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Abstract
The Schrödinger map equation is a geometric Schrödinger model, closely

associated to the harmonic heat flow and to the wave map equation. The aim
of these notes is to describe recent and ongoing work on this model, as well as
a number of related open problems.

1. Geometric pde’s

The Schrödinger map equation belongs to a larger class of nonlinear pde which are
often referred to as geometric pde’s. The key difference, compared to the usual semi-
linear pde models, one instead considers evolutions where the state space consists
of functions which take values into a Riemannian manifold (M, g). Before focusing
on Schrödinger maps, it is useful to describe several related models.

1.1. Harmonic maps in Rn

These are maps
φ : Rn → (M, g)

The derivatives of φ are tangent vectors,
∂jφ(x) ∈ Tφ(x)M.

Inspired by the Lagrangian interpretation of the Laplace equations, to such maps
we associate the elliptic Lagrangian

Le(φ) = 1
2

∫
Rn
〈∂jφ, ∂jφ〉g dx, (1.1)

The associated Euler-Lagrange equation is called the harmonic map equation, and
is similar to the Laplace equation, namely

Dj∂jφ = 0 (1.2)
However, since ∂jφ(x) ∈ Tφ(x)M , here, instead of the standard differentiation oper-
ator ∂j, we use the covariant differentiation operator Dj induced by the map φ. A
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consequence of this is that the above equation is no longer a linear equation; instead
it becomes a semilinear elliptic equation.

1.2. The wave map equation
Replacing Rn with the Minkowski space (Mn+1,m), we can consider a similar La-
grangian to the above one,

Lm(φ) = 1
2

∫
Rn
〈∂αφ, ∂αφ〉g dx,

with the key difference that the index α is now lifted with respect to the Minkowski
metric. Thus Lm is no longer positive definite. The associated Euler-Lagrange equa-
tion is called the wave map equation, and has the form

Dα∂αφ = 0, φ(0) = φ0, ∂tφ(0) = φ1. (1.3)
This is a semilinear wave equation, for which the initial position and velocity are
maps

φ0 : Rn →M, φ1 : Rn → Tφ0M

A feature which is common with the linear wave equation is the conservation of the
energy and momentum,

E(φ) = 1
2

∫
Rn
|∂xφ|2 + |∂tφ|2 dx, Mi(φ) =

∫
Rn
∂iφ · ∂tφ dx.

1.3. The harmonic heat flow
This the gradient flow associated to the elliptic Lagrangian Le in (1.1), and has the
form

∂tφ−Dj∂jφ = 0, φ(0) = φ0 : Rn →M (1.4)
This is a semilinear parabolic equation for which Le is a Lyapunov functional,

d

dt
Le(φ) = −

∫
Rn
〈Di∂iφ,Dj∂jφ〉gdx

1.4. Schrödinger maps
The situation is slightly more complicated if one tries to obtain the geometric ana-
logue of the Schrödinger equation. For that to make sense in the above context, we
need a complex structure on the tangent space TM . Thus the natural setting is to
have a Kahler manifold (M, g, J, ω) as a target. The elliptic Lagrangian above now
plays the role of the Hamiltonian,

H(φ) =
∫
Rn
|∇φ|2gdx

The complex structure J onM induces a symplectic form on the phase space, namely

ω(u, v) =
∫
Rn
〈u, Jv〉gdx, u, v ∈ TφM

The corresponding Hamilton flow is the Schrödinger map equation
φt = JDj∂jφ, φ(0) = φ0 (1.5)
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where J is the complex structure on TM . Properly interpreted this is a semilinear
Schrödinger equation. We remark however that it can no longer be viewed as a
holomorphic extension of the harmonic heat flow equation; indeed, the two flows
no longer commute in general. The equation (1.5) admits one conserved quantity
which is the energy (Hamiltonian). However, in general there seems to be no direct
counterpart of the conservation of mass and momentum; see however [2].

1.5. Scaling and criticality
The harmonic map equation is invariant with respect to the dimensionless scaling

φ(x)→ φ(λx)

and also with respect to isometries of the base space Rn. Depending on the geometry
of the target manifold (M, g) one may have further symmetries for this equation.

The homogeneous Sobolev norm which is invariant with respect to the above
scaling is Ḣ n

2 (Rn); this is called the critical Sobolev space. In two dimensions
this coincides with the energy space Ḣ1 defined by the Lagrangian. We call the
two dimensional case energy critical. This is where it is natural to look for finite
energy harmonic maps, and study their regularity.

In one dimension the harmonic map equation becomes a second order ode; in fact,
it is exactly the equation for the geodesics on M .

In higher dimensions the critical Sobolev space has a higher index than the energy
norm. This is where the energy no longer plays a significant role in the study of the
solutions. We call these problems energy supercritical.

The scaling for both the harmonic heat flow and for Schrödinger maps is similar
to the above one with an added time component,

φ(t, x)→ φ(λ2t, λx)

This is natural since harmonic maps can be viewed as steady states for both flows.
Here the Sobolev space Ḣ n

2 (Rn) serves as the scale invariant initial data space. The
two dimensional case is still energy critical. The one dimensional case is energy
subcritical, while dimension three and higher is energy supercritical.

For wave-maps we still have a dimensionless scaling law,

φ(t, x)→ φ(λt, λx)

and the harmonic maps are also the steady states. Here we have a richer family
of symmetries given by the isometries of the Minkowski space, namely the Lorentz
group. Via the Lorentz group, the harmonic maps yield a richer family of wave maps
which travel in time with a constant velocity of size less than one and a fixed profile;
we call these solutions solitons.

The scale invariant initial data space for the wave map equation is Ḣ n
2 (Rn) ×

Ḣ
n
2−1(Rn). As above, the two dimensional case is still energy critical, the one di-

mensional case is energy subcritical, while dimension three and higher is energy
supercritical.
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2. The extrinsic formulation

The invariant formulation of the geometric equations in the previous section is very
short and efficient, but not so revealing for the pde analysis. Here we explore different
ways of understanding the structure of the equations. Rather than working with
a general target manifold, we will eventually restrict ourselves to the two most
interesting special targets: the sphere S2 and the hyperbolic space H2.

In what follows we think of the target manifold as being embedded into a higher
dimensional flat space, namely

S2 ⊂ (R3, e), M2 ⊂ (R2+1,m)
where e and m stand for the Euclidean, respectively the Minkowski metric. In the
latter case one can use either sheet of the two sheeted hyperboloid φ2

0 = φ2
1 + φ2

2.

2.1. The case of the sphere S2

This case serves as a model case of a positively curved target. The equations take a
particularly simple form, namely

−∆φ = φ|∇φ|2

for harmonic maps,
(∂t −∆)φ = φ|∇φ|2

for the heat flow,
2φ = φ(∂αφ · ∂αφ)

for wave maps. Furthermore, the sphere S2 is also a Riemann surface so we can also
consider Schrödinger maps into S2,

∂tφ = φ×∆φ
where the cross-product by φ attains the double goal of removing the normal com-
ponent of ∆φ, and of rotating its tangential component by π

2 .
In the case of two space dimensions, a key observation is that there exist nontrivial

finite energy harmonic maps from R2 into S2. By a theorem of Helein, all such
maps are smooth. To describe them better we observe that the energy space Ḣ1 =
Ḣ1(R2;S2) splits into connected components associated to homotopy classes.

Then it is natural to consider energy minimizers in each homotopy class. These
turn out to be unique modulo symmetries, namely scaling, isometries in the base
and isometries of the target. Using polar coordinates in the plane and on the sphere,
a representative of each class can be described in the form

Qk(r, θ) = (2 tan−1(rk), kθ), k ≥ 1
where k indexes the homotopy class. Note that the k = 0 minimizers are the constant
functions. One can also take k < 0; that is equivalent to positive k seen in the mirror.

The maps above have additional symmetries. Precisely, the belong to the so-called
k-equivariant class, which comprises maps of the form

φ(r, θ) = (f(r), kθ + g(r))
Often it is helpful to consider some of the more difficult problems restricted to the
equivariant class.

IX–4



2.2. The case of the hyperbolic space Hm

The equations look very much as in the case of the sphere,
−∆φ = φ|∇φ|2m

for harmonic maps, respectively
(∂t −∆)φ = φ|∇φ|2m

for the heat flow,
2φ = φ(∂αφ · ∂αφ)m

for wave maps and
∂tφ = φ×m ∆φ

for Schrödinger maps. The one key difference is that all vector norms, inner products
and cross products are taken with respect to the Minkowski metric.

A key difference, when compared to the sphere case, is that the state space is
connected, and that no finite energy harmonic maps.

3. The frame method

As written in the extrinsic formulation, it is not immediately apparent that the
Schrödinger map equation is a Schrödinger type equation, much less a semilinear
one.

In order to interpret it as a semilinear Schrödinger system, it is very convenient
to use the frame method. We describe it in the case of the spherical target, but
the method applies without almost any changes to the hyperbolic space. The same
description applies in Rn, which we use as the domain in this section. As a target
we use the sphere; the case of a hyperbolic space target is nearly identical.

For each (x, t) ∈ Rn+1 choose an orthonormal frame (v, w) in Tφ(x,t)S2. We repre-
sent the derivatives of our map φ in this frame by the differentiated fields

ψj = ∂jφ · v + i∂jφ · w, j = 1, · · · , n, n+ 1
where the index n+ 1 corresponds to time.

In turn, the of the frame is described by the real connection coefficients
Aj = ∂jv · w

which define the connection Dm = ∂m + iAm. Then ψm satisfy the compatibility
conditions

Dlψm = Dmψl.

The curvature of the connection is given by
DlDm −DmDl = i(∂lAm − ∂mAl) = i=(ψlψm).

Then the idea is to replace the evolution of φ with the evolution of its derivatives
ψm. The Schrödinger map equation becomes

ψn+1 = iDlψl.

Differentiating we obtain
Dn+1ψm = iDlDlψm + =(ψlψm)ψl
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and expanding

(i∂t + ∆x)ψm = −2iAl∂lψm +
(
An+1 + (A2

l − i∂lAl)
)
ψm − iψl=(ψlψm). (3.1)

This is coupled with the curl system for the Aj’s

∂lAm − ∂mAl = =(ψlψm). (3.2)

We remark that the original map φ has completely disappeared from the equations.
This is very convenient, and is a consequence of the fact that the target has constant
curvature.

As written above, the system for {ψk} is invariant with respect to the gauge
transformation

ψm → eiθψm, Am → Am + ∂mθ.

To solve the equation we need to make a unique choice for the A’s, i.e. to fix the
gauge. The aim is to do it in such a way so that the right hand side of (3.1) is
perturbative, at least in the small data case.

To best describe the issues which arise, we begin with a model problem, namely
the cubic NLS,

(i∂t −∆)u = ±ψ|ψ|2

For small data this can be solved perturbatively via the Strichartz estimates. Next
we consider several gauge choices.

3.1. The extrinsic gauge.
Here (v, w) are a fixed frame on the sphere. While no such frame exists globally, one
may still attempt to use one locally. Then the equation for ψ takes the schematic
form

(i∂t −∆)ψ = ψ · ∇ψ ± ψ|ψ|2

Unfortunately the first term on the right is nonperturbative.

3.2. The Coulomb gauge.
Here we complement the elliptic system (3.2) with a divergence relation

∂jAj = 0

Then the system roughly takes the form

(i∂t −∆)ψ = |∇|−1|ψ|2 · ∇ψ ± ψ|ψ|2

One obvious gain is that the quadratic term we had before is now replaced by a
cubic term, which should have better decay. Indeed, such a term is perturbative
in high dimension n ≥ 4. However, in low dimensions the high × high → low
interaction in the expression |∇|−1|ψ|2 becomes to degenerate. An exception to
this is the special case of equivariant maps. There the extra structure renders the
nonlinearity manageable.
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3.3. The Caloric gauge.
This was introduced by Tao [9] and is considerably more involved. It is constructed
in several steps:

• At each time t solve the harmonic heat flow with φ(t) as the initial data,
∂sφ−∆xφ = φ|∂xφ|2 φ(0, t, x) = φ(t, x).

Assuming φ(t) is not too large, in the limit s → ∞ the map converges to a
constant, φ→ P which is independent of t.

• Choose (v∞, w∞) at s = ∞ as an arbitrary orthonormal base in TPS2, and
pull back along the heat flow using parallel transport,

w · ∂sv = 0⇔ A0 = 0

• Derive a heat equation for ψm,
(∂s −∆x)ψm = 2iAl∂lψm − (A2

l − i∂lAl)ψm + i=(ψmψl)ψl.

• To recover the coefficients Am at s = 0 we integrate in s in the relation
∂sAm = =(ψ0ψm) = =

(
(∂lψl + iAlψl)ψm

)
The gain achieved by going through all this extra work is that the ψ system now

takes the form
(i∂t −∆)ψ = B(ψ, ψ̄) · ∇ψ ± ψ|ψ|2

where B is a translation invariant bilinear form whose symbol has size

B(ξ, η) ∼ ξ + η

ξ2 + η2

Comparing this with the Coulomb gauge, one sees that this symbol improves exactly
in the case of the high × high → low interaction.

4. The small data problem

The main result we have so far for the small data problem is as follows:

Theorem 1 (Bejenaru-Ionescu-Kenig-T., ’08, [1]). Consider the Schrödinger map
equation in Rn with target either S2 or H2. Then global well-posedness, regularity
and scattering holds for any initial data u0 with small critical Sobolev norm Ḣ

n
2 .

Earlier results were obtained by Nahmod-Stephanov-Uhlenbeck, Kenig-Nahmod,
Bejenaru, Ionescu-Kenig, Bejenaru-Ionescu-Kenig. The most interesting but also the
most difficult case is n = 2 (the energy critical problem).

Our approach is based on the frame method, using the caloric gauge. The key point
is to prove that the nonlinearity is perturbative in the equation for the differentiated
fields ψk. However this is easier said than done.

In general, cubic nonlinearities in 2 + 1 dimensional NLS problems are amenable
via Strichartz type estimates. In this particular case, however, one faces an unfa-
vorable balance of frequencies, which needs to be compensated for in the trilinear
estimates. This is often achieved by using lateral Strichartz estimates, with respect
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to suitable frames. In the problem at hand, the correct frequency balance would be
indeed gained by twice matching lateral energy L∞L2 bounds with lateral L2L∞

Pecher type bounds. Unfortunately the latter is exactly the forbidden Strichartz
endpoint in two space dimension. To remedy this, the idea is to replace the single
lateral L2L∞ Pecher space with a more robust ∑L2L∞ norm. This is somewhat
reminiscent of ideas previously used in the study of wave maps in low dimension.

5. The large data problem

For the purpose of this section we assume that we are in two space dimensions, i.e.
the energy critical case. The reason is that in this case the energy is a meaningful
invariant object which can be used in the description of the global behavior of
solutions.

We begin with the case of the H2 target, where there are no finite energy har-
monic maps, and no other known obstructions to global well-posedness. This is the
geometric version of a defocusing problem. Then we have
Conjecture 2 ( Defocusing Conjecture). Consider the Schröedinger map problem
in two space dimensions, with values in H2. For this problem, global well-posedness
and scattering holds for all finite energy data.

In the case of the S2 target, the harmonic maps provide an obvious obstruction to
a large data result. In addition, scattering can only occur for solutions in the zero
homotopy class. The smallest nontrivial soliton, on the other hand, is the stereo-
graphic projection which belongs to the homotopy one class. In order to emulate
such a soliton in the zero homotopy class, one needs to wrap the sphere and then
unwrap it; this requires twice the soliton energy. Thus the natural conjecture is:
Conjecture 3 ( Strong Threshold Conjecture). Consider the Schröedinger map
problem in two space dimensions, with values in S2. For this problem, global well-
posedness and scattering holds for all zero homotopy data which satisfies E(φ) <
2E(Q1).

We note that the corresponding results for wave maps have been proved recently
see Sterbenz-Tataru [7],[8] (any target manifold), Tao [10] (Hn target) and Krieger-
Sterbenz [5](H2 target). Both conjectures are still open for Schrödinger maps. How-
ever, the equivariant case has recently been studied.
Theorem 4 ( Bejenaru-Kenig-Ionescu-Tataru, in preparation ). Consider the Schröedin-
ger map problem in two space dimensions, with values in S2. For this problem, global
well-posedness and scattering holds in the 1-equivariant class for all finite energy
data.
Theorem 5 ( Bejenaru-Kenig-Ionescu-Tataru [2] ). Consider the Schröedinger map
problem in two space dimensions, with values in S2. For this problem, global well-
posedness and scattering holds in the 1-equivariant class for all zero homotopy data
which satisfies E(φ) < E(Q1).

The proof uses the Kenig-Merle method, which involves

• proving that if the result does not hold then minimal energy blow-up solutions
exist and
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• eliminating the minimal energy blow-up solutions via mass and momentum
Morawetz type estimates.

Key difficulties in the proof:

• Gauge formulation of the problem: via the Coulomb gauge one obtains two
coupled NLS type equations, and the coupling needs to survive in the con-
centration compactness argument.

• Morawetz (momentum) estimates are harder, and only yield local energy de-
cay in a restricted regime; in particular we cannot reach the conjectured
2E(Q1) threshold for S2 targets.

6. Near soliton behavior

In this section we consider the behavior of solutions with energy above the ground
state threshold. For clarity we discuss only the simplest such problem, which is still
wide open. Thus, we consider the case of the S2 target and solutions in the homotopy
one class, which have energy just above the soliton energy,

E(Q1) ≤ E(φ) < E(Q1) + ε (6.1)
We note that if E(Q1) = E(φ) then φ must belong to the class Q1 of ground states
obtained from Q1 via symmetries. We also remark that energy considerations show
that any such state φ must satisfy

dist(φ,Q1) . ε.

Thus the family Q1 is orbitally stable. Unfortunately this does not say as much as
one might want since the group of symmetries is noncompact. Thus we have the
following

Open problem 6. For Schrödinger maps from R2+1 to S2 which have homotopy
one and satisfy (6.1), understand the possible global dynamics for the flow.

The key element in this is understanding the motion of solutions along the Q1
family. Possible issues to consider are

• Can finite time blow-up occur ? If so, what are the possible rates ?

• For global solutions, what is the asymptotic behavior at infinity (if any) ?

• Can solutions drift away to spatial infinity in finite time ? In infinite time ?

• Are there any breather type solutions in this class ?

While in such generality the above problem seems out of reach for now, some
partial results have been obtained for equivariant solutions. An advantage of working
in the equivariant class is that the dimension of the symmetry group is reduced to
two, namely scaling and horizontal rotations. The first is noncompact, but the second
is compact. Thus we can parametrize the ground states as

Qeq1 = {Qα,λ; λ ∈ R+, α ∈ S1}
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The equivariant solutions are represented as
φ(t) = Qα(t),λ(t) +OḢ1(ε)

and the question is to understand the behavior of the functions α(t) and λ(t).
In chronological order, the results we have so far are as follows:

Theorem 7 (Gustafson-Nakanishi-Tsai [4] ). Qk ground states are stable in the k
equivariant class for k ≥ 3.

We remark that this result is very different from the wave-map picture. Also, it
seems somewhat unlikely that the result will survive outside the equivariant class.

Theorem 8 ( Bejenaru-Tataru (k = 1, [3]) (k = 2, in progress)). a) Q1 ground
states are unstable in the energy norm Ḣ1.
b) Q1 ground states are stable in the one equivariant class with respect to a

stronger topology X satisfying

H1 ⊂ X ⊂ Ḣ1

A key role in this analysis is played by the linearized equation near Q1 expressed
in a suitable gauge. This is a linear Schrödinger equation governed by an explicit
operator

H = −∆ + V, V (r) = 1
r2 −

8
(1 + r2)2 .

A key difficulty is that H has a zero resonance

φ0 = r∂rQ1 = 2r
1 + r2

which corresponds to motion along the soliton family.
This is unlike what happens in higher equivariance classes k ≥ 3 where the ana-

logue of φ0 is not only an eigenvalue but also belongs to H−1. This allows one to
define a corresponding orthogonal projection for functions in Ḣ1 and opens the door
to a more standard perturbation theory.

The proof of the above result requires developing a complete spectral resolution
for the operator H. In addition, the parameter λ(t) is the main nonperturbative
parameter in this analysis, so one in effect needs to work with a linear evolution of
the form

(i∂t +Hλ(t))ψ = f

with a nontrivial dependence of λ on t.
Finally, the last result we mention is

Theorem 9 (Merle-Raphael-Rodnianski [6]). Near Q1 blow-up solutions exist.
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