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Global dynamics beyond the ground state energy
for nonlinear dispersive equations

Kenji Nakanishi
Abstract

This is a brief introduction to the joint work with Wilhelm Schlag and
Joachim Krieger on the global dynamics for nonlinear dispersive equations
with unstable ground states. We prove that the center-stable and the center-
unstable manifolds of the ground state solitons separate the energy space by
the dynamical property into the scattering and the blow-up regions, respec-
tively in positive time and in negative time. The transverse intersection of
the two manifolds yields nine sets of global dynamics, which include stable
transition from blow-up to scattering and vice versa.

1. Introduction

The ultimate goal of this study is to classify and predict the global behavior of
general solutions for nonlinear dispersive equations. Given the variety and the com-
plexity of their dynamics, this is obviously too ambitious in the full generality, but
we have obtained some partial answers, either under an energy restriction which is
slightly above the ground state, or for those solutions getting close to the ground
state at some time. Specifically, we can treat the nonlinear Klein-Gordon equation
(NLKG)

ü−∆u+ u = |u|p−1u, u(t, x) : R1+d → R, 1 + 4
d
< p < 1 + 4

d− 2 ,
(1.1)

the nonlinear Schrödinger equation (NLS)

iv̇ −∆v = |v|p−1v, v(t, x) : R1+d → C, 1 + 4
d
< p < 1 + 4

d− 2 ,
(1.2)

and the nonlinear critical wave equation (NLW)

ẅ −∆w = |w|4/(d−2)w, w(t, x) : R1+d → R, d ≥ 3. (1.3)
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The main and common properties of them are that the nonlinearity is attractive
and controlable in the scaling by the energy (Ḣ1) and the mass (L2), and that they
have unstable ground states, i.e., the nontrivial stationary or standing-wave solution
with the least energy and positive profiles, denoted respectively by

u(t, x) = Q(x), w(t, x) = W (x), v(t, x) = e−itωQ(x) (ω > 0). (1.4)

The conserved energy is defined respectively by

E(u) =
∫
Rd

|u̇|2 + |∇u|2 + |u|2
2 − |u|

p+1

p+ 1 dx,

E(v) =
∫
Rd

|∇v|2 + ω|v|2

2 − |v|
p+1

p+ 1 dx, E(w) =
∫
Rd

|∇w|2

2 − |w|
p+1

p+ 1 dx.
(1.5)

Hence the energy space is naturally defined by (u, u̇) ∈ H1(Rd) × L2(Rd), v ∈
H1(Rd), or (w, ẇ) ∈ Ḣ1(Rd)×L2(Rd), in which we investigate the global dynamics.

The existence as well as the instability of the ground state is well known for
the above equations. Q(x) decays exponentially as |x| → ∞, while W (x) decays
algebraically. The Lorentz or Galilei invariance of the equation generates a class
of solitons with various traveling velocity from any stationary or standing wave
solution.

Besides those special solutions, it is known that these equations have, at least,
the following two different types of solutions.

1. Scattering: They are asymptotic to some solutions of the free equation (i.e. the
equation without the nonlinearity) as t→∞ in the energy space.

2. Blow-up: The energy norm diverges or the energy concentrates in finite time
(the latter happens only for the critical equation w above). More precisely, it
can be characterized by a finite maximal existence time of the local solution
which is strongly continuous in the energy space.

The first group of results concern those solutions with energy at most slightly
above the ground state. We can completely classify the global dynamics, which
shows in particular that even if the scattering, blowup and the solitons are mixed
together, the dynamics can stay reasonably ordered, thanks to the global dispersion
of the equations.

More precisely, our results state that all initial data under the energy restriction
are split into 9 sets, according to the global dynamics, which include scattering,
solitons and blow-up, as well as transitions among them from t < 0 to t > 0. The
classification is given by center-stable and center-unstable manifolds of the ground
state, which we can construct globally, as the hypersurfaces separating scattering
and blowup solutions, respectively for t > 0 and for t < 0.

For simplicity, the full statement is given below in the model case: radial, cubic
and 3D NLKG [3]. The other cases [6, 1, 5, 2, 7] can be understood as extension of
it. We introduce minimal amount of notation to state the main results.
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For each σ = ±, let Sσ(0),Bσ,Sσ(±Q) be the totality of the initial data (u(0), u̇(0)) ∈
H = H1(Rd)× L2(Rd), for which the corresponding solution u of NLKG satisfies

(u(0), u̇(0)) ∈ Sσ(0) =⇒ u scatters as σt→∞,
(u(0), u̇(0)) ∈ Bσ =⇒ u blows up in σt > 0,
(u(0), u̇(0)) ∈ Sσ(±Q) =⇒ u∓Q scatters as σt→∞.

(1.6)

For each subset X ⊂ H and ε > 0, the energy restriction is denoted by

Xε = {ϕ ∈ X | E(ϕ) < E(Q) + ε2}. (1.7)

For any solution u of NLKG in H, let I(u) ⊂ R be the maximal existence interval.
Denote the ground state of the linearized operator and its orthogonal projection by
L+ := −∆ + 1− 3Q2, L+ρ = −k2ρ, ρ = ρ(|x|) > 0, ‖ρ‖2 = 1, P⊥ := 1− ρ〈ρ|.

Théorème 1. Let d = p = 3 for (NLKG). Then there exists ε > 0 such that the
following holds. We have

Hε = Sσ(0)ε ∪ Bεσ ∪ Sσ(Q)ε ∪ Sσ(−Q)ε (disjoint union), (1.8)

for σ = ±. Each of the 14 intersections
S+(0)ε ∩ S−(0)ε, S+(0)ε ∩ Bε−, S+(0)ε ∩ S−(±Q)ε,
Bε+ ∩ S−(0)ε, Bε+ ∩ Bε−, Bε+ ∩ S−(±Q)ε,
S+(±Q)ε ∩ S−(0)ε, S+(±Q)ε ∩ Bε−, S+(±Q)ε ∩ S−(±Q)ε

(1.9)

contains infinitely many orbits, while S−(±Q)ε∩S+(∓Q)ε are empty. Sσ(0)ε and Bεσ
are unbounded connected open sets. Sσ(±Q)ε are unbounded, connected and smooth
manifold of codimension 1. S+(±Q)ε∩S−(±Q)ε are bounded, connected and smooth
manifold of codimension 2 within O(ε) distance from ±Q.

The key ingredient in the proof is the following result, which we call the one-pass
theorem. It precludes orbits departing from and returning to a small neighborhood
of the ground state. Once it is established, the analysis is essentially decomposed
into a scattering region, a blowup region and the small neighborhood of the ground
state. In each of them, some modification of the preceding works suffices.

Théorème 2. Let d = p = 3 and H = H1(R3)×L2(R3). Then there are small ε > 0,
O(ε)-neighborhoods U± of ±Q, a continuous function S : Hε \ (U+ ∪ U−) → {±1}
such that the following hold. For any solution u of NLKG in Hε, let

IS(0)(u) = {t ∈ I(u) | S((u(t), u̇(t)) = +1},
IB(u) = {t ∈ I(u) | S((u(t), u̇(t)) = −1},
IS(±Q)(u) = {t ∈ I(u) | (u(t), u̇(t)) ∈ U±}.

(1.10)

Then either IS(Q)(u) or IS(−Q)(u) is empty, while the other is connected. IS(0)(u)
and IB(u) together have at most two connected components. IS(0)(u) consists of un-
bounded intervals, while IB(u) consists of bounded ones. For each X = S(0),B,S(±Q),
we have (u(0), u̇(0)) ∈ X+ iff ∃T ∈ I(u) such that (T,∞) ∩ I(u) ⊂ IX(u), and the
same property for the negative time direction. For those (ϕ, ψ) ∈ H close to (±Q, 0),
we have

S((ϕ, ψ)) = sign 〈Q∓ ϕ|ρ〉. (1.11)
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For (ϕ, ψ) away from (±Q, 0), we have

S((ϕ, ψ)) = sign
∫
R3

[|∇ϕ|2 + |ϕ|2 − |ϕ|4]dx. (1.12)

Moreover, S is uniquely determined by the above two formulas.

The one-pass theorem is proved by combining the hyperbolic dynamics of the
linearized equation near but slightly away from the ground state, and the variational
analysis far from the ground state, together with a virial identity localized in space-
time for an almost homoclinic orbit.

Despite the lengthy statements, the proofs are not technically complicated at all,
which are based on numerous classical and recent ideas. The interested reader is
invited to look first into the above simplest setting, either in the paper [3] or in the
book [4].

2. Dynamics in higher energy
The study beyond the constraint E(~u) < E(Q) + ε2 is still to be developed, which
seems to require a lot of new ideas. However, we can say a few things without
the constraint, mainly around the center-(un)stable manifolds. Again for simplicity,
we restrict ourselves to the cubic NLKG in the radial 3D case. The main idea for
the proof is that the dynamics around the center-stable manifold can essentially
be reduced to the case with energy slightly above the ground state, by detaching
radiating high energy.

The first theorem extends the center-stable manifold globally in the energy space,
with the scattering property.
Théorème 3. S+(Q) is an invariant manifold of codimension 1 in H. There is a
bijection W from P⊥H× R to the set of solutions whose orbits are on S+(Q), such
that ~u := W (γ, a) satisfies u−Q ∈ L2

tL
6
x for large t and

lim
t→∞
‖~u(t)− ~Q− ~v(t)‖H = 0, (2.1)

where ~Q := (Q, 0) and ~v is the free solution with ~v(0) = γ.

The parameter a essentially determines the stable mode, which decays as t→∞.
See (2.2) and Theorem 6 below for more presice meaning of this parameter. The
above theorem extends [3] concerning the existence of the center-stable manifold of
Q, by removing the restriction E < E(Q) + ε2. We omit the similar statements for
the other signs of S±(±Q), obtained by the change of variables u 7→ −u and/or
t 7→ −t.

The next theorem describes the forward global dynamics around the manifold.
Théorème 4. For each ϕ ∈ S+(Q), there is a neighborhood U of ϕ and a function
σ ∈ C1(U ;R) such that the following holds. For any ψ ∈ U , let u be the solution
starting from ψ, then

1. u scatters to 0 as t→∞ if and only if σ(ψ) > 0.

2. u scatters to Q as t→∞ if and only if σ(ψ) = 0.

3. u blows up in t > 0 if and only if σ(ψ) < 0.
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This extends [3] concerning the separation of forward dynamics by the center-
stable manifold, removing the restriction E < E(Q) + ε2. Again, the corresponding
statements for −Q and for t→ −∞ are obvious.

The next theorem describes the entire dynamics around any homoclinic or het-
eroclinic orbits, either in the weak topology or in the scattering sense, connecting
±Q as t→ ±∞.

Théorème 5. For each ϕ ∈ S−(Q)∩S+(sQ) with s ∈ {±}, there are a neighborhood
U of ϕ and functions σ± ∈ C1(U ;R) such that the following holds. For any ψ ∈ U ,
let u be the solution starting from ψ, then

1. u scatters to Q as t→ −∞ if and only if σ−(ψ) = 0.

2. u scatters to sQ as t→∞ if and only if σ+(ψ) = 0.

3. u scatters to 0 as t→ ±∞ if and only if σ±(ψ) > 0.

4. u blows up in ±t > 0 if and only if σ±(ψ) < 0.

In other words, the signs of the local functionals σ± classify the global dynamics
into 9 sets, locally around any point of intersection of the center-unstable and the
center-stable manifolds. Such a classification was given in [3] for the region E <
E(Q) + ε2, where we also showed that for each γ+ ∈ P⊥H, the family of solutions
W (ϕ+, a) (given in Theorem 3) is decomposed into 3 sets according to the backward
evolution:

a > 0 =⇒ W (ϕ+, a) scatters to 0 as t→ −∞,
a = 0 =⇒ W (ϕ+, a) scatters to Q as t→ −∞,
a < 0 =⇒ W (ϕ+, a) blows up in the negative time direction.

(2.2)

This is not true for larger energy as we will show later. However, it remains valid
for |a| � 1, at least if E < 2E(Q). Let EL denote the linearized energy

EL((γ1, γ2)) := 1
2[‖γ2‖2

2 + 〈L+γ1|γ1〉L2 ]. (2.3)

Théorème 6. For any γ+ ∈ P⊥H, let {W (γ+, a)}a∈R be the family of solutions
given in Theorem 3. Then, W (γ+, a) blows up in the negative time direction for
a� −1. If EL(γ+) < E(Q) then W (γ+, a) scatters to 0 as t→ −∞ for a� 1.

It seems very difficult to determine the backward dynamics for intermediate values
of a ∈ R without energy restriction. However, we can prove that there are plenty of
weakly heteroclinic orbits between Q and −Q. We expect that this is the minimal
energy event violating (2.2) or the global 9-set decomposition.

Théorème 7. There are two invariant manifolds M± ⊂ H of codimension 2 such
that any solution starting there scatters to ±Q as t→ −∞, scatters to Q as t→∞,
and inft ‖u(t)‖L6

x
� ‖Q‖L6

x
. Moreover, inf E(M±) ≤ 2E(Q).

Numerical experiments suggest that the above infimum energy is actually quite
below 2E(Q), such as < 1.4E(Q), but for now we have no proof, even for the strict
inequality inf E(M±) < 2E(Q).
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