common masses and inertias. For instance, if the particles are identical spheres with the
same density ρs and radius R̄, we have:

m =
4

3
πρsR̄

3 J =
2π

5
ρsR̄

5I3.

When the number of particles increases, such a description one-by-one is irrelevant. An
alternative approach is to introduce the particle density function (t, x, v) ∈ R+×Ω×R3 7→
f(t, x, v) ∈ [0,∞) which measures the proportion of particles having velocity v in x at
time t. Note that this description allows to measure the influence of translation velocity

Séminaire Laurent-Schwartz — EDP et applications
Centre de mathématiques Laurent Schwartz, 2016-2017
Exposé no XV, 1-15

XV–1



of particles only (no rotation effect). In the case of thin sprays, i.e., when the particle
phase has negligible volume fraction, a similar system to the one depicted above consists
in coupling a Vlasov equation for f with an incompressible Navier Stokes equations for the
fluid unknowns (see [4] or [3] and the references therein):

(4)





∂tf + v · ∇xf + 6πν divv[(ū− v)f ] = 0, on Ω× R3

ρf (∂tū+ ū · ∇xū)− ν∆xu+∇xp = − 6π

ˆ

R3

f(ū− v) dv, on Ω

divxu = 0, on Ω

On the right-hand side of the fluid momentum equation, a supplementary term appears
balancing the force term in the Vlasov equation. Both terms take into account the exchange
of momentum between the fluid and the particle phase.

In these notes, we report on the papers [10, 11, 13] in which we provide an analytical
justification of the friction term that one needs to add in the Vlasov-Navier Stokes system
in order to take into account the fluid viscous effects. The method is the following one.
We consider the fluid viewpoint. We restrict to the Stokes equations:

(5)

{
−∆uN +∇pN = 0 ,

div uN = 0 ,
in Ω \⋃N

i=1B
N
i

with boundary conditions:

(6)

{
uN(x) = vNi + ωNi × (x− hNi ) on ∂BN

i ,

uN(x) = 0 , on ∂Ω .

This configuration is reproduced in Figure 1. We assume that N → ∞ and that the
(hNi , v

N
i , ω

N
i , B

N
i )i=1,...,N converge in a suitable given way. We relate to this convergence

two applications x 7→ M(x) ∈ M3(R) (symmetric and positive a.e.) and x 7→ j(x) ∈ R3

such that the solutions (uN , pN) of the previous problems converge when N → ∞ to the
(unique) solution to:




−∆u+∇p = j −Mu, on Ω,

divu = 0, on Ω,
u = 0 on ∂Ω.

We call this last system ”Stokes-Brinkman” after H.C. Brinkman who illustrated at a
formal level the existence of this friction term (see [2]). We remark that, in (4), the
right-hand side has the same form as in this latter system when setting:

(7) j(x) = 6π

ˆ

R3

vf(x, v)dv M(x) = 6π

ˆ

R3

f(x, v)dvI3.

So, we want to recover these fluxes j and dissipation M in the case of spheres. But, we
want also to discuss

• the influence of shape and rotation velocity on the computation of M and j,
• the implicit assumptions leading to the simple form for j and M given in (7).
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Figure 1. A N -obstacle configuration

Our computations reduce to a homogenization problem for the Stokes equations in per-
forated domains. First results on this problem are obtained in [1] in the periodic case. In
this reference, the author assumes that the domain Ω is decomposed into cells of width
ε > 0 and that each cell contains a hole of size aε > 0. He proves that there exists a thresh-
old value of the capacitary parameter σε =

√
ε3/aε such that, when ε → 0, the solution

(uε, pε) to the Stokes problem on F ε (the complement of the holes in the container Ω) with
vanishing boundary conditions converges to a Stokes-Brinkman like problem. An inter-
pretation of this result in terms of screening length is also provided in [7]. However, both
results are resctricted to vanishing boundary conditions on the holes.

The very problem with non-zero constant boundary conditions that we consider herein
is tackled in [5]. We give now a detailed description of this previous result. We consider
the problem (5)-(6) when the BN

i are copies of the same ball, and the rotation veloci-
ties ωNi vanish. We denote by (hNi )i=1,...,N ∈ ΩN the centers of the inclusions and we
assume that their common radius scales like 1/N. Without further restriction (since the
size of Ω is not fixed), we assume that Bi = B(hNi , 1/N) for all i = 1, . . . , N. Then, we
denote (vNi )i=1,...,N ∈ [R3]N the constant boundary conditions that are imposed on the
respective ∂BN

i . We assume that the inclusions are distributed in the same dilution regime
(though non-periodic) as in [1]. With our notations, this reads as follows:

(8) min
i=1,...,N

{
min
j 6=i
|hNi − hNj |, dist(hNi , ∂Ω)

}
> C0

N
1
3

for some strictly positive constant C0 independant of N ∈ N. We also fix that we have a
uniform bound on the kinetic energy of the particle phase:

(9)
1

N

N∑

i=1

|vNi |2 6 E0

for some strictly positive constant E0 independant of N ∈ N. We note here that, as we
do not add any particle dynamics, assumptions on the particle masses are open. So, in
equation (9) we include implicitly that we scaled the equations in time so that the particle
Stokes number is 1/N. One shortcoming of this approach is that we make the parameter N
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play different roles: 1/N is the diameter of the particles and the Stokes number and N is
the number of particles. Nevertheless, it is straightforward to extend these computations
by including a radius R and a Stokes number St up to assume that they scale in a similar
way with respect to the number N of particles.

In this framework, we have that, for N sufficiently large (depending solely on C0), the BN
i

are disjoint subsets of Ω so that FN = Ω\∪Ni=1B̄
N
i has smooth boundaries. It is classical that

there exists then a unique solution (uN , pN) ∈ H1(FN)×L2
0(FN) to (5)-(6). We abusively

denote uN the extension of this solution by setting uN = vNi in BN
i for i = 1, . . . , N. This

yields a sequence (uN)N∈N of H1
0 (Ω) vector -fields. Our aim is to compute the asymptotics

of this sequence. In that respect, and without the periodicity assumptions of [1], one
has also to prescribe how the distribution of (hNi )i=1,...,N and (vNi )i=1,...,N behaves when
N → ∞. To this end, a classical tool of studies on many-particle systems is to define the
empirical measures:

(10) ρN :=
1

N

N∑

i=1

δhNi jN :=
1

N

N∑

i=1

vNi δhNi .

These are both measures on Ω so that we may assume convergence of both sequence
of empirical measures in the dual space of C(Ω) and C(Ω;R3) respectively. With the
assumptions that we detailed until now, the main result of [5] reads:

Theorem 1. Assume that there exists ρ ∈ C(Ω) and j ∈ C(Ω̄;R3) such that

ρN ⇀ ρ, j ⇀ j.

then, up to the extraction of a subsequence, (uN)N∈N converges weakly in H1
0 (Ω) to the

unique vector-field ū ∈ H1
0 (Ω) for which there exists a pressure p̄ ∈ L2(Ω) such that:

{
−∆ū+∇p̄ = 6π(j − ρū), in D′(Ω),

divū = 0, in D′(Ω).

The proof of [5] is based on a compactness method. First, the authors prove that the uN

are uniformly bounded in H1
0 (Ω). Hence, up to the extraction of a subsequence, the uN

converge weakly in H1
0 (Ω) to some divergence-free ū. The second part of the proof is then

to compute
ˆ

Ω

∇ū : ∇w

for arbitrary divergence-free test-function w ∈ C∞c (Ω;R3). To this end, one applies that:
ˆ

Ω

∇ū : ∇w = lim
N→∞

ˆ

FN

∇uN : ∇w

and aims at using w as a multiplier in the equation satisfied by uN . Unfortunately this
makes complicated boundary terms appear, so that, in [5], the authors introduce suitable
correctors to lift the boundary values of uN and w on the solid boundaries ∂BN

i . The main
difficulty lies then in computing the limit of the induced error terms. This difficulty is ruled
out by an explicit choice of correctors that are computed on the basis of the resolution of
the Stokes equations outside a ball.
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The starting point of the results that we describe is to revisit the proof of [5] with
variational arguments introduced in [1]. So, the outline of these notes is as follows. In
the next section we give a brief reminder on the resolution of the Stokes problem with
application to fluid/solid interaction problems (in the spirit of [6]). Then, we sketch an
alternative proof to Theorem 1. In the following section, we show extensions including
more general shapes of particles and weakening the restricting assumption (8). We end
this last section by discussing the optimality of the more general assumptions that we
introduce.

2. Revisiting the computation of [5]

2.1. Reminders on the Stokes problem. Let first consider the Stokes problem in R3

outside a unit ball with constant boundary condition V :

(11)

{
−∆u+∇p = 0

divu = 0
on R3 \B(0, 1)

{
u|∂B(0,1)

= V

lim|x|→∞ u(x) = 0.

It is well-known that this problem admits an exact solution (see [5, Section 6.2]):

u(x) = ∇×
[(

3

2|x| −
1

2|x|3
)
V × x

2

]
, p(x) =

3V

2
· ∇
(

1

|x|

)
.

It can be proved that this solution is unique amongst the pairs (u, p) whose velocity-field

gradient and pressure are L2(R3 \B(0, 1)). Such formulas entail that:

SB1: Denoting Σ(u, p) = 2D(u)−pI3 the fluid stress tensor, the force and torque applied
by the sphere on the fluid satisfy:

ˆ

∂B(0,1)

Σ(u, p)ndσ = 6πV,

ˆ

∂B(0,1)

y × Σ(u, p)ndσ = 0.

The symbol n stands for the normal to ∂B(0, 1) directed toward the interior of
B(0, 1).

SB2: The unique solution (u, p) to (11) obeys the decay estimates: given α ∈ N3

|∂αu(x)| 6 Cα[V ]

|x|1+|α| , |∂αp(x)| 6 C[V ]

|x|2+|α| , ∀ |x| � 1.

The second property extends to any boundary data u∗ outside any compact simply
connected set B. More generally, we have:

Theorem 2. Given a (lipschitz) simply connected obstacle B, u∗ ∈ H1/2(∂B), there exists
a unique (weak or generalized) solution u to the Stokes problem on F := R3 \ B with
boundary data u∗.

Furthermore, we have the two following properties:

S1: The velocity-field u is characterized by the minimization problem:

(12)

ˆ

F
|∇u|2 = inf

{
ˆ

F
|∇v|2, v ∈ C∞c (R3) s.t. div v = 0 and v|∂B = u∗

}
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S2: Given α ∈ N3 there exists Cα[u∗] <∞ for which:

|∂αu(x)| 6 Cα[u∗]

|x|1+|α| ∀ |x| � 1.

We refer the reader to [6] for a proof of the first statement in this theorem while proofs
for S1 and S2 can be found in [11]. The assumption that B is simply connected is made
for convenience here. It is straightforward to extend the result to any B made of several
smooth simply connected components when the flux of u∗ through the boundary of any of
these connected components vanishes.

We note that, when ∂B and u∗ are smooth, the solution u and associated presure p are
smooth on R3 \ B so that the resulting force and torque are well defined. In particular, if
u∗(x) reads V + ω × x and (u, p) is the corresponding solution, we define:

F [V, ω] =

ˆ

∂B

Σ(u, p)ndσ, T [V, ω] =

ˆ

∂B

y × Σ(u, p)ndσ.

Again, the symbol n stands for the normal to ∂B directed toward B. We note that the
Stokes system can be rewritten div(Σ(u, p)) = 0 which expresses the conservation of normal
stress. We have then:

Proposition 3. Given R s.t. B ⊂ B(0, R) we have:

F [V, ω] =

ˆ

∂B(0,R)

Σ(u, p)ndσ, T [V, ω] =

ˆ

∂B(0,R)

y × Σ(u, p)ndσ.

The symbol n stands for the normal directed toward the interior of B(0, R).

For a given B, we can also let the boundary conditions (V, ω) vary and focus on the
mapping [F, T ] : (V, ω) 7→ (F [V, ω], T [V, ω]). The linearity and symmetries of the Stokes
system entail that this mapping is linear symmetric, positive definite. It can be then
reduced to a matrix MB which characterizes the influence of the particle B on the flow.
This matrix is known as the Stokes’ resistance matrix (see [8, Section 3.5]). Simple scaling
arguments induce also that:

Proposition 4. Given ε > 0 let Bε = εB and (Fε, Tε) (resp. (F, T )) the force/torque cor-
responding to the solution to the Stokes equations outside the particle Bε (resp. outside B).
Given (V, ω) ∈ R3 × R3, there holds:

Fε[V, ω] = εF [V, εω], Tε[V, ω] = ε2T [V, εω].

2.2. Sketch of the proof of Theorem 1. We proceed with the sketch of a proof for
Theorem 1. So, we let (uN , pN) the solution to the problem (5)-(6) in the case of spheres
with vanishing rotation velocities as in the assumptions of Theorem 1.
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Uniform estimates and consequences. The first step of this proof is to obtain a uniform
bound on the extended uN by applying the variational characterization (12). This property
derives directly from the uniform bound (9) under the dilution assumption (8). We can
thus extract a weakly converging subsequence that we do not relabel for conciseness. The
game is then to compute

Iw :=

ˆ

Ω

∇u : ∇w for any divergence-free w ∈ C∞c (Ω)

by remarking that:

Iw = lim
N→∞

IN with IN :=

ˆ

Ω

∇uN : ∇w ∀N ∈ N.

So, in what follows, we fix w an arbitrary divergence-free test-function and we aim at
computing the asymptotics of the corresponding integrals (IN)N∈N.

Computation for fixed N ∈ N. We first rewrite in a more suitable way IN for fixed N. By
applying that uN is constant on the particle domains and solution to the Stokes equations
on the fluid domain, we remark that:

(13) IN =

ˆ

FN

∇uN : ∇w̃

for arbitrary divergence-free w̃ matching the same boundary conditions as w on ∂FN .
So, given i ∈ {1, . . . , N} we introduce CNi := B(hNi , C0/(2N

1/3)) and (wi, qi) the unique
solution to:

{
−∆wi +∇qi = 0, on CNi \BN

i

divwi = 0, on CNi \BN
i

{
wi(x) = w(x), on ∂BN

i

wi(x) = 0, on ∂CNi .

Abusively, we still denote wi its trivial extension to R3. We then combine these construc-
tions in w̃ =

∑N
i=1 wi. Because of assumption (8) we have that (13) holds true so that we

can split IN into:

IN =
N∑

i=1

INi with INi =

ˆ

CNi
∇uN : ∇wi.

We work now on the ”local” integral INi for fixed i. We note that the radius of BN
i is small

with respect to the size of CNi so that, we may approximate w by a constant on ∂BN
i . We

set:
{
−∆w̃i +∇q̃i = 0, on CNi \BN

i

div w̃i = 0, on CNi \BN
i

{
w̃i = w(hNi ), on ∂BN

i

w̃i = 0, on ∂CNi .

This yields:

INi =

ˆ

CNi
∇uN : ∇w̃i + ErrN1,i.
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Applying then that (w̃i, q̃i) is solution to a Stokes problem, we integrate by parts:
ˆ

CNi
∇uN : ∇w̃i = FN

i · vNi +

ˆ

∂CNi
Σ(w̃i, q̃i)n · uN dσ

= FN
i · (vNi − ūNi ) + ErrN2,i,

where :

FN
i =

ˆ

∂BN
i

Σ(w̃i, q̃i)n dσ, ūNi =
1

|CNi |

ˆ

CNi
uN =:

 

CNi
uN .

We used here again that CNi has a small radius – so that we may approximate uN by a
constant that we chose to be ūNi , its mean on CNi – and the conservation property stated
in Proposition 3. At this point, we note that w̃i is nearly a solution outside a ball of radius
1/N so that, recalling SB1:

FN
i =

6π

N
w(hNi ) + ErrN3,i.

Combining the above computations, we obtain finally that:

(14) IN =
1

N

N∑

i=1

6πw(hNi ) · vNi −
1

N

N∑

i=1

6πw(hNi ) ·
 

CNi
uN(x)dx+ ErrN

where ErrN = ErrN1 + ErrN2 + ErrN3 the three error terms being computed by aggregating
the errors for each index i :

ErrNl =
N∑

i=1

ErrNl,i.

Asymptotics. One key-observation is that, because of assumptions (8)-(9), we may prove
that the error term ErrN converges to 0 when N →∞. Consequently, the proof reduces to
computing the asymptotics of the two remaing sums. By assumption on the convergence
of the jN we have at first:

lim
N→∞

1

N

N∑

i=1

6πw(hNi ) · vNi = 6π lim
N→∞

〈jN , w〉 = 6π

ˆ

Ω

j(x) · w(x)dx.

As for the other term, if ū is smooth (say C1(Ω̄)) independant of N ∈ N, we have

1

N

N∑

i=1

6πw(hNi ) ·
 

CNi
ū(x)dx =

1

N

N∑

i=1

6πw(hNi )ū(hNi ) + ErrN4

where ErrN4 comes from the variations of ū around hNi and is bounded by 1/N1/3 (the
uniform diameter of the CNi ). Moreover, there holds:

lim
N→∞

1

N

N∑

i=1

6πw(hNi ) · ū(hNi ) = 6π lim
N→∞

〈ρN , w · ū〉 = 6π

ˆ

Ω

w(x) · ū(x)ρ(x)dx.
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We have thus weak-convergence (in the dual of L2(Ω) for instance) to x 7→ 6πρ(x)w(x) of
the linear forms:

〈LN , ū〉 =
1

N

N∑

i=1

6πw(hNi ) ·
 

CNi
ū(x)dx.

In order to test the convergence of LN against the sequence uN we need to have continuity
of LN on a function space in which uN converges strongly. For this, we remark that

〈LN , ū〉 = 6π

ˆ

Ω

`N(x) · ū(x)dx with `N(x) =
N∑

i=1

1CNi
|CNi |N

w(hNi ).

It turns out that, with assumption (8), we have that (`N)N∈N is bounded in L∞(Ω) so
that we may multiply the weak convergence of (`N)N∈N to ρw in L2(Ω) with the strong
convergence of (a subsequence of) the (uN)N∈N. We obtain finally that :

ˆ

Ω

∇u : ∇w = 6π

ˆ

Ω

(j(x)− ρ(x)u(x)) · w(x)dx.

This ends the proof.

We add that, similarly to the computations of [1], we may also quantify the convergence
of the sequence uN in Lp(Ω) with respect to the convergence of the empirical measures
(ρN , jN) (in dual spaces such as (C0,α(Ω))∗). We refer the reader to [13] for more details.

3. Improvements

In this section, we discuss improvements of Theorem 1 in several directions: more general
shape/boundary conditions on the particles, more general dilution regimes.

3.1. More general shapes and boundary conditions. Firstly, we discuss the assump-
tion that the particles are spheres that do not rotate. In this direction, a fundamental
remark is that the convergence of the remainder term ErrN (see (14)) derives from the
decay property SB2. satisfied by the solution to the Stokes problem outside a sphere. As
this property is satisfied for any compact particle (see S2 in Theorem 2), we expect that
we can extend the result to particles of arbitrary shape. This is the problem that we tackle
in [11].

In [11], we consider the asymptotics of the solutions (uN , pN) to (5)-(6) when the BN
i

are no longer spheres but particles of arbitrary shapes. Namely, we assume that

BN
i = hNi +

1

N
BNi where BNi is a smooth subset of R3 satisfying BNi ⊂ B(0, R0)

for some R0 independant of i, N. As for boundary conditions we consider now translation
and rotation velocities. Nevertheless, we restrict our computation to the favorable dilution
regime (8) and the finite kinetic-energy case (for the particle phase). With the rotation
velocities, this second condition reads:

(15)
1

N

N∑

i=1

[
|vi|2 + |ωi/N |2

]
6 E0
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for some strictly positive constant E0 independant of N. We recall here, that the parameter
1/N represents the diameter of BNi . The quantities vi and ωi/N are then both linear
velocities.

As for the empirical measures, we choose to assume that the computation of the force
and torque for a given particle BNi is an independant problem. The associated resistance
matrix Mi,N is supposed to be given and we focus on the summation process which yields
the Brinkman term. To this end, we split the resistance matrix of a given particle BNi into:

Mi,N =

(
Mi,N

I Mi,N
II

[Mi,N
II ]> Mi,N

III

)
,

where all the blocks are 3× 3 matrices. We denote:

MN :=
1

N

N∑

i=1

Mi,N
I δhNi , FN :=

1

N

N∑

i=1

[
Mi,N

I vNi +
1

N
Mi,N

II ω
N
i

]
δhNi .

The (MN)N∈N are matrix measures on Ω while the (FN)N∈N are vectorial measures on Ω. We
again assume convergence of these measures when tested against arbitrary test-functions
x 7→ w(x) ∈ C(Ω;R3).

In the framework depicted above, our result reads:

Theorem 5. Assume that there exists M ∈ L∞(Ω;M3(R)) and F ∈ H−1(Ω;R3) such that

MN ⇀M, FN ⇀ F.

Then (uN)N∈N converges weakly in H1
0 (Ω) to the unique vector-field ū ∈ H1

0 (Ω) for which
there exists a pressure p̄ ∈ L2(Ω) such that:

{
−∆ū+∇p̄ = F−Mū, in D′(Ω),

divū = 0, in D′(Ω).

Several remarks are in order. Firstly, since Mi,N is positive definite for arbitrary i, N
we have that the matrix M(x) is symmetric positive for a.e. x in Ω. Hence, the limit
problem is well-posed in H1

0 (Ω). Secondly, the scheme of the proof is similar to the one
in the case of spherical particles. However, to estimate remainder terms, we do not apply
explicit formulas but the decay properties S2. One further difficulty here is that we need
that the constant controlling these decays are independant of the shape BNi . Finally, in
the computation of the main term (see the paragraph Asymptotics), we treat the integrals

on the two boundaries of CNi \ BN
i differently. Indeed, in the interior integral, we have

(applying the scaling properties that we remarked in Proposition 4 and the symmetries of
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the matrices Mi,N):
ˆ

∂BN
i

Σ(w̃i, qi) · uNdσ =

ˆ

∂BN
i

Σ(w̃i, qi)n · (vNi + ωNi × (x− hNi ))dσ

=

ˆ

∂BN
i

Σ(w̃i, qi)ndσ · vNi +

ˆ

∂BN
i

(x− hNi )× Σ(w̃i, qi)ndσ · ωNi

=
1

N
vNi ·Mi,N

I w(hNi ) +
1

N2
ωNi · [Mi,N

II ]>w(hNi )

=
1

N
w(hNi ) ·

[
Mi,N

I vNi +
1

N
Mi,N

II ω
N
i

]

and the vectorial measure FN appears. While, in the outer integral, we have (by applying
again the conservation properties of solutions to Stokes problems):

ˆ

∂CNi
Σ(w̃i, qi) · ūNi dσ = −

ˆ

∂BN
i

Σ(w̃i, qi)n · dσ · ūNi

=
1

N
w(hNi ) ·Mi,N

I ūNi .

Remarking that ūNi ∼ u(hNi ) this makes the vectorial measure MN appear. We see here the
reason why the rotation term in the flux FN has no counterpart in the friction matrix MN .

3.2. Toward a time-dependant model. As we explained in the introduction, our mo-
tivation for studying homogenization of the Stokes problem in perforated domains is to
contribute to an analytical derivation of the system (4). However, even in the case of
spheres, it is unlikely that Theorem 1 is sufficient. Indeed, in the Navier Stokes/Newton
system, the particle dynamics equations is of second order so that, for initial times, the
particle motions are driven by their initial velocities. In particular, one has to expect that
computations in the case where there is no fluid still hold and that a significant amount of
particles become 1/

√
N -close one-another in short time (in consistency with the Boltzman-

Grad scaling, see the introduction of [9] for instance). Assumption (8) is then no longer
relevant. A crucial difficulty is thus to obtain similar convergence results as Theorem 1 for
more general configurations.

This issue is tackled in [10]. To describe the details obtained therein, we need further
notations on the N -configuration. We go back to the case of the introduction where
N spherical particles of radius 1/N translate inside a bounded fluid. We remind that
the centers of the particles are denoted (hNi )i=1,...,N and that their respective translation
velocities are (vNi )i=1,...,N (no rotation) . We introduce a parameter measuring the minimal
distance between particles:

(16) dNm := min
{

dist(hNi , h
N
j ), dist(hNi , ∂Ω)

}
.

We also introduce a parameter measuring the concentration of obstacles. Given λ ∈ (0,∞),
we set:

(17) ρNm(λ) := max
x∈Ω

]{i ∈ {1, . . . , N}, s.t. hNi ∈ B(x, λ)}
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(where the symbol ] stands for the cardinal of a finite set). To compute the asymptotics
of the solution (uN , pN) when N →∞ we assume again the uniform bound (9):

1

N

N∑

i=1

|vNi |2 6 E0

and convergence of the empirical measures ρN , jN :

ρN ⇀ ρ jN ⇀ j,

where ρ ∈ L∞(Ω) and j ∈ L2(Ω;R3). In this framework, our main result reads (see [10]):

Theorem 6. Assume that there exists a sequence (λN)N∈N ∈ (0,∞)N such that:

(18) |λN |3 � dNm, ρNm(λN) 6 N |λN |3, |λN |5
dNm

6 1

N
2
3

.

Then (uN)N∈N converges weakly in H1
0 (Ω) to the unique ū ∈ H1

0 (Ω) for which there exists
a pressure p̄ ∈ L2(Ω) such that:

{
−∆ū+∇p̄ = 6π(j − ρū) in D′(Ω) ,

divū = 0, in D′(Ω).

The main novelty of this result lies in the assumption (18). First, we note that ρNm(λN) > 1
and dNm 6 diam(Ω). Consequently, assumption (18) implies:

dNm �
1

N
λN > c

N1/3
.

This assumption (18) is less restrictive than the previous (8). Indeed, if we assume λN =
1/N1/3, the condition on dNm implies that we can reach a minimal distance larger than 1/N
but arbitrary close to 1/N (which is less restrictive than the previous 1/N1/3). However,
the counterpart is that the second condition in (18) requires that there is a finite number
of particles in any ball of radius 1/N1/3 (the last condition is automatically satisfied for
these λN). In the case λN = 1/N1/3 the gain with respect to (8) is then to pass from ”one
particle in any ball of width 1/N1/3” to ”at most a given finite number of particles in a ball
of width 1/N1/3”. However, this theorem encompasses more general sequences (λN)N∈N.
In particular, without further informations, one may assume that the position/velocities
of the particles are taken randomly according to a law FN(dx1, . . . , dxN , dv1, . . . , dvN). If
we assume that FN is asymptotically of the form f⊗N(dx, dv) for a sufficiently smooth
distribution f we may prove that assumption (18) contains ”almost any” configuration.

The proof of Theorem 6 is a generalization of the one depicted in the previous section.
With similar arguments, we obtain that the sequence (uN)N∈N is bounded in H1

0 (Ω). So
we may extract a subsequence that we do not relabel converging to some divergence-free
ū ∈ H1

0 (Ω). The game is one more time to pass to the limit in
ˆ

Ω

∇uN : ∇w
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(1/(2N))1/3

Figure 2. A N -obstacle configuration

for arbitrary divergence-free w ∈ C∞c (Ω). We apply again the localization process by split-
ting Ω into cells CNi . But, in this new approach, we do not choose the CNi with respect
to the dNm but with respect to λN : the (CNi )i is a covering of Ω with (semi-open) cubes
of width λN . We introduce again wi (resp. w̃i) the solutions to the Stokes problem inside CNi
– outside the particles – having the same trace as w (resp. taking the values w(hNl )) on the
particles BN

l that are inside CNi . We prove that w̃i is almost the combination of solutions to
the Stokes problem outside BN

l with boundary condition w(hNl ). Hence, the computations
of the limit leading term is similar to the previous case. We note that there is a further
difficulty here because some particles may cross (or be simply too close to) the boundaries
of the cells CNi . By a measure-theory argument, we prove that we can choose the covering
so that there are few such particles that we can delete in our computations. We refer to [10]
for more details.

3.3. Limiting cases. Extending the dilution regime – for which we may prove that the
Brinkman term has the form (7) – is a crucial step toward a rigorous justification of
the transition between (1)-(2)-(3) and (4). However, much remains to be done for that
purpose. In that respect, we prove also in [10] that, if one works with the discriminating
parameters dNm and ρNm(λ) that we introduce above, one may not expect more general
dilution regimes than (18) for which homogenization of the Stokes equations yield a Stokes-
Brinkman problem (with the Brinkman term given by (7)). In particular, we discuss the
two conditions:

(19) lim
N→∞

dNm
|λN |3 = +∞

and

(20) sup
N∈N

ρNm(λN)

N |λN |3 <∞.

Firstly, we focus on (19). For even N, we construct a configuration (see Figure 2) in which
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• Ω is a unit cube splitted into N/2 sub-cubes of width (2/N)1/3

• any sub-cube contains 2 particles, that we label with successive indices, each particle
being at a distance h/N of the center of the sub-cube (h > 0 is a given parameter).

We then consider the solution (uN , pN) to (5)-(6) with vanishing rotation in the boundary
conditions (ωNi = 0) and such that two particles in the same sub-cube share the same
translation velocity (vNi = vN+1

i for any odd integer i).
In this particular case, one can consider that the pair of particles in one sub-cube is

one particle whose shape has two connected components. In this case, we may apply the
computations of [11]. This yields that uN will converge to a ū satisfying:

{
−∆ū+∇p̄ = (F̄− M̄ū) ,

divū = 0
on Ω

but with M̄ 6= 6πI3. In this first case, we keep the Brinkman term but we lose the simple
form of this term.

••
•
••
•
••
•

••
•
••
•
••
•

••
•
••
•
••
•

••
•
••
•
••
•

••
•
••
•
••
•

••
•
••
•
••
•

••
•
••
•
••
•

••
•
••
•
••
•

••
•
••
•
••
•

(MN/N)1/3

dN

Figure 3. A N -obstacle configuration

We may also completly lose the Brinkman term when (20) is broken. Consider for
instance the configuration depicted in Figure 3 i.e., consider that Ω is the unit cube in R3.
Let (MN)N∈N be a diverging sequence of integers and split Ω into sub-cubes of width
(MN/N)1/3. In each sub-cube, pack MN particles distributed on an array of width dN .
Then, one may again interpret the group of particles inside each sub-cube as one particle
with complicated shape with capacitary parameter σN = |MN |1/3/

√
NdN . Taking MN =

ln(N) and dN =
√

ln(N)/N we make σN converge to +∞. Hence, as proven in [1], the
influence of the holes disappears in the asymptotics N → ∞. On the other hand, the
empirical measures ρN converges to the uniform distribution in Ω, and the asymptotic
problem do not contain a Brinkman friction term. This shows that whatever the chosen
sequence λN one of the three conditions in (18) is not satisfied. If one chooses λN = 1/N1/3

for instance, we do have that the first condition and last conditions are satisfied, but the
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second one is not: any of the clusters of particles is containted in a ball of radius 1/N1/3

so that ρNm(λN) = MN . Consequently

lim
N→∞

ρNm(λN)

N |λN |3 = +∞.
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Zürich, 2013.

[10] M. Hillairet. On the homogenization of the Stokes problem in a perforated domain.
arXiv:1604.04379, August 2016.

[11] M. Hillairet, A. Moussa and F. Sueur. On the effect of polydispersity and rotation on the Brinkman
force induced by a cloud of particles on a viscous incompressible flow. arXiv:1705.08628, May 2017.

[12] L. D. Landau and E. M. Lifshitz. Fluid mechanics. Course of Theoretical Physics, Vol. 6. Pergamon
Press, London, 1959.

[13] A. Mecherbet and M. Hillairet Lp estimates for the homogenization of stokes problem in a perforated
domain. arXiv:1611.06077, November 2016.
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