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GDR 2434 (CNRS)

Some controllability results for the relativistic
Vlasov-Maxwell system

Daniel Han-Kwan

Quelques résultats de contrôlabilité pour le système de
Vlasov-Maxwell relativiste

Résumé
L’objectif de cette note est de présenter les résultats récents concernant la

contrôlabilité du système de Vlasov-Maxwell, qui sont prouvés dans le papier
[10] écrit en collaboration avec Olivier Glass.

Abstract
The goal of this note is to present the recent results concerning the con-

trollability of the Vlasov-Maxwell system, which are proved in the paper [10]
by Olivier Glass and the author.

1. Introduction

We consider the relativistic Vlasov-Maxwell system set in the two-dimensional torus
T2 := R2/Z2, with a source supported in an open subset ω ⊂ T2:



∂tf + v̂ · ∇xf + divv
[
(E + 1

c
v̂⊥B)f

]
= 1ωG, t > 0, x ∈ T2, v ∈ R2,

∂tE1 − c∂x2B = −
∫
R2
fv̂1dv, ∂tE2 + c∂x1B = −

∫
R2
fv̂2dv,

∂tB + c rotE = 0,

divE =
∫
R2
fdv −

∫
R2×T2

fdvdx,

f|t=0 = f0, E|t=0 = E0, B|t=0 = B0,

(1.1)

MSC 2000: 35Q83, 93B05.
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where
v̂ := v√

1 + |v|2
c2

is the relativistic velocity and c > 0 is the speed of light. The distribution function
f(t, x, v) describes the statistical distribution of a population of electrons in a col-
lisionless plasma: the quantity f(t, x, v) dx dv can be interpreted as the density at
time t whose position is close to x and velocity close to v. As usual, E(t, x) stands for
the electric field (here, this is a two-dimensional vector) and B(t, x) for the magnetic
field (here this is a scalar quantity). They are solutions to the Maxwell equations,
with some sources (ρ :=

∫
f dv, j :=

∫
fv̂ dv), which means that the electromagnetic

fields are induced by the electrons themselves. The electromagnetic fields act on the
motion of the electrons through the Lorentz force E + 1

c
v̂⊥B (where v̂⊥ stands for

v̂ rotated of π/2).
Finally, 1ωG is a source in the Vlasov equation, which can be interpreted as an

absorption or creation of charged particles.
We are interested in the controllability properties of the Vlasov-Maxwell system,

by means of an interior control localized in ω. The basic control question is the
following: given (f1, E1, B1) a target and some control time T > 0, is it possible to
choose G such that the (non-linear) dynamics can be driven to:

f|t=T = f1, E|t=T = E1, B|t=T = B1 ? (1.2)

The investigation of such a question for other non-linear kinetic equations has
already been done in the context of the Vlasov-Poisson equation by O. Glass [8]
and for the Vlasov-Poisson equation with external force fields by O. Glass and the
author [11]. The latter case can be somehow considered as a toy model for the
Vlasov-Maxwell case, and will play an important role for one of our next results.

As it is well-known, the Maxwell equations are basically a system of two coupled
(linear) wave equations. Concerning the controllability of wave equations, we have
a famous result of Rauch-Taylor [14], and Bardos-Lebeau-Rauch [3], which involves
some geometric condition on the control set ω, that we can introduce now:

Definition 1.1. The open subset ω of T2 satisfies the Geometric Control Condition
(GCC) if:

There exists T > 0 such that for any x ∈ T2 and any direction e ∈ S1,

there exists y ∈ [0, T ] such that x+ ye ∈ ω. (1.3)

Loosely speaking, this means that any ray of light meets the control set in finite
time, and that all the information can be “observed” from ω. We have:

Theorem 1.2 (Rauch and Taylor). Assume that ω ⊂ T2 satisfies GCC. Let (ϕ0,Ψ0),
(ϕ1,Ψ1) ∈ H1(T2)×L2(T2) some initial and final data. Then there exists G ∈ L2(T2)
such that the solution ϕ to the wave equation:{

∂2
t ϕ−∆xϕ = 1ωG,

ϕ|t=0 = ϕ0, ∂tϕ|t=0 = Ψ0,

satisfies:
ϕ|t=T = ϕ1, ∂tϕ|t=T = Ψ1.

V–2



As shown in [3] and [4], GCC is not only a sufficient condition to get controllability
for the wave equation, it is also necessary. In view of these facts, it is natural for
our problem (whose structure is transport + waves) to assume GCC on the control
set ω. Indeed, we have the following result:

Theorem 1.3 (Glass and Han-Kwan). We assume that ω satisfies the geometric
control condition. There exists T0 > 0, such that for any T > T0 if for i = 0, 1,
(fi, Ei, Bi) ∈ H3(T2×R2)×H3(T2)×H3(T2) are such that fi is compactly supported
in v and satisfy the compatibility conditions:

divEi =
∫
R2
fi dv −

∫
T2×R2

fi dvdx, (1.4)∫
T2×R2

f0 dvdx =
∫
T2×R2

f1 dvdx, (1.5)

as well as the smallness assumption

‖(fi, Ei, Bi)‖H3 ≤ κ, i = 0, 1, (1.6)

for κ small enough, then there exists a control G ∈ H2([0, T ]× T2 ×R2), supported
in ω, which drives the Vlasov-Maxwell system from (f0, E0, B0) to (f1, E1, B1).

This theorem is a small data result: one speaks of a local controllability property.
The limitation on the control time is expected, because of the finite speed of prop-
agation of information in the Maxwell equations. It would be interesting though to
find the minimal time of control in this result.

The following of this note is organized as follows: Section 2 is first devoted to a
sketch of the proof of this latest result. In Section 3, we will present and explain
another result, maybe more surprising, for a control set ω which does not satisfy
the geometric control condition.

2. Sketch of the proof of Theorem 1.3

2.1. Preliminary 1: The return method
In order to prove the Theorem, which concerns small data, the first natural idea is
to follow the proof scheme:

• Linearize the equations around the trivial state (0, 0, 0) and prove some con-
trollability properties of these linear equations.

• Show that these properties are somehow preserved after some small pertur-
bation and finally prove by a fixed point argument that this allows to give a
solution to the non-linear problem.

Unfortunately, we are in a situation where this usual proof scheme fails. Indeed,
after linearization around the trivial state, we obtain the following relativistic free
transport equation: {

∂tf + v̂ · ∇xf = 1ω(x)G(t, x, v),
ft=0 = f0,
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which fails to be controllable in general. By Duhamel’s formula, we have the repre-
sentation (characteristics are straight lines):

f(t, x, v) = f0(x− tv̂, v) +
∫ t

0
1ω(x− (t− τ)v̂)G(τ, x− (t− τ)v, v) dτ.

To be able to influence the value of f at some time T > 0, it clearly necessary
that 1ω(x− (T − τ)v̂) is different from 0 for any (x, v) ∈ T2 ×R2, at least for some
τ ∈ [0, T ]. From this remark, we deduce that there is an obstruction to controllability
coming from the geometry of the trajectories. It could be that for any t ∈ R, x+ tv̂
never meets ω: this is the bad direction obstruction. Of course, this does not occur
when ω satisfies GCC, but we have to keep in mind this problem, in view of the
second result that will be discussed in the last section. Another obstruction comes
from the fact that the velocity v can have an arbitrarily small modulus, so that even
if x+ tv̂ always meets ω for some t ∈ R, this can be only for extremely large values
of |t|: this is the slow particles obstruction.

In order to circumvent this difficulty, we shall rely on the return method of J.-
M. Coron (we refer to the book [5] for many other applications, especially for the
incompressible Euler equations, and to [9] for another pedagogical presentation).
The principle of this method is the following: instead of linearizing around the
trivial state, we look for a particular homoclinic solution to the full Vlasov-Maxwell
system (with some source supported in ω), starting from (0, 0, 0) and reaching again
(0, 0, 0) after some time T > 0, but which can be highly non-trivial inside the
interval of time. We ask that the linearized equations around this solution enjoy
nice controllability properties.

In the kinetic context, we look for a solution (f, E,B) to Vlasov-Maxwell system,
with a suitable source supported in ω, starting from (0, 0, 0) and returning to (0, 0, 0)
such that the characteristics

dX

dt
(t, x, v) = V̂ (t,X(t, x, v)) and X(0, x, v) = x,

dV

dt
(t, x, v) = E(t,X) + V̂ ⊥

c
B(t,X) and V (0, x, v) = v,

satisfy, for some large enough T > 0:

Any trajectory X meets the control zone ω during [0, T ].

This will be sufficient for proving some results for the full non-linear equations.
In view of the future fixed point scheme, we will actually need a slightly stronger
property: let ω′ ⊂ ω′′ ⊂ ω where ω′, ω′′ are open sets still satisfying GCC, then we
ask that

Any trajectory X meets the zone ω′ during [0, T ].

2.2. Preliminary 2: Control of the Maxwell equation with
GCC

In order to implement this strategy, we will rely on some controllability results for
the Maxwell equations. As already mentioned, Maxwell equations can be recast as
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a system of coupled linear wave equations: ∂
2
tE − c2∆xE = −c2∇ρ− ∂tj,
∂2
tB − c2∆xB = c rot j.

Control is expected to be obtained by the source (ρ, j), which is supported in ω.
One difficulty is that this control has to satisfy, for consistency reasons, the local
conservation of charge:

∂tρ+∇ · j = 0. (2.1)
This was overcome by Phung in [13], who showed that it is possible to control the
system by using only divergence free currents j:

Theorem 2.1. Assume that ω satisfies GCC. Let us assume that the control time
T > 0 is large enough. Let k ∈ N∗. For any (E0, B0, E1, B1) ∈ Hk(T2)4, with
divE0 = divE1 = 0, there exists a control function j̃ ∈ ∩ks=0H

s([0, T ], Hk−s(T2))
satisfying jt=0 = jt=T = 0, such that for all t ∈ [0, T ], div j̃ = 0 and such that the
solution (E,B) to the system:

∂tB̃ + c rot Ẽ = 0, ∂tẼ + c rot B̃ = −j̃1ω,
div Ẽ = 0, div B̃ = 0,
Ẽ|t=0 = E0, B̃|t=0 = B0,

(2.2)

satisfies Ẽ|t=T = E1, B̃|t=T = B1.

Actually, Phung deals with the much more complicated case of domains of R3

with boundaries, and with low regularity data. In our problem, it is important to
deal with smooth electromagnetic fields and with a smooth control function: this
follows for instance from arguments developped in [7].

2.3. Step 1: Construction of the reference solution
We can now describe the formal construction of a relevant reference solution:
1. As a first step, we take (0, 0, 0) as reference solution. Observing that straight

lines with “large” velocities have to “quickly” meet ω′, we find some time T0 > 0
such that:

∀x ∈ T2, ∀v ∈ R2, |v| � 1, X(t, x, v) meets ω′ during [0, T0].
There remains to take care of particles whose initial velocity is not large enough.
2. To that purpose, we use Theorem 2.1: we accordingly find a smooth j1 such

that ∇ · j1 = 0, supported in ω, which drives the Maxwell equations from (0, 0) to
(E1 := (1, 1), 0) in some time T1. From that current, it is easy to find a solution to the
Vlasov-Maxwell equation, with some source supported in ω. Indeed, let Zi(v) ≥ 0
(for i = 1, 2) be a smooth function such that

∫
Zi(v) dv = 0 and

∫
Zi(v)v̂ dv =

(δi=1, δi=2). We set:
f(t, x, v) := Z1(v) j1

1(t, x) + Z2(v) j2
1(t, x), with j1 = (j1

1 , j
2
1)

and (E,B) the solution to Maxwell with sources given by ρ = 0 and j = j1. Then
we observe that (f, E,B) is a solution to Vlasov-Maxwell with a suitable source in

V–5



ω. Note indeed that

G := ∂tf + v̂ · ∇xf + (E + v̂⊥

c
B) · ∇vf

is supported in ω, by definition of f and j1. Note then that the state reached at
time T0 + T1 is exactly (0, E1, 0), which happen to be a stationary solution to the
Vlasov-Maxwell system (without any source). The effect of the electric field E1 is
to accelerate all particles; because the solution is stationary, we can wait enough
time so that the velocity of particles exceeds that needed in the previous step. This
implies that for some large T2 > 0, we have the property:

∀x ∈ T2, ∀v ∈ R2, X(t, x, v) meets ω′ during [0, T2].

3. Finally, with a similar procedure as before, we bring back the system to the
trivial state (0, 0, 0).

2.4. Step 2: Absorption and fixed point procedure
The last step consists of a relevant fixed point scheme. Let us first describe how we
define our fixed point operator V . Let g ∈ H3 be some distribution function close
to the reference solution (f, E,B) and satisfying the local conservation of charge.

We first define (Eg, Bg) the solution to the Maxwell equations with initial con-
ditions (E0, B0) and some sources (ρg, jg) := (

∫
g dv,

∫
gv̂ dv). Then we define f1 in

the following way: 

f1(t = 0) = f0,

∂tf1 + v̂ · ∇xf1 +
(
Eg + v̂⊥

c
Bg

)
· ∇vf1 = 0,

Absorption procedure on ∂ω′′.

(2.3)

For the sake of simplicity, we have chosen not to write precisely the absorption
procedure (but it can be found in full details in [10]). Loosely speaking, the principle
is to absorb certain particles who enter ω′′ . This creates some new difficulties
compared to the way the “usual” Cauchy problem is solved (see [16, 17, 1, 12] and
many others).

Then, we only consider the restriction of f1 on T2\ω′′ and use an extension theo-
rem to fill in smoothly the data inside ω′′. In this procedure, we have to be careful
of preserving the local conservation of charge inside ω′′. One finally obtains a dis-
tribution function f2 defined on T2 × R2. We finally define:

V(g) := f + f2. (2.4)
The goal is then to use Schauder’s theorem to obtain a fixed point to this operator.
To this end, we need in particular to get H3 estimates for V(g). The main difficulty
comes from the discontinuity of gradients across ∂ω′′, which is created because of the
absorption procedure. We therefore have to perform H3 estimates for the restriction
of f1 in ω′′ and in T2\ω′′ separately. When doing so, it turns out that many boundary
terms coming from integration by parts have bad signs in view of energy estimates.
To cure this problem, we have to make the sum of the estimates for each region,
which allows to kill all terms with a bad sign. In this procedure, we use several
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times the Vlasov equation satisfied in each region to trade normal derivatives (to
[0, T ]× ω′′ × R2) for tangential derivatives. We refer to the paper for more details.

Let us now denote (f, E,B) a fixed point to V : this is a solution to Vlasov-Maxwell
with a suitable source supported in ω, which is by construction close to the reference
one. By a Gronwall argument, this implies that the characteristics (X, V ) associated
to (E,B) satisfy also:

Any trajectory X meets ω′ during [0, T ].

Because of the absorption procedure, this means that f ≡ 0 outside ω′′. After some
minor further manipulations (inside ω, we can do anything to modify the solution),
this yields a solution which goes from (f0, E0, B0) to (0, 0, 0) with a source supported
in ω.

Likewise we can build a solution which goes from (f1, E1, B1) to (0, 0, 0). Relying
on the reversibility of the equations (if f is a solution, then f(−t, x,−v) also is),
this gives a solution which goes from (0, 0, 0) to (f1, E1, B1). We finally obtain a
solution which goes from (f0, E0, B0) to (f1, E1, B1), with a source supported in ω
(which is the control function). This puts an end to the proof of Theorem 1.3.

3. Another control result without Geometric Control Con-
dition

Without GCC, it seems hopeless to be able to prove any controllability property
for the full system, because of the Maxwell part in the equations. The idea behind
the following result is that actually, we have more flexibility for what concerns the
Vlasov equation. Thus, if we focus on the distribution function only (and abandon
the idea of controlling the EM fields), the following result can be proved:

Theorem 3.1 (Glass and Han-Kwan). Assume that ω contains a strip. Let (f0, E0) ∈
H3(T2×R2)×H3(T2) be some initial data and f1 ∈ H3(T2×R2) a target such that
f0, f1 are compactly supported in v and satisfying the compatibility conditions:

rotE0 = 0, divE0 =
∫
R2
f0 dv −

∫
T2×R2

f0 dvdx, (3.1)∫
T2×R2

f0 dvdx =
∫
T2×R2

f1 dvdx. (3.2)

Let b0 ∈ H3(T2) be a magnetic field of the form b0 such that
∫
T2 b0 6= 0. There exist

T0 > 0 such that for any T > T0, there exists cT > 0 such that for any c > cT , if the
following holds

‖(f0, E0)‖H3 ≤ κ, ‖f1‖H3 ≤ κ, (3.3)
B0 = c b0, (3.4)

with κ small enough, then there exists a control G such that the solution (f, E,B)
to the Vlasov-Maxwell system with initial data (f0, E0, B0) satisfies:

ft=T = f1. (3.5)

The strategy to prove this result is different to that of the previous theorem. The
main difference lies in the construction of a reference solution. Indeed, in the ab-
sence of GCC, no exact controllability result is available for the Maxwell equations.
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Instead, the strategy we follow is inspired by the behaviour of the Vlasov-Maxwell
system as the speed of light c goes to infinity. Some famous results (see [2, 6, 15])
indeed state that in the limit c → +∞, solutions to the Vlasov-Maxwell system
are solutions to the Vlasov-Poisson system. The condition (3.4), which may seem
strange otherwise, corresponds to the right scaling if one wants to recover a non-
trivial magnetic field in the limit.

3.1. An approximation lemma
The key result is the following lemma, which states that the solutions to the Maxwell
equations are well approximated, as c gets large by an electric field which is solution
to a Poisson equation and the initial magnetic field (actually a more general version
is proved in [10]).

Lemma 3.2. Let d = 2, 3. Let E0, j, ρ some C∞ functions and B0 a constant and
uniform magnetic field. Let us consider the solution (E,B) to the Maxwell equations:

∂tB + c rotE = 0, ∂tE + c rotB = −j,

divE = ρ−
∫
ρdx, divB = 0,

E|t=0 = E0, B|t=0 = B0.

(3.6)

At initial time we assume that the compatibility conditions are satisfied:

rotE0 = 0, divE0 = ρ(0)−
∫
ρ(0)dx. (3.7)

For all times we assume that the local conservation of charge is satisfied:
∀x ∈ Td, ∂tρ+∇x · j = 0, (3.8)

as well as the zero-mean current property:∫
Td
jdx = 0. (3.9)

Let E∞ be the solution to the Poisson equation:
rotE∞ = 0

divE∞ = ρ−
∫
ρdx.

(3.10)

Then, we have:
‖B −B0‖L∞([0,t]×Td) ≤

Cρ,jt

c
,

‖E − E∞‖L∞([0,t]×Td) ≤
C ′ρ,jt

c
,

(3.11)

where Cρ,j and C ′ρ,j are explicit constants depending only on ρ and j.

3.2. The reference solution in the Vlasov-Poisson case
This suggests that instead of the Maxwell case, we should first study the Poisson
case, which is much more tractable (for instance, there is an infinite speed of propa-
gation of information). We look for a reference solution (f, E) to the Vlasov-Poisson
system with an external magnetic field B0, such that the characteristics (X,V ) as-
sociated to E + v̂⊥B0/c satisfy:
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Any trajectory X meets the control zone B(x0, r0) during [0, T ].

where B(x0, r0) is a small ball contained in ω.
The construction is very similar to that of [11], except from the fact that some

additional consistency relations have to be satisfied in order to apply our approxi-
mation lemma (this leads to some serious technical difficulties).

As before, there is a first obstruction coming from slow velocities. This can be
solved as follows in the Poisson case. We denote by D a line of T2, which does not
cut the control zone ω (reduce ω if necessary) and n a unit vector, orthogonal to D.
We have the proposition:

Proposition 3.3. If ω contains a strip, there exists θ ∈ C∞(T2;R) such that

∆θ = ρ in T2,

Supp ρ ⊂ ω,

∀x ∈ T2 \ ω, |∇θ(x)| > 0,∫
D
∇θ · n dx = 0.

The proof of this result, which can be extrapolated from [8], relies essentially
on complex analysis tools. The third condition expresses that the electric field ∇θ
allows to accelerate particles. The fourth condition will be actually crucial to impose
some consistency relations and is obtained thanks to the strip contained in ω.

Contrary to the case with GCC, we also have to cure the obstruction coming from
bad directions. Fortunately, one can first observe that there is only a finite number
of directions vi of S1 such that :

∃x ∈ T2, ∀t ∈ R+, x+ tvi 6∈ B(x0, r0).
To circumvent that defect, we will rely on an effect provided by the magnetic fields

satisfying the bending condition (which was first exhibited in [11]). This “bending
effect” can be easily understood in the baby-model where c = +∞ and b0 ≡ 1. In
that simple case, the equations of characteristics read

dX

dt
= V,

dV

dt
= V ⊥, Xt=0 = x, Vt=0 = v.

and the solutions are explicit:

V =
(

cos t − sin t
sin t cos t

)
v, X =

(
sin t cos t− 1

1− cos t sin t

)
v + x.

We are concerned here with large enough velocities. We distinguish between the two
possibilities:

• Good initial direction: v 6= vi

Loosely speaking, when |v| is very large, the curvature of the circles is very
small and the trajectories look very much like straight lines. One can show
a good approximation by straight lines during a time of order O( 1

|v|), which
means that X meets B(x0, r0).

• Bad initial direction: v = vi
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The idea is to rely on the rotation induced by the magnetic field. After some
time τ of order O(1), we observe that Vt=τ is not a bad direction anymore.
At this point, we are as in the previous case, which means that X meets
B(x0, r0).

This effect holds for quite general magnetic fields, which satisfy a property which
we call the bending condition.

Definition 3.4. We say that a magnetic field b satisfies the bending condition if b
or −b satisfies the conditions 1) and 2).

1) Geometric control condition. We assume that there exists a compact set
K of T2 on which b > 0 and which satisfies the geometric control condition:

For any x ∈ T2 and any direction e ∈ S1,

there exists y ∈ R+ such that x+ ye ∈ K. (3.12)

By compactness, we can define D the maximal time a geodesic can spend outside
of K and d the minimal time a geodesic spends inside K. This allows us to introduce
the second condition on the magnetic field:
2) Bound from below. We assume that there exists b̃ ∈ R such that

b ≥ b̃ on T2,

Db̃+ d

2b > 0.
(3.13)

We refer to [11, 10] for detailed proofs of the cases where b0 only satisfies the bend-
ing condition. Very roughly, we have bending in the zone where b0 ≥ b. Condition
1) implies that trajectories “often” meet this zone. In the other hand, Condition 2)
allows to be sure that the bending effect is not too much affected in the zone where
b0 can be negative, which could be annihilated otherwise.

With these ingredients in hand, it is quite straightforward to build a relevant
reference solution (f, E) for the Vlasov-Poisson system with external magnetic field
B0, for some source supported in ω. Such a solution can be constructed so that the
two first moments (charge and current) are independent of c.

3.3. The reference solution in the Vlasov-Maxwell case
We call (Ẽ, B̃) the solutions to the Maxwell equations with sources given by (ρ, j :=∫
f dv,

∫
fv̂ dv). Clearly this is a solution to the Vlasov-Maxwell system with a source

in ω. We would like to apply Lemma 3.2 to show that this is a relevant solution as
c gets large. Unfortunately, the local conservation of charge and zero mean current
condition are for the moment not satisfied by f . The idea is to add a correction
g to f which does not modify the local density of charge ρ but only modifies the
current, so that all conditions are satisfied. To this end, using the fourth condition
in Proposition 3.3 is crucial. The new reference solution is still relevant since in the
Poisson case, the electric field is only affected by the local density of charge which
has remained unchanged.
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3.4. Scaling invariance of the Vlasov-Maxwell system
To conclude, we mention that using some scaling invariance of the relativistic Vlasov-
Maxwell equation, it is possible to deduce another result where the speed of light is
fixed (say c = 1) and in which the condition (3.4) is replaced by a more conventional
smallness condition. We refer to [10] for the statement and proof of such a result.
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