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Journées Équations aux dérivées partielles
Biarritz, 3–7 juin 2012
GDR 2434 (CNRS)

On the best observation of wave and Schrödinger
equations in quantum ergodic billiards

Yannick Privat Emmanuel Trélat Enrique Zuazua
Abstract

This paper is a proceedings version of the ongoing work [20], and has been
the object of the talk of the second author at Journées EDP in 2012.

In this work we investigate optimal observability properties for wave and
Schrödinger equations considered in a bounded open set Ω ⊂ IRn, with Dirich-
let boundary conditions. The observation is done on a subset ω of Lebesgue
measure |ω| = L|Ω|, where L ∈ (0, 1) is fixed. We denote by UL the class of
all possible such subsets. Let T > 0. We consider first the benchmark prob-
lem of maximizing the observability energy

∫ T
0
∫
ω |y(t, x)2 dx dt over UL, for

fixed initial data. There exists at least one optimal set and we provide some
results on its regularity properties. In view of practical issues, it is far more
interesting to consider then the problem of maximizing the observability con-
stant. But this problem is difficult and we propose a slightly different approach
which is actually more relevant for applications. We define the notion of a ran-
domized observability constant, where this constant is defined as an averaged
over all possible randomized initial data. This constant appears as a spectral
functional which is an eigenfunction concentration criterion. It can be also
interpreted as a time asymptotic observability constant. This maximization
problem happens to be intimately related with the ergodicity properties of
the domain Ω. We are able to compute the optimal value under strong ergod-
icity properties on Ω (namely, Quantum Unique Ergodicity). We then provide
comments on ergodicity issues, on the existence of an optimal set, and on
spectral approximations.

1. The optimal observability problems
Let T > 0 fixed, and let Ω ⊂ IRn be a bounded open connected set. We consider in
parallel the wave equation

∂2y

∂t2
= 4y, (1.1)

MSC 2000: 49J30, 49K20, 35L05, 93B05, 93C20.
Keywords: Wave equation, Schrödinger equation, observability inequality, optimal design, ergodic properties, Quan-
tum Unique Ergodicity.
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and the Schrödinger equation
i
∂y

∂t
= 4y, (1.2)

posed in Ω, with Dirichlet boundary conditions. For any measurable subset ω ⊂ Ω,
we observe the restrictions of the solutions of (1.1) and of (1.2) to ω.

For the wave equation, the notion of observability is the following. For all (y0, y1) ∈
L2(Ω,C) × H−1(Ω,C), there exists a unique solution y ∈ C0(0, T ;L2(Ω,C)) ∩
C1(0, T ;H−1(Ω,C)) of (1.1) such that y(0, ·) = y0(·) and yt(0, ·) = y1(·). We say
that an observability inequality holds whenever there exists C > 0 such that

C‖(y0, y1)‖2
L2(Ω,C)×H−1(Ω,C) 6

∫ T

0

∫
ω
|y(t, x)|2 dxdt, (1.3)

for all (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C). It is well known that within the class of C∞
domains Ω, this observability property holds if the pair (ω, T ) satisfies the Geometric
Control Condition in Ω (see [2]), according to which every ray of geometrical optics
that propagates in Ω and is reflected on its boundary ∂Ω intersects ω within time
T . We define the observability constant by

C
(W )
T (χω) = inf


∫ T

0
∫
ω |y(t, x)|2 dx dt

‖(y0, y1)‖2
L2(Ω,C)×H−1(Ω,C)

∣∣∣ (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C) \ {(0, 0)}

 .
(1.4)

For the Schrödinger equation, the observability goes as follows. For every y0 ∈
L2(Ω,C), there exists a unique solution y ∈ C0(0, T ;L2(Ω,C)) of (1.2) such that
y(0, ·) = y0(·). The system is said observable whenever there exists C > 0 such that

C‖y0‖2
L2(Ω,C) 6

∫ T

0

∫
ω
|y(t, x)|2 dxdt, (1.5)

for every y0 ∈ L2(Ω,C). If there exists T ∗ such that the pair (ω, T ∗) satisfies the
Geometric Control Condition then the observability inequality (1.5) holds for every
T > 0 (see [16]). We define the observability constant by

C
(S)
T (χω) = inf


∫ T

0
∫
ω |y(t, x)|2 dx dt
‖y0‖2

L2(Ω,C)

∣∣∣ y0 ∈ L2(Ω,C) \ {0}

 . (1.6)

In the sequel we fix L ∈ (0, 1), and we define the set
UL = {χω | ω is a measurable subset of Ω of Lebesgue measure |ω| = L|Ω|},

where χω is the characteristic function of ω. Our objective is to maximize the ob-
servability properties of the wave or Schrödinger equation over the class UL, in a
certain sense. We consider the two following mathematical problems.

First problem (fixed initial data).

• Wave equation (1.1): given (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C), we
investigate the problem of maximizing the functional

GT (χω) =
∫ T

0

∫
ω
|y(t, x)|2 dx dt, (1.7)

over UL, where y ∈ C0(0, T ;L2(Ω,C))∩C1(0, T ;H−1(Ω,C)) is the
solution of (1.1) such that y(0, ·) = y0(·) and ∂y

∂t
(0, ·) = y1(·).
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• Schrödinger equation (1.2): given y0 ∈ L2(Ω,C), we investigate
the problem of maximizing the functional GT defined by (1.7) over
UL, where y ∈ C0(0, T ;L2(Ω,C)) is the solution of (1.2) such that
y(0, ·) = y0(·).

This first problem is the simplest possible and is interesting to be analyzed from
the mathematical point of view, but in view of practical issues it is necessary to
define an optimization problem that is independent on the initial data. Indeed, this
kind of problem is motivated e.g. by the application to the optimal placement of
sensors, in view of reconstructing some environment by means of local measures.
The most natural criterion is then the observability constant itself, defined by (1.4)
or by (1.6). But, firstly, the problem of maximizing (1.4) or (1.4) over UL happens to
be very difficult1, and secondly, the observability constant, defined by an infimum,
is probably a too much pessimistic criterion in practice: indeed when an engineer
realizes a large number of measures (and would like these measures to be of high
quality as far as possible), it is probable that only a few number of them will be "of
low quality", corresponding to the observability constant.

In view of this remark, it makes sense to consider rather an averaged version of
the observability inequality over randomized initial data. The procedure that we
propose here goes as follows. It is inspired by the works of N. Burq and N. Tzvetkov
on nonlinear partial differential equations with random initial data (see [4, 5]).

Let (φj)j∈IN∗ be a Hilbertian basis of L2(Ω) consisting of eigenfunctions of the
Dirichlet Laplacian operator on Ω, associated with the negative eigenvalues (−λ2

j)j∈IN∗ .
For all initial data (y0, y1) ∈ L2(Ω,C) × H−1(Ω,C), the corresponding solution y
(1.1) can be expanded as

y(t, x) =
+∞∑
j=1

(
aje

iλjt + bje
−iλjt

)
φj(x), (1.8)

where

aj = 1
2

(∫
Ω
y0(x)φj(x) dx− i

λj

∫
Ω
y1(x)φj(x) dx

)
,

bj = 1
2

(∫
Ω
y0(x)φj(x) dx+ i

λj

∫
Ω
y1(x)φj(x) dx

)
.

(1.9)

for every j ∈ IN∗. Note that (aj)j∈IN∗ and (bj)j∈IN∗ belong to `2(C) and that ‖(y0, y1)‖2
L2×H−1 =

2∑+∞
j=1(|aj|2 + |bj|2). Following Burq and Tzvetkov, we now randomize some given

initial data (y0, y1) as follows. Let (βν1,j)j∈IN∗ and (βν2,j)j∈IN∗ two sequences of ran-
dom laws on a probability space (X,A,P) that are independent, identically dis-
tributed with a common distribution θ for which there exists c > 0 such that∫

IR eγxdθ(x) 6 ecγ2 . For example, Bernoulli or gaussian random laws can be con-
sidered. For every ν ∈ X, we set

y0
ν(t, ·) =

+∞∑
j=1

(
βν1,jaj + βν2,jbj

)
φj(·), y1

ν(t, ·) =
+∞∑
j=1

iλj
(
βν1,jaj − βν2,jbj

)
φj(·),

1It is similar to the well-known open problem of determining what are the best constants in
Ingham’s inequalities.

X–3



so that the corresponding solution of (1.1) is

yν(t, ·) =
+∞∑
j=1

(
βν1,jaje

iλjt + βν2,jbje
−iλjt

)
φj(·).

Then, instead of considering the deterministic observability inequality (1.3), we
define the randomized observability inequality

C
(W )
T,rand(χω)‖(y0, y1)‖2

L2(Ω,C)×H−1(Ω,C) 6 E
(∫ T

0

∫
ω
|yν(t, x)2| dx dt

)
, (1.10)

where

C
(W )
T,rand(χω) = 1

2 inf
(aj),(bj)∈`2(C)∑+∞

j=1(|aj |2+|bj |2)=1

E

∫ T

0

∫
ω

∣∣∣∣∣∣
+∞∑
j=1

(
βν1,jaje

iλjt + βν2,jbje
−iλjt

)
φj(x)

∣∣∣∣∣∣
2

dx dt

 ,
(1.11)

The same procedure is made for the Schrödinger equation, leading to define the
randomized observability constant

C
(S)
T,rand(χω) = inf

(cj)∈`2(C)∑+∞
j=1 |cj |2=1

E

∫ T

0

∫
ω

∣∣∣∣∣∣
+∞∑
j=1

βνj cje
iµjtφj(x)

∣∣∣∣∣∣
2

dx dt

 . (1.12)

We have the following result.

Theorem 1. [[20]] For every measurable subset ω of Ω, there holds

2C(W )
T,rand(χω) = C

(S)
T,rand(χω) = T inf

j∈IN∗

∫
ω
φj(x)2 dx.

This motivates the consideration of the second problem below.

Second problem. We investigate the problem of maximizing the func-
tional

J(χω) = inf
j∈IN∗

∫
ω
φj(x)2 dx, (1.13)

over UL.

This criterion is a spectral energy (de)concentration one. Our main contribution
is to provide evidence of the intimate relations between this problem and strong
ergodicity properties of the set Ω.

This second problem can be motivated in another way, by considering the follow-
ing time averaging procedure. First of all, note that, for all initial data (y0, y1) ∈
L2(Ω,C)×H−1(Ω,C), the quantity

1
T

∫ T

0

∫
ω
|y(t, x)|2 dx dt,

where y is the corresponding solution of the wave equation (1.1), has a limit as T
tends to +∞. This leads to define the time asymptotic observability inequality

C(W )
∞ (χω)‖(y0, y1)‖2

L2(Ω,C)×H−1(Ω,C) 6 lim
T→+∞

1
T

∫ T

0

∫
ω
|y(t, x)2| dx dt, (1.14)
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where

C(W )
∞ (χω) = inf

{
lim

T→+∞

1
T

∫ T
0
∫
ω |y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

∣∣∣ (y0, y1) ∈ L2 ×H−1 \ {(0, 0)}
}
.

(1.15)
Similarly, for the Schrödinger equation, we define

C(S)
∞ (χω) = inf

 lim
T→+∞

1
T

∫ T
0
∫
ω |y(t, x)|2 dx dt
‖y0‖2

L2(Ω,C)

∣∣∣ y0 ∈ L2(Ω,C) \ {0}

 . (1.16)

We have the following result.
Theorem 2. [20] Assume that the domain Ω is such that every eigenvalue of the
Dirichlet Laplacian operator is simple. For every measurable subset ω of Ω, there
holds

2C(W )
∞ (χω) = C(S)

∞ (χω) = inf
j∈IN∗

∫
ω
φj(x)2 dx = J(χω).

Note that the assumption of the simplicity of the spectrum of the Dirichlet Lapla-
cian is generic with respect to the domain Ω.

It can be observed that, although such optimal design problems have been widely
investigated in the engineering literature (see e.g. [14, 17, 22] and references therein),
few mathematical works exist that provide a theoretical rigorous analysis. We quote
the remarkable articles [11, 12], where the problem of optimal domain is studied for
the stabilization of one-dimensional wave equations with localized damping. These
articles were actually the starting point of our own analysis. They are based on a
thorough investigation through spectral considerations. In [18] we investigated the
second problem presented previously in the one-dimensional case. We also quote the
article [19] where we study the related problem of finding the optimal location of
the support of the control for the one-dimensional wave equation. We refer to [20]
for other references to related problems.

2. First problem
In this section, we consider fixed initial data (y0, y1) ∈ L2(Ω) × H−1(Ω) (resp.,
y0 ∈ L2(Ω)) for the wave equation (1.1) (resp., for the Schrödinger equation (1.2)),
whose Fourier coefficients are defined by (1.9). Plugging (1.8) into (1.7) leads to

GT (χω) =
∫ T

0

∫
ω
|y(t, x)|2 dxdt =

+∞∑
j,k=1

αjk

∫
ω
φi(x)φj(x) dx, (2.1)

where
αjk =

∫ T

0
(ajeiλjt + bje

−iλjt)(āke−iλkt + b̄ke
iλkt) dt. (2.2)

The coefficients αjk, (j, k) ∈ (IN∗)2, depend only on the initial data (y0, y1), and can
be easily computed as

αjk = 2aj āk
λj − λk

sin
(

(λj − λk)
T

2

)
ei(λj−λk) T

2 + 2aj b̄k
λj + λk

sin
(

(λj + λk)
T

2

)
ei(λj+λk) T

2

+ 2bj āk
λj + λk

sin
(

(λj + λk)
T

2

)
e−i(λj+λk) T

2 + 2bj b̄k
λj − λk

sin
(

(λj − λk)
T

2

)
e−i(λj−λk) T

2

(2.3)
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whenever λj 6= λk, and

αjk = T (aj āk + bj b̄k) + sin(λjT )
λj

(aj b̄keiλjT + bj āke
−iλjT ). (2.4)

whenever λj = λk. We define the integrable function on Ω

ϕ(x) =
∫ T

0
|y(t, x)|2dt =

+∞∑
i,j=1

αijφi(x)φj(x). (2.5)

Then, from (2.1), there holds

GT (χω) =
∫
ω
ϕ(x) dx, (2.6)

for every measurable subset ω of Ω. With this expression, solving the first problem,
that is the problem of maximizing the functional GT over UL, is quite immediate
and we have the following result.
Theorem 3. [20] There exists at least one measurable subset ω of Ω, solution of the
first problem, characterized as follows. There exists a real number λ such that every
optimal set ω is contained in the level set {ϕ > λ}.
Moreover, if Ω has a C∞ boundary and if there exists R > 0 such that

+∞∑
j=0

Rj

j!
(
‖Ajy0‖2

L2 + ‖Aj−1y1‖2
L2

)1/2
< +∞, (2.7)

in the case of the wave equation, and
+∞∑
j=0

Rj

j! ‖A
jy0‖L2 < +∞, (2.8)

in the case of the Schrödinger equation, where A =
√
−4 (square root of the

Dirichlet-Laplacian), then the first problem has a unique2 solution χω ∈ UL, sat-
isfying moreover the following properties:

• there exists η > 0 such that d(ω, ∂Ω) > η, where d denotes the Euclidean
distance;

• ω has a finite number of connected components;

• if Ω is symmetric with respect to an hyperplane, then ω enjoys the same sym-
metry property.

Remark 1. The conditions (2.7) or (2.8) stipulate that the initial data share ana-
lyticity properties (note that they imply that y0 and y1 are analytic on Ω).
Remark 2. The optimal solution may not be unique whenever the function ϕ is
constant on some subset of Ω of positive measure. If ϕ is constant equal to c on
some subset I ⊂ Ω of positive measure, and if |{ϕ > c}| < L|Ω| < |{ϕ > c}|, then
there exists an infinite number of measurable subsets ω ⊂ Ω maximizing (2.6), all
of them containing the subset {ϕ > c}. The part of ω lying in {ϕ = c} can indeed
be chosen arbitrarily.

2Similarly to the definition of elements of L∞, the subset ω is unique within the class of all
measurable subsets of Ω quotiented by the set of all measurable subsets of Ω of zero Lebesgue
measure.
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Remark 3. In the one-dimensional case Ω = [0, π], one has φj(x) =
√

2
π

sin(jx) and
λj = j for every j ∈ IN∗. If moreover T = 2pπ with p ∈ IN∗, then αij = 0 whenever
i 6= j, and αjj = pπ(|aj|2 + |bj|2) for all (i, j) ∈ (IN∗)2, and therefore

G2pπ(χω) =
+∞∑
j=1

αjj

∫
ω

sin2(jx) dx. (2.9)

Hence in that case the functional G2pπ does not involve any crossed terms. The
second problem for this one-dimensional case was studied in details in [18]. In par-
ticular, in this case the non-uniqueness phenomenon can be exactly characterized
in terms of Fourier series.

Remark 4. If we relax, even slightly, the analyticity assumptions (2.7), then the
optimal optimal set ω is not necessarily unique and moreover may have an infinite
number of connected components. In [20] we prove that, in the framework of Remark
3, there exist smooth initial data (y0, y1) for the wave equation (resp., y0 for the
Schrödinger equation) defined on [0, π] for which the optimal set ω has a fractal
structure (it is of Cantor type) and thus in particular has an infinite number of
connected components.

3. Second problem and quantum ergodicity
The second problem

sup
χω∈UL

J(χω) (3.1)

is posed on a set UL that does not have nice compactness properties. It is usual in
optimal design problems to consider a convexified version of the problem. Here, the
convex closure of UL for the weak star topology of L∞ is

UL =
{
a ∈ L∞(Ω, [0, 1])

∣∣∣ ∫
Ω
a(x) dx = L|Ω|

}
. (3.2)

Replacing χω ∈ UL with a ∈ UL, the convexified version of the second problem (3.1)
is

sup
a∈UL

J(a), (3.3)

where
J(a) = inf

j∈IN∗

∫
Ω
a(x)φj(x)2 dx. (3.4)

Remark 5. Note that

sup
χω∈UL

inf
j∈IN∗

∫
Ω
χω(x)φj(x)2 dx 6 sup

a∈UL

inf
j∈IN∗

∫
Ω
a(x)φj(x)2 dx, (3.5)

but it is not obvious to see whether the inequality is strict or not. Indeed, since
the functional J under consideration fails to be lower semi-continuous, the usual
Γ-convergence theory does not apply to our problem. This difficulty can be made
evident in dimension one (see Remark 3). In that case, one has φj(x) =

√
2
π

sin(jx)
for every j ∈ IN∗, and it is easy to see that supa∈UL

J(a) = L and that the supremum
is reached with the constant function a(·) = L. Besides, the sequence of functions
χωN

, where ωN = ∪Nk=1

[
kπ
N+1 −

Lπ
2N ,

kπ
N+1 + Lπ

2N

]
for every N ∈ IN∗, converges to the
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constant function a(·) = L for the weak star topology of L∞, but nevertheless,
computations show that lim supN→+∞ J(χωN

) < L.

In what follows, we make the following assumption on Ω.

Weak Quantum Ergodicity (WQE) property. There exists a
subsequence of (φ2

j)j∈IN∗ converging to 1
|Ω| in weak star L∞ topology.

Under this assumption, there holds

sup
a∈UL

inf
j∈IN∗

∫
Ω
a(x)φj(x)2 dx = L, (3.6)

and moreover the supremum is reached with the constant function a = L on Ω.
Hence, from now on we have

sup
χω∈UL

inf
j∈IN∗

∫
Ω
χω(x)φj(x)2 dx 6 L, (3.7)

and we wonder whether this inequality is strict or not, or in other words, whether
there is a gap or not between the second problem and its convexified version.

Remark 6. The WQE assumption is always true in dimension one, as obvious
consequence of Lebesgue Lemma. The situation is more complicated in dimension
greater than one and we have the following facts.

• In a hypercube, or in the unit ball of IRn, WQE holds true.

• More generally, WQE follows from ergodicity properties. In [8, 10, 24] it is
proved that, if the domain Ω is an ergodic billiard with piecewise smooth
boundary, then the following property QE is satisfied.

Quantum Ergodicity (QE) property. There exists a subse-
quence of (φ2

j)j∈IN∗ of density one converging to 1
|Ω| in weak star L∞

topology.

Obviously, QE implies WQE. Actually the result (known as Shnirelman The-
orem) is stronger: a density-one subsequence of the probability measures
µj = φ2

j dx converges weakly to the Liouville measure of Ω. Here the do-
main Ω is seen as a billiard where the flow moves at unit speed and bounces
at the boundary according to the Geometric Optics laws.

To obtain a no-gap result, we need to strengthen WQE into the following assump-
tion.

Quantum Unique Ergodicity (QUE) property. The whole se-
quence (φ2

j)j∈IN∗ converges to 1
|Ω| in weak star L∞ topology.

Theorem 4. ([20]) If Ω satisfies QUE, then

sup
χω∈UL

inf
j∈IN∗

∫
ω
φj(x)2 dx = L, (3.8)

for every L ∈ (0, 1). In other words, under QUE there is no gap between the problem
(3.1) and its convexified version (3.3).
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Remark 7. The QUE property is very well-known in quantum physics and math-
ematical physics. The quantity µj(ω) =

∫
ω φ

2
j(x) dx represents the probability of

finding the quantum state in ω.
Obviously, QUE implies QE. Note that the QE property lets open the possibil-

ity of having an exceptional subsequence of φ2
j converging weakly to some other

measure. It may indeed happen that a subsequence (necessarily of density zero un-
der QE) converges to an invariant measure like for instance a measure carried by
closed geodesics or invariant tori generated by such geodesics. This energy concen-
tration phenomenon is referred to as a (strong) scar and up to now remains a widely
unknown issue (see [3, 7]).

The QUE assumption postulates that there is no such concentration phenomenon
(see [23]), but very few results are known. In the one-dimensional case, QUE is always
true. But in the multi-dimensional case, up to now no example is known where QUE
holds (in the context of the Dirichlet-Laplacian). The ergodicity of Ω is however a
necessary assumption for QUE to hold. Note that strictly convex billiards whose
boundary is C6 are not ergodic (see [15]), and there are sequences of positive density
of eigenfunctions which concentrate on caustics. Rational polygonal billiards are not
ergodic, but generic polygonal billiards are ergodic (see [13]). Recently, Hassell has
shown in [9] that there exist some convex (stadium-shaped) sets satisfying QE but
not QUE. Note that it is a longstanding conjecture that every compact negatively
curved manifold should satisfy QUE (see [21]). Using a concept of entropy, it is
proved in [1] that on a compact manifold with negative curvature the eigenfunctions
cannot concentrate entirely on closed geodesics and at least half of their energy
remains chaotic.

It is an open question of knowing whether the statement of Theorem 4 still holds
true for domains satisfying QE or only WQE. Note however that we have the fol-
lowing corollary.

Corollary 1. Assume that Ω satisfies QE. There exists a subset I of IN∗ of density
1 such that

sup
χω∈UL

inf
j∈I

∫
ω
φj(x)2 dx = L.

Remark 8. QUE is a sufficient condition implying the no-gap statement (3.8), but
is not sharp: it is not a necessary condition. For instance the two-dimensional square
does not satisfy QUE (nor QE), but satisfies WQE, and in this configuration it can
be easily shown that the no-gap result (3.8) holds.

Remark 9. The question of knowing whether the supremum in (3.8) is reached
or not is unexpectedly difficult. We have a clear answer only in dimension one. We
gather hereafter the results we have been able to prove.

• In the one-dimensional case Ω = [0, π], for L ∈ (0, 1), the supremum of J over
UL (which is equal to L) is reached if and only if L = 1/2. In that case, it is
reached for all measurable subsets ω ⊂ [0, π] of measure π/2 such that ω and
its symmetric ω′ = π − ω are disjoint and complementary in [0, π].

• For the two-dimensional square Ω = [0, π]2, the supremum of J over the class
of all possible subsets ω = ω1×ω2 of Lebesgue measure Lπ2, where ω1 and ω2
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are measurable subsets of [0, π], is reached if and only if L ∈ {1/4, 1/2, 3/4}.
In that case, it is reached for all such sets ω satisfying

1
4(χω(x, y) + χω(π − x, y) + χω(x, π − y) + χω(π − x, π − y)) = L,

for almost all (x, y) ∈ [0, π2].
It is by the way interesting to note that there exist optimal sets not satisfying
the Geometric Control Condition, and thus in this case the deterministic
observability constant is equal to 0, whereas 2C(W )

T,rand(χω) = C
(S)
T,rand(χω) =

TL.

We conjecture that, if Ω is the unit N -dimensional hypercube, then there exists a
finite number of values of L ∈ (0, 1) such that the the supremum in (3.8) is reached;
for generic domains Ω, there exists a finite number of values of L ∈ (0, 1) such that
the the supremum in (3.8) is reached.

Remark 10. As a final remark, let us stress that our main contribution is to put in
evidence the intimate relations existing between shape optimization problems and
the (strong) ergodicity properties of the domain Ω under consideration. It can be
noticed that such a connection was suggested in the early work [6], where the authors
were concerned with the question of determining sufficient conditions on dissipative
terms added into a conservative equation, ensuring an exponential decay of the
solutions. The role of the quantum effects of bouncing balls and of the whispering
galleries was underlined in their study. Our results here provide clear statements
making such a connection and suggest new issues in the analysis of optimal design
problems.

We end the study of the second problem by considering the spectral truncation
of the functional J defined by (1.13)

JN(χω) = min
16j6N

∫
ω
φj(x)2 dx, (3.9)

for every N ∈ IN∗ and every measurable subset ω of Ω. The spectral approximation
of the second problem is defined as

sup
χω∈UL

JN(χω). (3.10)

As before, the functional JN is extended to UL by

JN(a) = min
16j6N

∫
Ω
a(x)φj(x)2 dx,

for every a ∈ UL. We have the following result.

Theorem 5. 1. For every measurable subset ω of Ω, the sequence (JN(χω))N∈IN∗

is nonincreasing and converges to J(χω).

2. There holds
lim

N→+∞
max
a∈UL

JN(a) = max
a∈UL

J(a).

Moreover, if (aN)n∈IN∗ is a sequence of maximizers of JN in UL, then up to a
subsequence (aN)n∈IN∗ converges to a maximizer of J in UL in L∞ weak star
topology.
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3. For every N ∈ IN∗, the problem (3.10) has a unique solution χωN , where
ωN ∈ UL. Moreover, ωN has a finite number of connected components.

The theorem allows one to construct a maximizing sequence for the second prob-
lem. Several numerical simulations are provided in [20].

Remark 11. Note however that the following property is proved in [18]. In the one-
dimensional case Ω = [0, π], ωN is the union of at most N intervals, is symmetric
with respect to π/2, and moreover there exists LN ∈ (0, 1] such that, for every
L ∈ (0, LN ], the optimal domain ωN satisfies∫

ωN
sin2 x dx =

∫
ωN

sin2(2x) dx = · · · =
∫
ωN

sin2(Nx) dx.

This technical property (quite difficult to prove), stated in [12, Theorem 3.2] but
whose proof is not completely correct, causes the so-called spillover phenomenon,
according to which the optimal domain ωN solution of (3.10) with the N first modes
is the worst possible domain for the problem with the N + 1 first modes. Actually,
ωN concentrates around the nodes kπ

N+1 , k = 1, . . . , N . This is rather a bad news
for practical purposes, but is in accordance with the fact that the problem has no
solution whenever L 6= 1/2.
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