
Journées

ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Biarritz, 3–7 juin 2012

Charles Fefferman
Formation of Singularities in Fluid Interfaces

J. É. D. P. (2012), Exposé no II, 9 p.
<http://jedp.cedram.org/item?id=JEDP_2012____A2_0>

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

GROUPEMENT DE RECHERCHE 2434 DU CNRS

http://jedp.cedram.org/item?id=JEDP_2012____A2_0
http://www.cedram.org/
http://www.cedram.org/


Journées Équations aux dérivées partielles
Biarritz, 3–7 juin 2012
GDR 2434 (CNRS)

Formation of Singularities in Fluid Interfaces
Charles Fefferman

In this expository paper, we discuss three problems about incompressible fluids with
boundaries (interfaces), namely Water Waves, the Muskat Equation and Alpha
Patches. We will see that singularities form in finite time for the first two problems,
and likely for all three.

The results we present on water waves are joint work with Angel Castro, Diego Cor-
doba, Francisco Gancedo and Javier Gomez-Serrano [9] . Our work on Muskat is joint
with Angel Castro, Diego Cordoba, Francisco Gancedo and Maria Lopez-Fernandez
[7, 8]. Regarding alpha-patches, we discuss the work of Diego Cordoba, Marco Fonte-
los, Ana Mancho and José Rodrigo [16].

We will explain intuitive ideas, but not state precise theorems. Detailed proofs of
precise theorems can be found in [7–9].

Let us first set up the problem of water waves in two space dimensions. As in Figure
1, we imagine the plane partitioned into a water region Ω(t) and a vacuum region
R2\Ω(t), separated by an interface ∂Ω(t); here, t denotes the time. In the water region,
the velocity at position x and time t is denoted u(x, t) = (u1(x, t), u2(x, t)) ∈ R2, and
the pressure is denoted by p(x, t) ∈ R. The water moves, influenced by gravity and
pressure, but not surface tension. (We ignore surface tension until further notice.) Note
that the velocity u(x, t) and pressure p(x, t) are defined only for x ∈ Ω(t). We don’t
know Ω(t)—we must solve for it.

Vacuum

Water Region
Ω

Interface

Velocity u(x,t)
Pressure p(x,t)                  Gravity

 (t)

Fig. 1

We represent the interface ∂Ω(t) as a parametrized curve
∂Ω(t) = {z(α, t) : α ∈ R}. (0.1)
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The parametrization of ∂Ω(t) for fixed t has no physical meaning.
The equations for 2D water waves are as follows:
• In Ω(t), the fluid satisfies the 2D incompressible, irrotational Euler equations

(∂t + u · Ox)u = −Oxp−
(

0
g

)
(0.2)

div u = 0, curl u = 0. (0.3)
Here, g is a non-negative constant. Recall that Euler’s equation arises simply
from Newton’s law F = ma for a fluid subject to pressure and gravity.

• At the interface, ∂Ω(t) = {z(α, t) = α ∈ R}, we have
p = 0, and (0.4)

∂tz(α, t) = u(z(α, t), t) + c(α, t)∂αz(α, t). (0.5)
This last equation just says that the interface moves with the fluid. Here, the
function c may be picked arbitrarily. The choice of c affects the parametrization
of the interface, but has no effect on anything physically significant.

We specify the interface ∂Ω and the velocity u at time t = 0. Initially, ∂Ω and u are
smooth, and we have div u = 0, curl u = 0.

We solve equations (1) · · · (5) for t ≥ 0 with the above initial conditions, and we
ask whether a singularity can form in finite time.

A lot of important work has been done on water waves. We mention here a few of
the main results.

Solutions of the water wave equations exist and stay smooth for a short time. See
S. Wu [27], as well as Christodoulou-Lindblad [12], Lindblad [24], Ambrose-Masmoudi
[3], Coutand-Shkoller [18], Shatah-Zeng, [26], Lannes [23], Cordoba-Cordoba-Gancedo
[15] and Alazard-Burq-Zuilly [1].

For small initial data, solutions remain smooth for an exponentially long time; see
S. Wu [29].

For 3D water waves, S. Wu [28] proved short-time existence and smoothness of so-
lutions; moreover, for small initial data there is global existence; see S. Wu [30] and
Germain-Masmoudi-Shatah [22], as well as Alvarez-Lannes [2].

For local existence, one can drop the restriction to irrotational flows. See Christodoulou-
Lindblad [12] and Zhang-Zhang [32].

With A. Castro et al [9], we have proven that solutions of the water wave equations
may become singular in finite time by a simple natural scenario. We now describe the
singularity. We first explain what we believe based on numerical simulation, then say
what we can prove rigorously.

Our water wave starts as in Figure 2 at time t = 0. Note that u and ∂Ω are smooth,
and the interface ∂Ω is a graph.

Initial Condition
(time t = 0) : u   and   @Ω  smooth

A
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Fig. 2

At a later time t1 > 0, our water wave is pictured in Figure 3. The velocity u and the
interface ∂Ω are still smooth, but the water wave has “turned over”; the interface ∂Ω
is no longer the graph of a function x2 = ϕ(x1).

The water wave has “turned over” at 
time t   > 0 ,   but  u   and   @Ω  still smooth1

B

Fig. 3

At a time t2 > t1, the singularity occurs; see Figure 4. The interface self-intersects
at a single point, but u and ∂Ω are otherwise smooth. We call such a Singularity a
SPLASH.

The interface self-intersects at a single point at
time t   > t    , but  u  and  @Ω  are otherwise smooth.1 2

SPLASH! C

Fig. 4

Beyond time t2, there is no longer any physically meaningful solution of the water wave
equation.

In a variant of the SPLASH, the singularity forms at time t2 in such a way that the
interface ∂Ω self-intersects along an arc, as in Figure 5. We call this scenario a SPLAT.
Again, no physically meaningful solution of the water wave equation exists after the
moment depicted in Figure 5.

At time t   ,  the interface self-intersects along 
an arc, but  u  and  @Ω  are otherwise smooth.

 
2

  SPLAT!
A Variant of the Splash:

‘C

Fig. 5
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A numerical simulation (modified from Beale-Hou-Lowengrub [4] to remain accurate
up to the moment of the SPLASH) indicates that a water wave may start as in Figure
2, then turn over as in Figure 3, and finally form a SPLASH as in Figure 4.

We can prove rigorously that a water wave may start as in Figure 2, and then turn
over as in Figure 3; see [7].

We can prove also that a water wave may start as in Figure 3, and then form a
SPLASH as in Figure 4 or a SPLAT as in Figure 5.

We are working to produce a rigorous, computer-assisted proof that a water wave
may begin as in Figure 2, then turn over as in Figure 3, and finally form a SPLASH
as in Figure 4.

Our work implies easily that a variant of the SPLASH and SPLAT occur for water
waves in dimension 3. Another variant of the SPLASH in dimension 3 is considered by
Coutand-Shkoller [19].

We have shown [10] that the SPLASH and SPLAT occur also when we include sur-
face tension in the statement of the problem. It would be very interesting to understand
what happens if we replace the vacuum in Figure 1 by an incompressible irrotational
fluid of low density.

We do not assert that the SPLASH and the SPLAT are the only possible singular-
ities for water waves. It would be very interesting to exhibit another type of singular
solution.

Let us now turn our attention to the Muskat equation, which governs the motion of
oil and water in sand. We again consider a two-dimensional case.

At time t, the plane R2 is partitioned into the oil region ΩOIL(t) and the water region
ΩWATER(t), separated by an interface, as in Figure 6.

Water (in sand)

Interface

                      

 

Oil (in sand)
Ω   (t)             

Ω      (t)

OIL

WATER

Fig. 6

Remarkably, the same equations govern a “Hele-Shaw cell,” consisting of two parallel
vertical plates separated by a thin region filled with oil and water as in Figure 7.

Water

Oil

Hele-Shaw Cell
(Governed by the Same Equations!)

II–4



Fig. 7

Oil and water in sand, or in a Hele-Shaw cell, do not satisfy Newton’s law F = ma
(unless we include the large and complicated forces exerted by the sand in Figure 6,
and the walls in Figure 7). Rather, the system is governed by an experimental fact
called “Darcy’s law”:

u = −Oxp−
(

0
gρ

)
, and div u = 0 (0.6)

Here, u and p denote the velocity and pressure; they are defined throughout R2. The
constant g is the acceleration due to gravity, and ρ denotes the fluid density:

ρ(x, t) =
{

ρOIL if x ∈ ΩOIL(t)
ρWATER if x ∈ ΩWATER(t)

}
. (0.7)

In (0.7), ρOIL and ρWATER are positive constants (the densities of oil and water, re-
spectively), with ρOIL < ρWATER.

We are assuming here that “OIL” and “WATER” have the same viscosity but differ-
ent densities. It would of course be natural to relax the assumption of equal viscosities.
Darcy’s law would then look more complicated than (0.6).

At the interface

∂ΩWATER(t) = ∂ΩOIL(t) = {z(α, t) : α ∈ R},

we have:
UWATER − UOIL is tangential to the interface; (0.8)

and
pWATER = pOIL. (0.9)

Here, UWATER and pWATER are the limiting values of U and p (respectively), as we
approach the interface from within the region ΩWATER(t). Similarly, UOIL, ρOIL are the
limiting values of U, ρ as we approach the interface from within ΩOIL(t). Equation (0.9)
neglects surface tension.

Finally, the interface {z(α, t) : α ∈ R} moves with the fluid:

∂tz(α, t) = UOIL(z(α, t), t) + COIL(α, t)∂αz(α, t) (0.10)
= UWATER(z(α, t), t) + CWATER(α, t)∂αz(α, t),

where the choice of the functions COIL, CWATER affects only the parametrization of
the interface and thus has no physical meaning.

The Muskat problem is to solve (6) · · · (10) for times t ≥ 0, given the initial domains
ΩOIL(t),ΩWATER(t) at time t = 0.

It makes a crucial difference whether the heavier fluid (“water”) is on top or under-
neath.

In Figure 8, the heavier fluid lies underneath the lighter one. When we give initial
conditions at time 0 and try to solve Muskat for times t > 0, configurations like the
one in Figure 8 are linearly stable.

On the other hand, in Figures 9 and 10, the lighter fluid lies underneath the heavier
fluid, at least somewhere in the picture. Such configurations are linearly unstable when
we give initial conditions at time 0 and try to solve Muskat for times t > 0.
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Oil

Water
LINEARLY
STABLE

Fig. 8

Water

Oil
LINEARLY
UNSTABLE

Fig. 9

Water

Oil

Oil

LINEARLY
UNSTABLE

Fig. 10

In the linearly stable case depicted in Figure 8, the Muskat equation is a nonlinear
version of the equation

∂tF = − ∧x F
(
∧x =

√
−4x

)
in one space dimension.

In the linearly unstable case in Figure 9, the Muskat equation is a nonlinear version
of the bad equation

∂tF = + ∧x F.
In the bad case shown in Figure 10, the Muskat equation is a nonlinear version of

the nasty equation
∂tF (x, t) = σ(x, t) ∧x F (x, t),

where the coefficient σ(x, t) changes sign for fixed t.
Let us recall some of the previous work on the Muskat equation.
For small initial data in the stable regime (Figure 8), global smooth solutions exist.

See Constantin-Pugh [14], Yi [31], Caflisch-Howison-Siegel [6], Cordoba-Gancedo [17]
and Escher-Matioc [20].

Constantin-Cordoba-Gancedo-Strain [13] show that global solutions exist if the ini-
tial interface has the form {(x1, x2) : x2 = f(x1)} with |f ′| < 1 everywhere (and the
“oil” is on top of the “water”).

Next we explain how a Muskat solution may become singular.
At time t = 0, the picture is as in Figure 8. The interface is smooth, and we are in

the linearly stable regime. At a later time t1 > 0, the Muskat solution looks like Figure
10. The interface has “turned over”, yet it remains smooth for a while, even though
it has entered a linearly unstable regime. Finally, at some time t2 > t1, the picture is
still as in Figure 10, but the interface is no longer smooth. Rather, at a single point,
the interface is C3 but not C4. At all other points, the interface is real-analytic.

The papers [7,8] by Castro et al prove that the above scenario occurs for some choice
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of initial data for the Muskat problem. Presumably, there is no meaningful Muskat so-
lution past the breakdown time t2, but this has not yet been proven.

Finally, we turn our attention to a third problem regarding fluid interfaces, for which
(we think) a singularity develops in finite time, namely “α-patches”. This is an equation
for an active scalar

θ(x, t) =
{

1 if x ∈ Ω(t)
0 if x /∈ Ω(t)

}
(x ∈ R2), (0.11)

where Ω(t) ⊂ R2. The scalar θ is advected by an incompressible fluid velocity

U(x, t) = O⊥x ψ(x, t) =
(
− ∂

∂x2
ψ,

∂

∂x1
ψ

)
. (0.12)

Thus,
(∂t + U · Ox) θ = 0. (0.13)

To close the equations, we suppose that the stream function ψ in (0.12) is obtained
from the scalar θ in (0.11), (0.13) by the formula

ψ = (−4x)
α
2−1 θ. (0.14)

Here, 0 ≤ α ≤ 1 is a parameter.
We want to solve equations (0.10) · · · (0.14) with initial condition obtained by spec-

ifying the region Ω(t) at time t = 0. We suppose that Ω(t = 0) has a smooth boundary,
and we ask whether ∂Ω(t) can lose smoothness in finite time.

The case α = 0 is the vortex patch problem for the 2D incompressible Euler equa-
tion. In this case, the boundary ∂Ω(t) remains smooth for all time; this was proven by
Chemin [11], and a simple proof was given by Bertozzi and Constantin [5].

The case α = 1 is the analogue of the vortex patch problem for the surface quasi-
geostrophic (SQG) equation.

For 0 < α ≤ 1, Rodrigo [25] proved that (10) · · · (14) may be solved for a short
time when ∂Ω(t = 0) is smooth; and ∂Ω(t) remains smooth. See also Gancedo [21].
However, we don’t have rigorous results to tell us whether ∂Ω(t) may become singular
in finite time. Numerical simulations suggest that the scenario shown in Figure 11 may
occur, at least for α > 2/3.

t = 0 t = t   > 0 t = T   > t1*1

Fig. 11

At time t = T∗, a singularity forms at the point 0.
The boundary ∂Ω(T∗) includes four arcs that meet at 0. Moreover, the singularity

II–7



appears to be asymptotically self-similar as we approach the time T∗ when the break-
down occurs.

The above numerical results appear in the paper of Cordoba-Fontelos-Mancho-
Rodrigo [16].

It would be very interesting to prove or disprove that solutions to the α-patch equa-
tions (10) · · · (14) can become singular by the scenario in [16].

We hope the reader is convinced that the study of fluid interfaces leads to several
interesting breakdown results, with more to come in the future.

It is a pleasure to thank F. Wroblewski for artistically TeXing this manuscript.
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