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Identification of Green’s Functions Singularities

by Cross Correlation of Ambient Noise Signals

Josselin Garnier ∗

November 30, 2012

Abstract

In this paper we consider the problem of estimating the singular sup-
port of the Green’s function of the wave equation by using ambient noise
signals recorded by passive sensors. We assume that noise sources emit
stationary random signals into the medium which are recorded by sen-
sors. We explain how the cross correlation of the signals recorded by two
sensors is related to the Green’s function between the sensors. By looking
at the singular support of the cross correlation we can obtain an estimate
of the travel time between them. We consider different situations, such
as when the support of the noise distribution extends over all space or
is spatially limited, the medium is open or bounded, homogeneous or in-
homogeneous, dissipative or not. We identify the configurations under
which travel time estimation by cross correlation is possible. We show
that iterated cross correlations using auxiliary sensors can be efficient for
travel time estimation when the support of the noise sources is spatially
limited.

1 Introduction

In this paper we consider the estimation of the Green’s function of the wave
equation in an inhomogeneous medium by cross correlation of noisy signals.
We assume that noise sources with unknown spatial support emit stationary
random signals, that propagate into the medium and are recorded at observation
points. The cross correlation of the recorded signals has been shown to provide
a reliable estimate of the Green’s function and the travel time between the
observation points in geophysics [18]. The travel time estimates can then be used
for background velocity estimation. Indeed tomographic travel time velocity
analysis, based on cross correlations, was applied successfully for surface-wave
velocity estimation in Southern California [23], in Tibet [30], and in the Alps
[27].
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The idea of using the cross correlation of noisy signals to retrieve information
about travel times was used previously in helioseismology and seismology [12,
21]. It is now applied to seismic data from regional to local scales [18, 25, 17],
volcano monitoring [8] and petroleum prospecting [11]. When the noise sources
are uncorrelated and have support that extends over all space, the derivative
of the cross correlation of the recorded signals can be shown to be proportional
to the symmetrized Green’s function between the observation points [22]. This
property also holds when the source distribution has limited spatial support
provided the waves propagate in an ergodic cavity [10, 3]. At the physical level
this result has been established in other configurations provided that the noisy
field is equipartitioned [19, 26, 20]. In an open environment this means that
the recorded signals are an uncorrelated and isotropic superposition of plane
waves in all directions. In a closed environment it means that the recorded
signals are superpositions of normal modes with random amplitudes that are
statistically uncorrelated and identically distributed. In this paper we introduce
a mathematical formulation in which travel time estimation by cross correlation
of noisy signals is possible when there is enough noise source diversity.

In many realistic environments the noise source distribution is spatially lim-
ited and the field is not equipartitioned. As a result, the waves recorded by the
observation points are dominated by the flux coming from the direction of the
noise sources, which results in an azimuthal dependence of the quality of the
Green’s function estimation, with poor results for some azimuths [27]. To over-
come this problem, Campillo and Stehly [28] have proposed the use higher-order
cross correlations. In this paper, we explain why the usual cross correlation tech-
nique fails when the noise sources have limited spatial support. We also show
that iterated cross correlations using auxiliary observation points can exploit
the enhanced directional diversity of the waves scattered by the heterogeneities
of the medium. We analyze a special fourth-order cross correlation function
that can provide acceptable travel time estimates even when the support of the
noise sources is spatially limited.

The paper is organized as follows. In Section 2 we describe the physical
principles for travel time estimation by cross correlation of noisy signals. In
Section 3 we present a mathematical formulation of the estimation problem. In
Section 4 we give a simple proof of the relation between the cross correlation
and the Green’s function when the sources are distributed all over space. In
Section 5 we present the Helmholtz-Kirchhoff theorem and its application to
cross correlations when the noise sources completely surround the region under
investigation. In Sections 4-5 it is sufficient to assume that the recording time
is much larger than the coherence time of the sources and then the full Green’s
function can be estimated. When the noise sources have a spatially limited
distribution, the singular (high-frequency) component of the Green’s function
can still be estimated provided that some additional conditions are fulfilled. As
a result travel time estimation is still possible provided that the typical travel
time is much larger than the coherence time of the noise sources. In Section
6 we give conditions under which travel time estimation by cross correlations
is possible in an open medium when the noise sources are spatially localized,
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using stationary phase analysis. In Section 7 we show that travel time estimation
in an ergodic cavity is possible even when the sources are spatially localized,
using semi-classical analysis. In Section 8 we study properties of iterated cross
correlations, which requires the analysis of fluctuations of cross correlations due
to heterogeneities in the medium, and we show that travel time estimation can
be done with iterated cross correlations even when the spatial support of the
noise source distribution is limited.

2 Travel time estimation with cross correlations

In this section we present the physical context that motivates travel time esti-
mation with cross correlations, and discuss the limitations of this approach.

The problem is to reconstruct the background velocity of the earth’s crust.
The usual technique for this is to wait for an earthquake to occur, which plays
the role of a seismic source, and to record the signals (seismograms) at various
observation points. Travel time estimation is done using the recorded direct
arrivals and then, if the observation points cover the region of interest, it is
possible to estimate the map of the background velocity tomographically [4].
The direct arrivals correspond to ballistic waves that propagate along rays from
the sources to the observation points. After the direct arrivals, the seismograms
are long oscillatory signals with decreasing amplitude but still above the noise
level. These signals correspond to coda waves that are scattered by the het-
erogeneities of the earth crust. Coda waves have been analyzed because they
contain information about the medium [2, 24]. It was understood only very re-
cently that the background noise (the stationary, noisy signals recorded during
the long time intervals between earthquakes) also contains information about
the medium. The issue is then how to extract this information, which is not as
easy as travel time estimation from direct arrivals.

The noise signals recorded over time intervals between earthquakes have
components due to surface waves generated from the interaction of the ocean
swell with the coast [27]. The medium in which the waves propagate has a
slowly varying background velocity profile, which determines the travel times
that we want to estimate, as well as heterogeneities that are responsible for
wave scattering. It was proposed in [12, 21] to compute the cross correlation
(in time) of the noisy signals u(t,x1) and u(t,x2) recorded at two observation
points x1 and x2:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt . (1)

When the medium is homogeneous and the source of the waves is a space-time
stationary random field that is also delta correlated in space and in time, then
it can been shown [26, 22] that

∂

∂τ
CT (τ,x1,x2) ' G(τ,x1,x2)−G(−τ,x1,x2) , (2)
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a) Configuration b) CT (τ,x1,xj)

Figure 1: When the noise sources (circles) completely surround the region of in-
terest then the cross correlation function is symmetric. Its positive and negative
parts correspond to the Green’s function between x1 and x2 and its anti-causal
form, respectively. The configuration is shown in Figure a: the circles are the
noise sources and the triangles are the sensors. Figure b shows the cross corre-
lation CT between the pairs of sensors (x1,xj), j = 1, . . . , 5, versus the distance
|xj − x1| and versus the time lag τ .

where G is the time-domain Green’s function of the wave propagation process.
This approximate equality (up to a multiplicative constant) holds for T suffi-
ciently large, provided some limiting absorption is introduced to regularize the
integral. When the medium is homogeneous, a mathematical analysis of (2)
is given in Section 4. When the medium is inhomogeneous and the sources
surround the inhomogeneous region of interest, then (2) still holds, as can be
shown by the Kirchhoff-Helmholtz theorem that we present in Section 5. The
main point here is that the time-symmetrized Green’s function can be obtained
from the cross correlation if there is enough source diversity. In this case the
wave field at any sensor is essentially equipartitioned, in the sense that it is
a superposition of uncorrelated plane waves in all directions. The travel time
between x1 and x2 can then be obtained from the singular support of the cross
correlation.

The configuration (Figure 1) in which the noise sources completely surround
the region of interest is rarely encountered in applications. Significant depar-
tures from this ideal situation occur when limited spatial diversity of the sources
introduces directivity into the recorded fields, which affects the quality of the
estimate of the Green’s function. If, in particular, the source distribution is
spatially localized, then the flux of wave energy is not isotropic, and the cross
correlation function is not symmetric (Figure 2). In some situations it may be
impossible to distinguish the coherent part of the cross correlation function,
which contains information about the travel time (Figure 3). A mathematical
analysis using the stationary phase method that explains the dependence of the
travel time estimate on the source distribution is given in Section 6.

In the case of a spatially localized distribution of noise sources, directional
diversity of the recorded fields can be enhanced if there is sufficient scattering in
the medium. An ergodic cavity with a homogeneous or inhomogeneous interior
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Figure 2: When the distribution of noise sources is spatially localized then the
cross correlation function is not symmetric.
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Figure 3: When the distribution of noise sources is spatially localized then the
cross correlation function does not seem to provide information on the travel
time between the two sensors if the axis formed by the sensors is perpendicular
to the main direction of energy flux from the noise sources.

is a good example (Figure 4, left): Even with a source distribution that has very
limited spatial support, the reverberations of the waves in the cavity generate
interior fields with high directional diversity [10, 3]. We analyze this situation in
Section 7. Multiple scattering of waves by random inhomogeneities can also lead
to wave field equipartition if the transport mean free path is short compared to
the distance from the sources to the sensors [18, 14, 13]. The transport mean
free path is the propagation distance over which wave energy transport in a
scattering medium is effectively isotropic. In such a scattering medium (Figure
4, right), the inhomogeneities can be viewed as secondary sources in the vicinity
of the sensors. In Section 8 we describe how to exploit the enhanced directional
diversity of the scattered waves.

The role of scattering in a random medium for travel time estimation de-
pends on the transport mean free path. We have just seen that directional
diversity is enhanced provided that the transport mean free path is short com-
pared to the distance between the sources and the sensors. If the transport mean
free path is also short compared to the distance between the sensors, then the
cross correlation function gives an acceptable estimate of the Green’s function,
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Figure 4: Configurations in which wave fields have directional diversity. An
ergodic cavity (a) and a randomly inhomogeneous medium (b).

but it is random because of the medium and the coherent part of the Green’s
function that has information about the travel time is essentially unobservable.
Therefore, when the noise sources are spatially limited then the travel time can
be estimated in a random medium provided that (i) the transport mean free
path is short compared to the distance between the sources and the sensors, and
(ii) it is long compared to the distance between the sensors. This is the physical
situation in which the random inhomogeneities actually enhance the estimation
process.

3 The empirical cross correlation and the sta-
tistical cross correlation

We consider the solution u of the wave equation in a d-dimensional inhomoge-
neous medium:

1

c2(x)

∂2u

∂t2
(t,x)−∆xu(t,x) = nε(t,x) . (3)

The domain can be bounded, with prescribed boundary conditions at the bound-
ary, or unbounded, in which case the support of the inhomogeneous region is
assumed to be compactly supported. The term nε(t,x) models a random distri-
bution of noise sources. It is a zero-mean stationary (in time) Gaussian process
with autocovariance function

〈nε(t1,y1)nε(t2,y2)〉 = F ε(t2 − t1)Γε(y1,y2) . (4)

Here 〈·〉 stands for statistical average with respect to the distribution of the
noise sources. The parameter ε denotes the ratio of the decoherence time of
the noise sources (i.e. the width of the time covariance function F ε) over the
typical travel time between sensors. In the first sections of this paper, ε can be
arbitrary. In Sections 6-8 we assume that ε is small and carry out an asymptotic
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analysis using this hypothesis. We can then write the time correlation function
F ε in the form

F ε(t2 − t1) = F
( t2 − t1

ε

)
, (5)

where t1 and t2 are scaled relative to typical sensor travel times. The Fourier
transform F̂ ε of the time correlation function is a nonnegative, even real-valued
function. It is proportional to the power spectral density of the sources:

F̂ ε(ω) = εF̂ (εω) , (6)

with the Fourier transform defined by

F̂ (ω) =

∫
F (t)eiωtdt . (7)

The spatial distribution of the noise sources is characterized by the auto-
covariance function Γε. It is the kernel of a symmetric nonnegative definite
operator. For simplicity, we assume in the first sections of this paper that the
process nε is delta-correlated in space:

Γε(y1,y2) = Γ0(y1)δ(y1 − y2) , (8)

where Γ0 characterizes the spatial support of the sources. One can consider a
more general form for the spatial auto-covariance function as is done in Section 7.
This requires the use of semiclassical analysis.

The stationary solution of the wave equation has the integral representation

u(t,x) =

∫
dy

∫
dsG(s,x,y)nε(t− s,y) , (9)

where G(t,x,y) is the time-dependent Green’s function. It is the fundamental
solution of the wave equation

1

c2(x)

∂2G

∂t2
(t,x,y)−∆xG(t,x,y) = δ(t)δ(x− y) , (10)

starting from G(0,x,y) = ∂tG(0,x,y) = 0 (and extended to the negative time
axis by G(t,x,y) = 0 ∀t ≤ 0). The Fourier transform is the outgoing time-

harmonic Green’s function Ĝ. It is the solution of the Helmholtz equation

∆xĜ(ω,x,y) +
ω2

c2(x)
Ĝ(ω,x,y) = −δ(x− y) , (11)

and it satisfies the Sommerfeld radiation condition (c(x) = c0 at infinity)

lim
|x|→∞

|x| d−1
2

( x
|x| · ∇x − i

ω

c0

)
Ĝ(ω,x,y) = 0 ,

uniformly in x/|x|.
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The empirical cross correlation of the signals recorded at x1 and x2 for an
integration time T is defined by (1). It is a statistically stable quantity, in the
sense that for a large integration time T , CT is independent of the realization
of the noise sources. This is stated in the following proposition proved in [15].
The statistical stability is analyzed in detail in [16].

Proposition 3.1 1. The expectation of CT (with respect to the noise source
distribution) is independent of T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2) , (12)

where C(1) is given by

C(1)(τ,x1,x2) =

∫
dy

∫∫
dsds′G(s,x1,y)G(τ + s+ s′,x2,y)F ε(s′)Γ0(y) ,

(13)
or equivalently by

C(1)(τ,x1,x2) =

∫
dy

∫
dωĜ(ω,x1,y)Ĝ(ω,x2,y)F̂ ε(ω)e−iωτΓ0(y) . (14)

2. The empirical cross correlation CT is a self-averaging quantity:

CT (τ,x1,x2)
T→∞−→ C(1)(τ,x1,x2) , (15)

in probability with respect to the distribution of the sources. More precisely, the
fluctuations of CT around its mean value C(1) are of order T−1/2.

In this paper, we shall always assume that the integration time T is large enough
so that the empirical cross correlation CT can be considered as equal to the
statistical cross correlation C(1). This allows us to focus our attention on the
properties of the statistical cross correlation.

4 Emergence of the Green’s function for an ex-
tended distribution of sources in a homoge-
neous medium

In this section we give an elementary proof of the relation between the cross
correlation and the Green’s function when the medium is homogeneous and open
with background velocity c0, and the source distribution extends over all space,
i.e. Γ0 ≡ 1, as in Figure 1. In this case the signal amplitude diverges because
the contributions from the noise sources far away from the sensors are not
damped. For a well-posed formulation we need to introduce some dissipation,
so we consider the solution u of the damped wave equation:

1

c20

( 1

Ta
+
∂

∂t

)2

u(t,x)−∆xu(t,x) = nε(t,x) . (16)
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The following proposition can be found in [15]. A somewhat different form, with
delta-correlated in time sources and with a different definition of dissipation, can
be found in [22].

Proposition 4.1 In a three-dimensional open medium with dissipation, if the
source distribution extends over all space Γ0 ≡ 1, then

∂

∂τ
C(1)(τ,x1,x2) = −c

2
0Ta
4

e−
|x1−x2|
c0Ta

[
F ε ∗G(τ,x1,x2)− F ε ∗G(−τ,x1,x2)

]
,

(17)
where ∗ stands for the convolution in τ and G is the Green’s function of the
homogeneous medium without dissipation:

G(t,x1,x2) =
1

4π|x1 − x2|
δ
(
t− |x1 − x2|

c0

)
.

If the decoherence time of the sources is much shorter than the travel time
(i.e., ε� 1), then F ε behaves like a Dirac distribution in (17) and we have

∂

∂τ
C(1)(τ,x1,x2) ' e−

|x1−x2|
c0Ta

[
G(τ,x1,x2)−G(−τ,x1,x2)

]
,

up to a multiplicative constant. It is therefore possible to estimate the travel
time T (x1,x2) = |x1 − x2|/c0 between x1 and x2 from the cross correlation,
with an accuracy of the order of the decoherence time of the noise sources.

5 Emergence of the Green’s function for an ex-
tended distribution of sources in an inhomo-
geneous medium

The cross correlation function is closely related to the symmetrized Green’s
function from x1 to x2 not only for a homogeneous medium but also for an
inhomogeneous medium, as discussed in the introduction. Here we give a simple
and rigorous proof for an open inhomogeneous medium in the case in which the
noise sources are located on the surface of a sphere that encloses both the
inhomogeneous region and the sensors, located at x1 and x2 (Figure 1). The
proof is based on an approximate identity that follows from the second Green’s
identity and the Sommerfeld radiation condition. This approximate identity can
be viewed as a version of the Helmholtz-Kirchhoff integral theorem (known in
acoustics [5, p. 473] and in optics [7, p. 419]) and it is also presented in [29, 15].

Proposition 5.1 Let us assume that the medium is homogeneous with back-
ground velocity c0 outside the ball B(0, D) with center 0 and radius D. Then,
for any x1,x2 ∈ B(0, D) we have for L� D:

Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) =
2iω

c0

∫

∂B(0,L)

Ĝ(ω,x1,y)Ĝ(ω,x2,y)dS(y) . (18)
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I–9



The right side of the Helmholtz-Kirchhoff identity (18) is related to the
representation (14) of the cross correlation function C(1) in the Fourier domain.
Therefore, by substituting (18) into (14) we get the following corollary.

Corollary 5.1 We assume that
1) the medium is homogeneous outside the ball B(0, D) with center 0 and ra-
dius D,
2) the sources are localized with a uniform density on the sphere ∂B(0, L) with
center 0 and radius L.
If L� D, then for any x1,x2 ∈ B(0, D), we have (up to a multiplicative factor)

∂

∂τ
C(1)(τ,x1,x2) = F ε ∗G(τ,x1,x2)− F ε ∗G(−τ,x1,x2) . (19)

If in addition we have ε � 1, then F ε behaves approximately like a delta
distribution acting on the Green’s function and we get (2).

6 Travel time estimation with spatially localized
noise sources in an open medium

We study in this section the cross correlation function when the support of
the sources is spatially limited in an open non-dissipative medium. We assume
in this section that the fluctuations of the medium parameters are modeled
by a smooth background velocity profile c(x). The outgoing time-harmonic

Green’s function Ĝ of the medium is the solution of (11) along with the radiation
condition at infinity. When the background is homogeneous with constant wave
speed c0 then the homogeneous outgoing time-harmonic Green’s function is

Ĝ(ω,x,y) =
eiω

|y−x|
c0

4π|y − x| (20)

in three-dimensional space, and

Ĝ(ω,x,y) =
i

4
H

(1)
0

(
ω
|y − x|
c0

)
(21)

in two-dimensional space. Here H
(1)
0 is the zeroth order Hankel function of the

first kind. Using the asymptotic form of the Hankel function [1, formula 9.2.3],
we see that the high-frequency behavior of the Green’s function is related to the
homogeneous medium travel time |x− y|/c0:

Ĝ
(ω
ε
,x,y

)
∼ 1

|x− y|(d−1)/2
ei
ω
ε
|x−y|
c0 .

For a general smoothly varying background with propagation speed c(x), the
high-frequency behavior of the Green’s function is also related to the travel time
and it is given by the WKB (Wentzel-Kramers-Brillouin) approximation [6]

Ĝ
(ω
ε
,x,y

)
∼ A(x,y)ei

ω
ε T (x,y) , (22)

Josselin Garnier
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which is valid when ε� 1. Here the coefficients A(x,y) and T (x,y) are smooth
except at x = y. The amplitude A(x,y) satisfies a transport equation and the
travel time T (x,y) satisfies the eikonal equation. It is a symmetric function
T (x,y) = T (y,x) and it can be obtained from Fermat’s principle

T (x,y) = inf

{
T s.t.∃ (Xt)t∈[0,T ] ∈ C1 , X0 = x , XT = y ,

∣∣dXt

dt

∣∣ = c(Xt)

}
.

(23)
A curve (Xt)t∈[0,T ] that produces the minimum in (23) is a ray and it satisfies
Hamilton’s equations (28-28).

For simplicity we assume that the background speed c(x) is such that there
is a unique ray joining any pair of points (x,y) in the region of interest. We
can then describe the behavior of the cross correlation function between x1 and
x2 when ε is small, with and without directional energy flux from the sources.

Proposition 6.1 As ε tends to zero, the cross correlation C(1)(τ,x1,x2) has
singular components if and only if the ray going through x1 and x2 reaches into
the source region, that is, into the support of the function Γ0. In this case there
are either one or two singular components at τ = ±T (x1,x2).

More precisely, any ray going from the source region to x2 and then to x1

gives rise to a singular component at τ = −T (x1,x2). Rays going from the
source region to x1 and then to x2 give rise to a singular component at τ =
T (x1,x2).

This proposition explains why travel time estimation is bad when the ray
joining x1 and x2 is roughly perpendicular to the direction of the energy flux
from the noise sources, as in Figure 3. Its proof is given in [15] and it is based on
the use of the high-frequency asymptotic expression (22) of the Green’s function
and a stationary phase argument.

7 Emergence of the Green’s function for a lo-
calized distribution of sources in an ergodic
cavity

In the case of a spatially localized distribution of noise sources, directional
diversity of the recorded fields can be enhanced if there is sufficient scattering in
the medium. An ergodic cavity with a homogeneous or inhomogeneous interior
is a good example (Figure 4, left): Even with a source distribution that has very
limited spatial support, the reverberations of the waves in the cavity generate
interior fields with high directional diversity [10, 3]. In this section we consider
the damped wave equation

( 1

Ta
+
∂

∂t

)2

u(t,x)−∇x ·
[
c2(x)∇x

]
u(t,x) = c2(x)nε(t,x) , (24)

in a bounded domain Ω with Dirichlet boundary conditions on ∂Ω. Semiclassical
analysis is a very efficient tool to study wave propagation in an ergodic cavity
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with a smoothly varying background velocity c(x). Note that a wave equation
with a self-adjoint operator is considered in (24) in order to simplify the algebra,
but the result could be extended to more general wave equations. In this section
we assume that the source distribution is not delta-correlated but has spatial
correlation, because semi-classical analysis allows us to study the role of the
spatial correlation of the noise sources. Therefore, we assume that the spatial
covariance function has the form

Γε(x,y) = Γ
(x+ y

2
,
x− y
ε

)
. (25)

Here the spatial correlation radius of the noise sources is assumed to be of the
same order as the decoherence time (ε), which is the regime in which time and
space noise correlations contribute to the Green’s function estimation at the
same order of magnitude.

The covariance operator Θε : L2(Ω)→ L2(Ω) defined by

Θεψ(x) =

∫
Γε(x,y)ψ(y)dy (26)

is a zero-order pseudodifferential operator with symbol Γ̂(x, ξ)

Θε = Opε
[
Γ̂(x, ξ)

]
,

where the Fourier transform Γ̂(x, ξ) of the function z 7→ Γ(x, z) is

Γ̂(x, ξ) =

∫
Γ(x, z)e−iξ·zdz ,

and we have used the Weyl quantization Opε defined by

Opε
[
Γ̂(x, ξ)

]
ψ(x) =

1

(2π)d

∫∫
Γ̂
(x+ y

2
, ξ
)
e
i
εξ·(x−y)ψ(y)dydξ . (27)

The main result of the papers [10, 3] is that it is possible to reconstruct
the singular components of the Green’s function in the ergodic case, up to a
smoothing operator that depends on Γε and F ε. There are two ingredients that
are used in this result:
1) Approximation of full wave propagation by classical ray dynamics (Egorov
theorem): the singular (high-frequency) components propagate along the rays
(Xt, ξt) of geometric optics (Hamiltonian flow h(x, ξ) = c(x)|ξ|) defined by

dXt

dt
= c(Xt)

ξt
|ξt|

, X0(x, ξ) = x ,

dξt
dt

= −∇c(Xt)|ξt| , ξ0(x, ξ) = ξ ,

and with specular reflection at the boundary ∂Ω.
2) Ergodicity of the ray dynamics in the cavity Ω: starting from almost any point
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x and almost any direction ξ, the ray (Xt, ξt) visits all the energy surface.
For any f ∈ L∞(S∗(Ω)) and for (x, ξ) in a subset of full measure of S∗(Ω),

lim
t→∞

1

t

∫ t

0

f
(
Xs(x, ξ), ξs(x, ξ)

)
ds =

1

µ(S∗(Ω))

∫

S∗(Ω)

f(m)dµ(m) ,

where S∗(Ω) is the cotangent spherical bundle (energy surface)

S∗(Ω) = {(x, ξ) ∈ T ∗Ω , c(x)|ξ| = 1} ,
and µ is the Liouville measure on S∗(Ω).

Proposition 7.1 If c ∈ W 4,∞(Ω), Γ̂ is smooth, bounded, and integrable, then
∂τC

(1)(τ,x,y) is the kernel of the operator

e−
τ
TaKεΓFεF [G(τ)−G(−τ)] +Rε(τ) +RTa(τ) , (28)

for any τ > 0, where
- G(τ) is the Green’s function operator with kernel G(τ,x,y).
- FεF is the convolution operator in τ (due to the time correlations of the
sources):

FεFG(τ) =

∫
F ε(s)G(τ − s)ds .

- KεΓ is the smoothing operator (due to the spatial correlations of the sources):

KεΓ = Opε
[
k̂Γ

(
c(x)ξ

)]
,

with

k̂Γ(ξ̃) =

∫
Ω
dzc(z)−d

∫
∂B(0,1)

dS(η)Γ̂
(
z, |ξ̃| ηc(z)

)
∫

Ω
dzc(z)−d

∫
∂B(0,1)

dS(η)
. (29)

The remainder Rε(τ) is determined by the error in the semiclassical approxi-
mation and it is small if ε is small (Egorov theorem).
The remainder RTa(τ) is determined by the rate of convergence of the ergodic

theorem for the function Γ̂ of the classical Hamiltonian flow. If Terg is the char-

acteristic convergence time of 1
t

∫ t
0

Γ̂(Xs, ξs)ds to its ergodic limit k̂Γ(c(x)ξ),
then RTa(τ) is small if Ta � Terg.

The symbol of the smoothing operator KεΓ is k̂Γ(c(x)ξ). The form of the

symbol of KεΓ is obtained by averaging the symbol Γ̂(x, ξ) of the covariance
operator Θε over the Liouville measure on surfaces of constant energy. This
makes sense intuitively since, in the semiclassical limit, we can expect the symbol
of KεΓ to be close to the one of Θε transported by the classical Hamiltonian flow,
and this converges to (29) by the ergodic theorem. This shows that the support
of the smoothing operator KεΓ has an effective radius that is of the order of the
correlation radius of the sources. To summarize, if Terg � Ta and ε � 1, then
detecting the first peak of τ 7→ C(1)(τ,x1,x2) gives an estimate of the travel
time from x1 to x2. The accuracy of this estimate depends on the correlation
radius and the decoherence time of the noise sources.
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8 Iterated cross correlations for travel time es-
timation in a weakly scattering medium

For travel time tomography to be successful it is necessary to have good esti-
mates of the travel times between pairs of sensors that cover well the region of
interest. When the noise sources are spatially localized and there is a strong
directional energy flux at the sensors, then travel time estimates will be poor
for sensor pairs with axis in directions perpendicular to this flux. In this section
we show that it is possible to exploit scattering from random inhomogeneities
so as to enhance travel time estimation.

We consider distributions of noise sources that are spatially localized and
media with scattering that is not strong enough for equipartition of the fields at
the sensors [27]. Therefore, even with scattering, the signals depend strongly on
the spatial localization of the noise sources, which affects the quality of travel
time estimation. However, the coda (i.e. the tails) of the cross correlations are
generated by scattered waves, which have more directional diversity than the
direct waves from the noise sources. By cross correlating the coda of the cross
correlations, which produces special fourth-order cross correlations, it is possible
to exploit scattered waves and their enhanced directional diversity. Campillo
and Stehly [28] suggest a way to estimate the Green’s function between x1 and
x2 as follows.

1) Calculate the cross correlations between x1 and xa,k and between x2 and
xa,k for each auxiliary sensor xa,k:

CT (τ,xa,k,xl) =
1

T

∫ T

0

u(t,xa,k)u(t+ τ,xl)dt, l = 1, 2, k = 1, . . . , Na.

2) Calculate the coda (i.e. the tails) of these cross correlations:

CT,coda(τ,xa,k,xl) = CT (τ,xa,k,xl)1[Tc1,Tc2](|τ |), l = 1, 2, k = 1, . . . , Na.

3) Cross correlate the tails of the cross correlations and sum them over all
auxiliary sensors to form the coda cross correlation between x1 and x2:

C
(3)
T (τ,x1,x2) =

Na∑

k=1

∫
CT,coda(τ ′,xa,k,x1)CT,coda(τ ′ + τ,xa,k,x2)dτ ′. (30)

This algorithm depends on three important time parameters:
1) The time T is the integration time and it should be large so as to ensure
statistical stability with respect to the distribution of the noise sources.
2) The time Tc1 is chosen so that the parts of the Green’s functions t 7→
G(t,xa,k,x1) and t 7→ G(t,xa,k,x2) limited to [Tc1, Tc2] do not contain the
contributions of the direct waves. This means that Tc1 depends on the position
of the auxiliary sensor xa,k and should be a little bit larger than the travel time
between the auxiliary sensor and the sensors max(T (xa,k,x1), T (xa,k,x2)).
3) The time Tc2 should be large enough so that the parts of the Green’s func-
tions t 7→ G(t,xa,k,x1) and t 7→ G(t,xa,k,x2) limited to [Tc1, Tc2] contain the
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contributions of the incoherent scattered waves. This means that Tc2 should be
of the order of the power delay spread.

Using the stationary phase method it can be shown [15, 16] that the algo-
rithm proposed by Campillo and Stehly succeeds in exploiting the enhanced
directivity of scattered waves. In particular the empirical coda cross correlation

C
(3)
T defined by (30) is a self-averaging quantity and it is equal to the statistical

coda cross correlation C(3) as T →∞:

C(3)(τ,x1,x2) =

Na∑

k=1

∫
Ĉ

(1)
coda(ω,xa,k,x1)Ĉ

(1)
coda(ω,xa,k,x2)e−iωτdω ,

C
(1)
coda(τ,xa,k,xl) = C(1)(τ,xa,k,xl)1[Tc1,Tc2](|τ |) .

The statistical coda cross correlation has singular components at the travel
time between the sensors even in the unfavorable case in which the ray joining
x1 and x2 does not reach into the source region. This result is presented in
Proposition 8.1 below. Its proof requires to specify a model for the inhomoge-
neous medium. A simple, single-scattering model is sufficient for this purpose
[15, 16].

Proposition 8.1 There are two (and only two) singular components in C(3),
at times τ = ±T (x1,x2), if the two following conditions hold:
1) The ray going through x1 and x2 (excluding the segment between x1 and x2)
reaches into the scattering region. The scatterers along this ray are the primary
ones for enhanced travel time estimation.
2) Rays going from the source region to the primary scatterers reach into the
observation region.
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Figure 5: The configuration is shown in Figure a: the circles are the noise
sources, the squares are the scatterers, and the triangles are the sensors. Figure
b shows the cross correlation C(1) between the pairs of sensors (x1,xj), j =
1, . . . , 5, versus the distance |xj−x1|. Figure c shows the coda cross correlation
C(3) between the pairs of sensors (x1,xj), j = 1, . . . , 5, which shows the singular
peak at lag time equal to the travel time T (x1,xj) in the coda cross correlation
C(3), because the ray going through x1 and xj intersects the scattering region.
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The statistical coda cross correlation C(3) differs from the statistical cross
correlation C(1) in that the contributions of the direct waves are eliminated and
only the contributions of the scattered waves are taken into account (note that
some of the contributions of scattered waves are also eliminated, but only those
which correspond to small additional travel times, which are also those which
induce small directional diversity). Since scattered waves have more directional
diversity than the direct waves when the noise sources are spatially localized, the
coda cross correlation C(3)(τ,x1,x2) usually exhibits a stronger peak at lag time
equal to the inter-sensor travel time T (x1,x2) (see Figure 5). In particular, in
contrast with the cross correlation C(1), the existence of a singular component
at lag time equal to the travel time T (x1,x2) does not require that the ray
joining x1 and x2 reaches into the source region, but only into the scattering
region.
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