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The Calderón problem with partial data 1

Johannes Sjöstrand

Résumé

Nous décrivons un travail avec C.E. Kenig and G. Uhlmann [9] dans
lequel nous améliorons un résultat de Bukhgeim and Uhlmann [1], en mon-
trant qu’en dimension n ≥ 3, la connaissance des données de Cauchy pour
l’équation de Schrödinger sur des sous-ensembles possiblement très petits du
bord détermine le potential de manière unique. Nous suivons la stratégie
générale de [1] mais nous utilisons un ensemble plus riche de solutions du
problème de Dirichlet.

Abstract

We describe a joint work with C.E. Kenig and G. Uhlmann [9] where we
improve an earlier result by Bukhgeim and Uhlmann [1], by showing that
in dimension n ≥ 3, the knowledge of the Cauchy data for the Schrödinger
equation measured on possibly very small subsets of the boundary determines
uniquely the potential. We follow the general strategy of [1] but use a richer
set of solutions to the Dirichlet problem.

1. Introduction

In this talk we describe the results and the methods from a recent joint work
with C.E. Kenig and G. Uhlmann [9]. The background is the problem of electrical
impedance tomography (EIT) and we here follow [15]: Let Ω ⊂ Rn be a bounded
open set. Here and throughout the whole text we will assume that n ≥ 3.

Assume that the boundary ∂Ω is smooth. Let γ(x) > 0, x ∈ Ω be the electrical
conductivity and u(x), x ∈ Ω th electrical potential. Then under suitable regularity
assumptions on γ and u, we have

{
Lγu := div γ gradu = 0, in Ω
u|∂Ω

= f,
(1.1)

1based on joint work with C.E. Kenig and G. Uhlmann
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where the function f represents the imposed voltage on the boundary. We have the
corresponding voltage to current map:

Λγ : f 7→ γ∂νu|∂Ω
, (1.2)

where ν denotes the exterior unit normal. The general EIT problem is then to study
what information we can get about the function γ on Ω, from informations about
Λγ.

In this talk, we only discuss the injectivity question. Calderón [3] formulated
the problem and showed among other things that the differential of γ 7→ Λγ at
γ = Const. > 0 is injective. He also introduced in this context the idea of using
complex WKB-solutions. A global uniqueness result was obtained by Sylvester–
Uhlmann:

Theorem 1.1 ([14]) Let 0 < γj ∈ C2(Ω), j = 1, 2. If Λγ1 = Λγ2, then γ1 = γ2 in
Ω.

Using the identity:

γ−1/2 ◦ Lγ ◦ γ−1/2 = ∆− q, q =
∆
√
γ

√
γ
, (1.3)

where ∆ is the standard Laplace operator, and a result of Kohn–Vogelius, they
reduced the proof to a corresponding statement for Schrödinger operators:

Let q ∈ L∞(Ω) and assume for simplicity:

0 is not an eigenvalue of −∆ + q : (H2 ∩H1
0 )(Ω)→ L2(Ω). (1.4)

Define the Dirichlet to Neumann map

Nq : H
1
2 (∂Ω) 3 v 7→ ∂νu|∂Ω

∈ H− 1
2 (∂Ω), (1.5)

where u is the solution of the Dirichlet problem:

(−∆ + q)u = 0 in Ω, u|∂Ω
= v. (1.6)

Then we have the following result due to Sylvester-Uhlmann:

Theorem 1.2 ([14]) Let q1, q2 ∈ L∞(Ω) satisfy (1.4) for simplicity. If Nq1 = Nq2,
then q1 = q2 in Ω.

Global uniqueness in dimension n ≥ 3 for the closely related problem of inverse
scattering at a fixed energy was proven by Novikov [11].

The uniqueness problem with partial data appears if we assume that we only
know that Nq1v = Nq2v on some fixed part of the boundary for all functions v on
the boundary, or more generally for all functions v with support in some other fixed
part of the boundary.

There are results by Greenleaf–Uhlmann [6] and by Izosaki–Uhlmann [8], saying
that if Nqj coincide in the above sense on some part of the boundary, then q1 = q2
on some part of Ω. Full identification of q1 and q2 is given by the following result of
Bukhgeim–Uhlmann:
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Theorem 1.3 ([1]) Let q1, q2 ∈ L∞(Ω) satisfy (1.4). Let ξ0 ∈ Sn−1 and assume
that Nq1u = Nq2u in some fixed neighborhood in ∂Ω of {x ∈ ∂Ω; ν(x) · ξ0 ≤ 0} for

all u ∈ H 1
2 (∂Ω). Then q1 = q2.

We would like to get uniqueness from the equality of the Nqju for all u on an

even smaller part of the boundary. Let x0 ∈ Rn \ ch (Ω), where ”ch” = ”convex hull
of”. Define the front and the back faces of Ω by

F (x0) : = {x ∈ ∂Ω; (x− x0) · ν(x) ≤ 0}, (1.7)

B(x0) : = {x ∈ ∂Ω; (x− x0) · ν(x) ≥ 0}.

The following is a special case of our main result:

Theorem 1.4 ([9]) Let q1, q2 ∈ L∞(Ω) satisfy (1.4) and assume there exists a

neighborhood F̃ ⊂ ∂Ω of F (x0), such that

Nq1u = Nq2u in F̃ , ∀u ∈ H 1
2 (∂Ω). (1.8)

Then q1 = q2.

Corollary 1.5 ([9]) Let q1, q2 ∈ L∞(Ω) satisfy (1.4). Let x0 ∈ ∂Ω and assume that
Tx0∂Ω ∩ ∂Ω = {x0}. Also assume that Ω is strongly starshaped with respect to x0.

Let F̃ ⊂ ∂Ω be a neighborhood of x0 and assume that (1.8) holds. Then q1 = q2.

Here we say that Ω is strongly star-shaped with respect to the boundary point x0,
if every line through x0 which is not contained in Tx0∂Ω, intersects ∂Ω at precisely
two distinct points x0 and x1 and the intersection at x1 is transversal.

Theorem 1.4 has the following generalization that we discovered at a later stage:

Theorem 1.6 ([9]) Let q1, q2 ∈ L∞(Ω) satisfy (1.4) and assume there exist neigh-

borhoods F̃ ⊂ ∂Ω and B̃ ⊂ ∂Ω of F (x0) and B(x0) respectively, such that

Nq1u = Nq2u in F̃ , ∀u ∈ H 1
2 (∂Ω) ∩ E ′(B̃). (1.9)

Then q1 = q2.

Here we may notice that Green’s formula implies the identity N ∗
q = Nq and it

follows that we can permute F̃ and B̃ in (1.9) and still get the same conclusion.

In the remainder of this text we give an outline of the proof of Theorem 1.4 and
in the last section we indicate the additional argument used to get the more general
Theorem 1.6. (A complete exposition is available in [9].)

Acknowledgement We thank G. Uhlmann for help with the references to earlier
works and for the discovery of several misprints.
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2. Carleman estimate

We here only recall the main ideas (cf. [2], [10]). Let P0 = −h2∆, where h > 0 is a
small semi-classical parameter. The weighted L2-estimate

‖eφ/hu‖ ≤ C‖eφ/hP0u‖

is of course equivalent to the unweighted estimate for a conjugated operator:

‖v‖ ≤ C‖eφ/hP0e
−φ/hv‖.

The semi-classical principal symbol of P0 is p(x, ξ) = ξ2, and that of the conju-
gated operator eφ/hP0e

−φ/h is

p(x, ξ + iφ′(x)) = a(x, ξ) + ib(x, ξ),

where

a(x, ξ) = ξ2 − φ′(x)2, b(x, ξ) = 2ξ · φ′(x).

Write the conjugated operator as A + iB, with A and B formally selfadjoint and
with a and b as their associated principal symbols. Then

‖(A+ iB)u‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u|u).

The principal symbol of i[A,B] is h{a, b} and in order to get enough positivity we
require that

a(x, ξ) = b(x, ξ) = 0⇒ {a, b} ≥ 0.

It is then indeed possible to get an apriori estimate for the conjugated operator.
Since we need these estimates to fit nicely with the construction of WKB-solutions,
we are led to consider especially the limiting case, as it appears in the following

Definition. φ is a limiting Carleman weight (LCW) on some open set Ω, if φ′(x) is
non-vanishing there and we have

a(x, ξ) = b(x, ξ) = 0⇒ {a, b} = 0.

Being an LCW is quite difficult but such weights do exist.

Example 1. φ(x) = x · ξ0 with ξ0 ∈ Sn−1.

Example 2. φ(x) = C ln |x− x0|, x 6= x0.

When trying to investigate more systematically the LCWs we find that the
notion is indeed quite rigid and for instance the level surfaces have to be spheres (in
dimension ≥ 3)2. These slightly more general LCWs have not yet (to my knowledge)
been applied to inverse problems. Generalizing an estimate of [1] in the case of linear
LCWs, we have

2preliminary manuscript
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Proposition 2.1 Let φ ∈ C∞(neigh (Ω)) be an LCW, P = −h2∆+h2q, q ∈ L∞(Ω).
Then, for u ∈ C∞(Ω), with u|∂Ω

= 0, we have

−h3

C
((φ′

x · ν)eφ/h∂νu|eφ/h∂νu)∂Ω− + h2

C
(‖eφ/hu‖2 + ‖eφ/h∇u‖2) (2.1)

≤ Ch3((φ′
x · ν)eφ/h∂νu|eφ/h∂νu)∂Ω+ + ‖eφ/hPu‖2,

where norms and scalar products are in L2(Ω) unless a subscript A (like for instance
A = ∂Ω−) indicates that they should be taken in L2(A). Here

∂Ω± = {x ∈ ∂Ω; ±ν(x) · φ′(x) ≥ 0}.

Remark. If φ is an LCW, then so is −φ.

Remark. Using the Hahn-Banach theorem, we get an existence result for the adjoint
equation e−φ/hPeφ/hu = v.

3. Special null solutions

Let φ be an LCW and write p(x, φ′(x) + ξ) = a(x, ξ) + ib(x, ξ). Then we know that
a and b are in involution on their common zero set, and in this case it is well-known
and exploited in [5] that we can find plenty of local solutions to the Hamilton-Jacobi
system {

a(x, ψ′(x)) = 0
b(x, ψ′(x)) = 0

⇔
{
ψ′2 = φ′2

ψ′ · φ′ = 0
. (3.1)

We need the following more global statement:

Proposition 3.1 Let φ ∈ C∞(neigh (Ω)) be an LCW, where Ω is a domain in Rn

and define the hypersurface G = p−1(C0) for some fixed value of C0. Assume that
each integral curve of φ′ · ∂x through a point in Ω also intersects G and that the
corresponding projection map Ω → G is proper. Then we get a solution of (3.1)
in C∞(Ω) by solving first g′(x)2 = φ′(x)2 on G and then defining ψ by ψ|G = g,
φ′(x) · ∂xψ = 0. The vector fields φ′ · ∂x and ψ′ · ∂x commute.

This result will be applied with a new domain Ω that contains the original one.
Next consider the WKB-problem

P0(e
1
h
(−φ+iψ)a(x)) = e

1
h
(−φ+iψ)O(h2). (3.2)

The transport equation for a is of Cauchy-Riemann type along the two-dimensional
integral leaves of {φ′ ·∂x, ψ′ ·∂x}. We have solutions that are smooth and everywhere
6= 0. (See [5]).

The existence result for eφ/hPe−φ/h mentioned in one of the remarks after Propo-
sition 2.1 permits us to to replace the right hand side of (3.2) by zero, more precisely,
we can find r = O(h) in the semi-classical Sobolev space H1 equipped with the norm
‖r‖ = ‖〈hD〉r‖, such that

P (e
1
h
(−φ+iψ)(a + r)) = 0. (3.3)

IX–5



4. The Bukhgeim-Uhlmann argument.

Here we repeat the argument of [1] with richer spaces of null-solutions. Let φ be an
LCW for which the constructions of Section 3 are available. Let q1, q2 ∈ L∞(Ω) be
as in Theorem 1.4 with

Nq1(f) = Nq2(f) in ∂Ω−,ε0 , ∀f ∈ H
1
2 (∂Ω), (4.1)

where

∂Ω−,ε0 = {x ∈ ∂Ω; ν(x) · φ′(x) < ε0}
∂Ω+,ε0 = {x ∈ ∂Ω; ν(x) · φ′(x) ≥ ε0}.

Let
u2 = e

1
h
(φ+iψ2)(a2 + r2)

solve
(∆− q2)u2 = 0 in Ω,

with ‖r2‖H1 = O(h). Let u1 solve

(∆− q1)u1 = 0 in Ω, u1|∂Ω
= u2|∂Ω

.

Then according to the assumptions in the theorem, we have ∂νu1 = ∂νu2 in ∂Ω−,ε0
if ε0 > 0 has been fixed sufficiently small and we choose φ(x) = ln |x− x0|.

Put u = u1 − u2, q = q2 − q1, so that

(∆− q1)u = qu2, u|∂Ω
= 0, supp (∂νu|∂Ω

) ⊂ ∂Ω+,ε0 . (4.2)

For v ∈ H1(Ω) with ∆v ∈ L2, we get from Green’s formula

∫

Ω

qu2vdx =

∫

Ω

(∆− q1)uvdx (4.3)

=

∫

Ω

u (∆− q1)vdx+

∫

∂Ω+,ε0

(∂νu)vS(dx).

Similarly to u2, we choose

v = e−
1
h
(φ+iψ1)(a1 + r1),

with
(∆− q1)v = 0.

Then
∫

Ω

qe
i
h
(ψ1+ψ2)(a2 + r2)(a1 + r1)dx =

∫

∂Ω+,ε0

∂νu e
− 1

h
(φ−iψ1)(a1 + r1)S(dx). (4.4)

Assume that ψ1, ψ2 are slightly h-dependent with

1

h
(ψ1 + ψ2)→ f, h→ 0.
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The left hand side of (4.4) tends to
∫

Ω

qeifa2a1dx,

when h→ 0. The modulus of the right hand side is

≤ ‖a1 + r1‖∂Ω+,ε0
(

∫

∂Ω+,ε0

e−2φ/h|∂νu|2S(dx))
1
2 .

Here the first factor is bounded when h → 0. In the Carleman estimate (2.1) we
can replace φ by −φ and make the corresponding permutation of ∂Ω− and ∂Ω+.
Applying this variant to the equation (4.2), we see that the second factor tends to
0, when h→ 0. Thus, ∫

Ω

eif(x)a2(x)a1(x)q(x)dx = 0.

Here we can arrange so that f, a2, a1 are real-analytic and so that a1, a2 are non-
vanishing. Moreover if f can be attained as a limit of (ψ1 + ψ2)/h when h→ 0, so
can λf for any λ > 0. Thus we get the conclusion

∫

Ω

eiλf(x)a2(x)a1(x)q(x)dx = 0. (4.5)

5. Analytic wavefront sets.

Under the assumptions of Theorem 1.4, let H ⊂ Rn be an affine hyperplane sepa-
rating x0 from ch (Ω). Write Rn \H = H+ ∪H−, where H− and H+ are the open
half-spaces that contain x0 and Ω respectively. Let R > 0 be sufficiently large so
that Ω is contained in the open ball B(x0, R) of center x0 and radius R. We choose
the LCW φ(x) = ln |x − x0|. The corresponding functions ψ used in the special
null-solutions above are then characterized by the fact that they should solve the
standard Hamilton-Jacobi equation: ψ′2 = φ′2 on ∂B(x0, R)∩H+ and that they are
positively homogeneous of degree 0 in x− x0. Let x1, x2 ∈ H− ∩ ∂B(x0, R) be close
to antipodal on ∂B(x0, R) and with their antipodal points also belonging to H−.
Then we can choose ψ(x) = ψj(x) = dist(φ′)2dx2(xj , x) on ∂B(x0, R), where dx2 is
the induced Euclidean metric on ∂B(x0, R).

If x1, x2 are precisely antipodal, we get ψ1 +ψ2 = Const.. If we move xj slightly
in directions roughly parallel to H , and modifying ψj by adding suitable constants,
we can produce limiting fs as above with the property that f ′(x) 6= 0 near Ω.

Varying the available parameters x0, x1, x2, and multiplying by Gaussians in
the parameters and integrating, we can get an FBI-transform that can be used to
show that (x, f ′(x)) 6∈ WFa(q1Ω). The analytic wavefront version of Holmgren’s
uniqueness theorem ([7, 12]) can then be used to show that q = 0 on Ω, which
concludes the (outline of the) proof of Theorem 1.4.

6. The extra ingredient for getting Theorem 1.6

Let φ be an LCW defined in a neighborhood of Ω and assume (1.9) where now F̃

and B̃ denote fixed neighborhoods of ∂Ω+ and ∂Ω− respectively. The idea is now
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to add a reflected term to u2 in Section 4. Start as there with the WKB solution
e

1
h
(φ+iψ2)a2, and add a reflected term to get

e
1
h
(φ+iψ2)a2 − ei

Φ
h b,

where b is a symbol of order 0 and we want

−h2∆(ei
Φ
h b(x; h)) = ei

Φ
hO(dist (x, ∂Ω)∞ + h∞),

ei
Φ
h b|∂Ω

= e
1
h
(φ+iψ2)χa2|∂Ω

,

where χ ∈ C∞
0 (∂Ω−) is equal to 1 away from a small neighborhood of ∂(∂Ω−). Here

Φ should solve

(Φ′
x)

2 = O(dist (x, ∂Ω)∞), Φ|∂Ω−
= (ψ2 − iφ)|∂Ω−

.

One solution is of course ψ2− iφ, and we choose the second one (unique up to term
O(dist (·, ∂Ω−)∞)).

The term eiΦ/h is subdominant away from the boundary. Use the existence
theorem as before, to get a null solution of ∆− q2 of the form

u2 = e
1
h
(φ+iψ2)(a2 + r2)− ei

Φ
h b,

with
r2|∂Ω∩suppχ

= 0.

Then everything works as before.
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[5] J.J. Duistermaat, L. Hörmander, Fourier integral operators II, Acta Mathe-
matica 128(1972), 183-269.

[6] A. Greenleaf and G. Uhlmann, Local uniqueness for the Dirichlet-to-Neumann
map via the two-plane transform, Duke Math. J. 108(2001), 599-617.

IX–8
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