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On the free surface Navier-Stokes equation in the
inviscid limit
Frederic Rousset

Abstract
The aim of this note is to present recent results obtained with N. Masmoudi

[29] on the free surface Navier-Stokes equation with small viscosity.

1. Introduction
We are interested in the motion of a viscous incompressible fluid with a free surface
under the influence of gravity. The equations of motion read:

∂tu+ u · ∇u+∇p = ε∆u, ∇ · u = 0, x ∈ Ωt, (1.1)
where u ∈ R3 is the velocity of the fluid and p ∈ R is the apparent pressure,
p = pF + ph with pF the pressure of the fluid and ph = gx3 the hydrostatic pressure.
We assume that the fluid domain is the simplest one:

Ωt =
{
x ∈ R3, x3 < h(t, x1, x2)

}
with h(t, x1, x2) which defines the free surface is also an unkown in the problem.

The boundary conditions on the free surface x3 = h(t, x1, x2) are the following:
∂th = u ·N = −u1∂1h− u2∂2h+ u3, (x1, x2) ∈ R2 (1.2)

where N is the outward normal given by N = (−∂1h, −∂2h, 1)t and
pN − 2 ε SuN = g hN (1.3)

where
Su = 1

2
(
∇u+∇ut

)
.

The first boundary condition is of kinematic nature, it basically states that the
normal speed of the interface, is given by the normal velocity of the fluid. The second
boundary condition is of physical nature, it means that one can impose the normal
component of the stress tensor (we neglect surface tension) on the free surface.

We are interested in the motion of the fluid at large Reynolds number, this is the
reason for the small parameter ε > 0 in the equation (1.1).

In the limit ε tends to zero, we expect the solution of (1.1) to converge towards a
solution of the free surface Euler equation. Indeed, it is a natural conjecture in fluid
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mechanics that the physical solutions of the Euler equations are the ones that can
be obtained by vanishing viscosity limit from the Navier-Stokes equation. In order
to perform rigorously this justification, we want to:
• Get the existence of a strong solution on an interval of time [0, T ] independent
of ε

• Get uniform estimates sufficient to pass to the limit towards a solution of the
Euler equation and thus recover the well-posedness of the free surface Euler
equation.

There are two main difficulties in order to implement this strategy for the Navier-
Stokes equation with free surface boundary conditions. The first one is related to
the control of the regularity of the surface uniformly in ε and the second one is
related to the presence of a boundary layer in the vicinity of the free surface. Note
that for such an approach to be valid we need to get a functional space in which
both the Navier-Stokes and the inviscid, Euler, equations are well posed.

2. Boundary layers
We shall first discuss the problem of boundary layers. For the Navier-Stokes equa-
tion, even with boundary conditions on a rigid wall, it is well known that the stan-
dard local existence results of strong solutions are valid on an interval of time [0, T ε]
with T ε that tends to zero when ε goes to zero and thus they cannot be used in
order to pass to the limit from strong compactness arguments. Note that even in the
two-dimensional case where strong solutions are known to be global, the uniform
estimates are also only valid on an interval of time that vanishes when ε goes to
zero. We also point out that the way to justify the inviscid limit from Leray weak
solutions by using weak compactness arguments is also unknown. This is due to the
poor information that we get from the energy dissipation inequality:

d

dt

1
2‖u

ε‖2 + ε‖∇uε(t)‖2 ≤ 0

where ‖ · ‖ stands for the L2 norm. All this difficulties are due to the presence of a
boundary layer that is to say a small region close to the bondary where the gradient
of the solution is very large.

In the case where one imposes a Dirichlet boundary condition on a rigid wall
uε/z=0 = 0 in the simplest domain Ω = {z > 0}, the expected description of the
solution is:

uε ∼ uE + V (t, y, z/
√
ε)

where uE is a solution of the Euler equation and V (t, y, Z), the boundary layer,
is supposed to be fastly decreasing in its last variable. One immediately see that
uε cannot be bounded in Hs, s > 5/2 which is the standard space in which the
3-D Euler equation is well-posed. Nevertheless, one can try to justify rigorously the
above asymptotic expansion i.e. to write the solution under the form

uε = uE + V (t, y, z/
√
ε) + rε (2.1)

and study the equation for the remainder rε in order to prove that it goes to zero
(of course if needed one can start from an approximate solution with more terms).
There are many difficulties in the case of Dirichlet boundary conditions:
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• the profile V solves the Prandtl equation which is often ill-posed for non
analytic data: [12].

• even when one can construct it, the approximate solution can be unstable
[15], [20]

Therefore, for the Navier-Stokes equation with Dirichlet boundary condition, the
justification of the inviscid limit is known only in the analytic framework [32].

Nevertheless, we point out that the above approach is efficient even for general
quasilinear hyperbolic-parabolic systems (thus also for compressible fluids and MHD
equations) when the boundary is non-characteristic (this happens for example with
injection or succion boundary conditions), in this case the size of the boundary
layer is ε (in the ansatz (2.1), V depends on z/ε) or in dimension one. We refer to
[14, 16, 17, 30, 19, 31, 36].

A more favorable boundary condition on a rigid wall for which the boundary layer
is similar to the one about a free surface is the Navier (slip) boundary condition
which reads

u ·N = 0, ΠSuN = αΠu, Π = Id− N ⊗N
|N |2

(2.2)

where α ≥ 0 is a fixed parameter. The justification of the inviscid limit for the
Navier-Stokes equation with Navier boundary condition has been studied for a long
time, [3], [10], [24], [22]. In particular, in the three-dimensional case, in [22], it is
proven by a modulated energy type approach that for a sufficiently smooth solution
of the Euler equation defined on some interval [0, T ], an L2 convergence holds on
[0, T ]. Nevertheless, these results, in particular the last one in 3D do not provide
uniform estimates in strong norms. In the case of the Navier boundary condition,
this is not needed in order to pass to the limit since one can start from a Leray
global weak solution but since the existence of weak solutions is not known for the
Navier-Stokes equation with a free surface, in order to see the problem with Navier
boundary condition as a model problem for the free surface, we need to prove that
a strong solution in a suitable functional space of the Navier-Stokes equation exists
on an interval of time independent of ε. For some special type of Navier boundary
conditions or boundaries, some uniform H3 (orW 2,p, with p large enough) estimates
and a uniform time of existence for Navier-Stokes when the viscosity goes to zero
have been recently obtained (see [37, 7, 6]). For these special boundary conditions,
the main part of the boundary layer vanishes which allows this uniform control in
some limited regularity Sobolev space. Nevertheless, as shown in [23], in the case of
Navier boundary conditions, the asymptotic expansion is under the form

uε = uE +
√
εV (t, y, z/

√
ε) + εrε (2.3)

and the profile V except for exceptional boundary conditions (i.e. for some choice
of α) is not zero. With this expansion, we see that uε still cannot be bounded in Hs

s > 5/2 when V is not zero. Nevertheless, these case seems much more favorable since
one can expect the Lipschitz norm of uε to be uniformly bounded. Consequently,
it seems reasonable to get uniform estimates by using the Sobolev conormal spaces
that are classically used in the study of hyperbolic initial boundary value problems
[4, 18, 21, 35].

We shall use the following definition:
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In S, defined by x = (y, z), y ∈ R2, z < 0. Let us introduce the vector fields

Zi = ∂i, i = 1, 2, Z3 = z

1− z∂z.

We define the Sobolev conormal spaces Hm
co on L2 as

Hm
co(S) =

{
f ∈ L2(S), Zαf ∈ L2(S), |α| ≤ m

}
‖f‖2

m =
∑
|α|≤m

‖Zαf‖2
L2 .

We can also consider the Sobolev conormal spaces built on L∞:

Wm,∞
co (S) =

{
f ∈ L∞(S), Zαf ∈ L∞(S), |α| ≤ m

}
‖f‖m,∞ =

∑
|α|≤k
‖Zαf‖L∞ .

For general domains with smooth boundaries, the spaces can be defined by using
local charts.

In [28], we have obtained:

Theorem 2.1. For m ≥ m0, and Ω a smooth domain, consider u0 a divergence free
vector field with zero normal component on the boundary and such that u0 ∈ Hm

co ,
∇u0 ∈ Hm−1

co and ∇u0 ∈ W 1,∞
co . Then , there exists T > 0 such that for every ε ∈

(0, 1), there is a unique solution uε of the Navier-Stokes equation (1.1) with Navier
boundary condition with initial data u0. Moreover, we have the uniform estimates:

sup
[0,T ]

(
‖u(t)‖m + ‖∇u(t)‖m−1 + ‖∇u(t)‖1,∞

)
+ ε

∫ T

0
‖∇2u(s)‖2

m−1 ds ≤ C.

From the above uniform estimates, it is easy to get:

Corollary 2.2. uε converges strongly towards u solution of the Euler equation and
such that

sup
[0,T ]

(
‖u(t)‖m + ‖∇u(t)‖m−1 + ‖∇u(t)‖1,∞

)
< +∞

The proof of this result is based on conormal energy estimates of u and its normal
derivative and on direct L∞ type estimates for∇u. These L∞ estimates which are the
most delicate to get are obtained directly from the equation and not from Sobolev
embedding. Indeed, in view of the behaviour (2.3), one cannot get uniform estimates
for ‖∂zu‖L∞ from Sobolev embedding results.

3. The free surface Navier-Stokes and Euler equations

Local existence results for the free surface Navier-Stokes equation (1.1), (1.2), (1.3)
are now classical [5], [34]. The unknown domain is flattened by using Lagrangian
coordinates and the local existence result is obtained in "parabolic" Sobolev spaces
Hr([0, T ] × Ω0) = H

r
2 (0, T, L2) ∩ L2([0, T ], Hr(Ω0)), r > 3. The rough idea is that

since the change of variable to Lagrangian coordinates is under the form X =
Id +O(T ), one can write the equation (1.1) in the fixed domain Ω0 under the form

∂tv +∇p− ε∆v = · · · , ∇ · v = · · ·
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where · · · in the first equation contains in particular the convection term and also
terms under the form O(T )∂2

ijv which come from the change of coordinates in the
Laplacian. The crucial step to get a local existence result through a fixed point
argument is thus to get maximal regularity estimates for the Stokes problem in
the initial domain Ω0. The smoothing effect on the velocity for the Navier-Stokes
equation makes the regularity of the surface rather easy to control.

In the case of the Euler equation with a free surface, namely
∂tu+ u · ∇u+∇p = 0, ∇ · u = 0, x ∈ Ωt (3.1)

with the boundary condition (1.2) and
p = gh

on the boundary, local existence results have been obtained only recently. The dif-
ficulty is that once the problem is reset in a fixed domain, the new velocity v and
the surface h are at the same level of regularity. Note that the problem is well-posed
only if the Taylor sign condition

− ∂Np+ g ≥ c0 > 0 (3.2)
is verified. Under this condition, the first local existence result in Hs for s sufficiently
large has been obtained in a series of paper [9, 26, 27]. It is based on the reformulation
of the equation in Lagrangian coordinates and the use of the Nash-Moser iteration
scheme. More recent results have been obtained by using other approaches [11, 33].
Note that much more can be said when u is assumed in addition to be irrotationnal
(we obtain the famous water-waves system), we refer for example to [38], [25], [39],
[13] and the talk by Nicolas Burq. Nevertheless, note that irrotational solutions are
not interesting for our problem since in the context of the Navier-Stokes equation,
vorticity on the boundary is automatically created.

4. Main result

We shall now describe our approach to get an existence result which is uniform with
respect to ε for (1.1), (1.2), (1.3). Note that in order to have uniform estimates, we
shall need to assume a Taylor sign condition (3.2). We also point out that as in the
case of the Navier boundary conditions, we cannot get uniform Hs estimates due to
the presence of boundary layers and we shall thus use Sobolev conormal spaces. In
order to state a result, we need to chose a way to fix the domain. Many choices are
possible, we shall use a smoothing diffeomorphism defined by

Φ(t, ·) : x = (y, z), z < 0 7→ (y, ϕ(t, y, z) = Az + η(t, y, z))
with η defined through its Fourier transform by

Fyη = χ(|ξ|z)ĥ
where χ is a smooth compactly supported function which takes the value one in the
vicinity of zero. The number A > 0 is chosen in order to have ∂zϕ ≥ 1 at the initial
time which ensures that Φ is a diffeomorphism.

The main advantage of this choice is that η has a standard Sobolev regularity
while for other choices like Lagrangian coordinates where Φ is directly attached to
the velocity, Φ will only get from the velocity a Sobolev conormal regularity. This
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creates some additionnal difficulties in places. With this choice, one easily gets for
η the following type of estimates

Proposition 4.1. We have the following estimates for η
∀s ≥ 0, ‖∇η(t)‖Hs(S) ≤ Cs|h(t)|s+ 1

2
,

∀s ∈ N, ‖η‖W s,∞ ≤ Cs|h|s,∞,

For functions defined on the boundary, the norms | · |s and | · |s,∞ refer to the
standard Sobolev norms.

Next, we set v = u ◦Φ, q = p ◦Φ. This yields an equation for (v, q, η) in the fixed
domain S = {x = (y, z), z < 0}

∂ϕt v +
(
v · ∇ϕ

)
v +∇ϕq = ε∆ϕv, ∇ϕ · v = 0, x ∈ S (4.1)

where the new differential operators are defined by

∂ϕi = ∂i −
∂iϕ

∂zϕ
∂z, i = 0, 1, 2, ∂ϕ3 = ∂ϕz = 1

∂zϕ
∂z

and the gradient ∇ϕ and Laplacian ∆ϕ are defined in a natural way by using these
operators. On the boundary, we obtain

∂th = v ·N, q N − 2 ε Sϕv N = g hN, z = 0. (4.2)
Before stating our main result, we also need to define precisely the form of the

Taylor sign condition that we shall use. By using the divergence free condition, we
get as usual that the pressure q solves the elliptic equation

∆ϕq = −∇ϕ · (v · ∇ϕv).
Moreover, by using the second boundary condition, we get that on the boundary

q/z=0 = 2εSϕv n · n+ gh,

where n is the unitary outward normal to Ωt. We shall thus decompose the pressure
into an "Euler" part and a "Navier-Stokes" part by setting q = qE + qNS with

∆ϕqE = −∇ϕ · (v · ∇ϕv), qE/z=0 = gh

and
∆ϕqNS = 0, qNS/z=0 = 2εSϕv n · n.

The main idea is that the part qNS which is small can be always controlled by using
the energy dissipation of the Navier-Stokes equation while qE which is of order one
is the part which should converge to the pressure of the Euler equation when ε goes
to zero. Consequently, the Taylor sign condition has to be imposed on qE. After the
change of coordinates, this becomes

g − ∂ϕz qE/z=0 ≥ c0 > 0. (4.3)
Our main result reads.

Theorem 4.2. For m ≥ 6, assuming that the above Rayleigh condition is matched
at t = 0, then for sufficiently smooth initial data, there exists T > 0 and C > 0
independent of ε such that the solution of (4.1), (4.2) satifies :

sup
[0,T ]

(
‖v‖2

m + |h|2m + ‖∂zv‖2
m−2 + ‖∇v‖2

1,∞

)
+ ‖∂zv‖2

L4([0,T ],Hm−1
co ) ≤ C.
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Moreover, we also have the estimates

sup
[0,T ]

(
ε|h|2m+ 1

2
+ ε‖∂zzv‖2

L∞

)
+ ε

∫ T

0

(
‖∇v‖2

m + ‖∇∂zv‖2
m−2

)
≤ C

Note that the first estimate in the above result is weaker than in Theorem 2.1.
since we have a control of ‖∂zv‖Hm−1

co
which is only L4 in time and not L∞. This is

is linked to the regularity of the pressure in our problem as we shall see below.
By using the above uniform estimates, one can justify the inviscid limit from

standard (strong) compactness arguments. Note that the above result does not rely
on the construction of an asymptotic expansion under the form (2.3), thus we do not
use the a priori knowledge that the Euler equation is well-posed in Sobolev spaces.
Consequently, we get the local well-posedness of the free surface Euler equation (in
conormal Sobolev spaces) as a corollary.

The complete proof of this result can be found in [29]. The aim of the next section
is to describe the main steps of the proof.

5. Sketch of the proof
Since local existence results are classical for the Navier-Stokes equation, the main
difficulty is to prove that the solution can be continued on an interval of time
independent of ε. We thus need to prove that the quantities that appear in the
statement of Theorem 4.2 can be controlled on an interval of time independent
of ε. We can get an estimate in closed form through four steps. Note that in the
following, we shall work on an interval of time for which we assume that the Taylor
sign condition is verified and the map Φ(t, )̇ is indeed a diffeomorphism.

Step 1: Estimates of v and h

The starting point is the energy identity for the system which reads:

Proposition 5.1. For any smooth solution, we have the energy identity:
d

dt

( ∫
S
|v|2 dVt + g

∫
z=0
|h|2 dy

)
+ 4ε

∫
S
|Sϕv|2 dVt = 0.

Here dVt stands for the natural volume element induced by the change of variable
(4.1): dVt = ∂zϕ(t, y, z) dydz.

Proof

: By using standard integration by parts and the divergence free condition, we first
get that

d

dt

∫
S
|v|2 dVt + 4ε

∫
S
|Sϕv|2 dVt

= 2
∫
z=0

(
2εSϕv − qId

)
N · v dy.

By using successively the two boundary conditions (4.2), we obtain

2
∫
z=0

(
2εSϕv − qId

)
N · v dy = −2

∫
z=0

gh v ·N dy = −
∫
z=0

g
d

dt
|h|2 dy

and the result follows.
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The next step is to estimates higher order conormal derivatives: we want to es-
timate Zαv and Zαh for 1 ≤ |α| ≤ m. The difficulty here is that the coefficients
in the equation (4.1) are not smooth enough (even with the use of the smoothing
diffeomorphism that we have taken) to neglect the commutators in an usual way.
For example, for the transport terms which reads,

∂ϕt + v · ∇ϕ = ∂t + vy∂y + 1
∂zϕ

(
v ·N − ∂tη)∂z, N = (−∂1ϕ,−∂2ϕ, 1)t

the commutator between Zα and this term in the equation involves in particular the
term (v · ZαN)∂zv which can be estimated only with the help of ‖ZαN‖ ∼ |h|m+ 1

2
.

This yields a loss of 1/2 derivative. We also get similar problems when we compute
for the pressure term the commutator between Zα and ∇ϕq. The way to solve
this difficulty was pointed out by Alinhac in [2], one can use the good unknown
V α = Zαv − ∂ϕz vZαη. Indeed, let us set

N (v, q, ϕ) = ∂ϕt v +
(
v · ∇ϕ

)
v +∇ϕq − 2ε∇ϕ ·

(
Sϕv

)
.

Then, if N (v, q, ϕ) = 0, the linearized equation can be written under the form
DN (v, q, ϕ) · (v̇, q̇, ϕ̇) =(
∂ϕt + (v · ∇ϕ)− 2ε∇ϕ ·

(
Sϕ ·

))(
v̇ − ∂ϕz v ϕ̇

)
+∇ϕ

(
q̇ − ∂ϕz q ϕ̇

)
+
(
v̇ · ∇ϕ

)
v − ϕ̇(∂ϕz v · ∇ϕ)v.

This means that the fully linearized equation has the same structure as the equation
linearized with respect to the v variable only thanks to the introduction of the good
unknown.

By using this crucial remark, we get that the equation for (Zαv, Zαq, Zαη) can
be written as

∂ϕt V
α + v · ∇ϕV α +∇ϕQα − 2ε∇ϕ · SϕV α = l.o.t.

with V α = Zαv − ∂ϕz vZ
αη, Qα = Zαq − ∂ϕz qZ

αη and hence we can perform an
L2 type energy estimate for this equation. Let us just explain where the Taylor
sign condition occurs in this step. By using standard energy estimates, we have in
particular

d

dt

1
2

∫
S
|V α|2 dVt +

∫
S
∇ϕ(QE,α) · V α dVt = · · ·

where QE,α = ZαqE − ∂ϕz qEZαη. For the pressure term, we can write∫
S
∇ϕ(QE,α) · V α dVt =

∫
z=0

(ZαqE − ∂ϕz qEZαh)V α ·N dy

=
∫
z=0

(gZαh− ∂ϕz qEZαh)V α ·N dy + · · ·

=
∫
z=0

(gZαh− ∂ϕz qEZαh) · ∂tZαh+ · · ·

= d

dt

1
2

∫
z=0

(g − ∂ϕz qE)|Zαh|2 + · · ·

In the two first lines, we have used successively the fact that pE = gh on the
boundary and the first part of the boundary condition (4.2). Therefore, we have a
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good control of the regularity of the surface only if the sign condition g − ∂ϕz qE ≥
c0 > 0 is matched.

The main conclusion of this step will be that∥∥∥(Zmv − ∂ϕz vZmη
)
(t)
∥∥∥2

+ |h(t)|2m ≤ C0 + tΛ(R) +
∫ t

0
‖∂zv‖2

m−1

where C0 depends only on the initial data as soon as
Qm(t) = ‖v‖2

m + |h|2m + ‖∂zv‖2
m−2 + ‖v‖2

2,∞ + ‖∂zv‖2
1,∞ + ε‖∂zzv‖2

L∞ ≤ R

for t ∈ [0, T ε].

Step 2: Normal derivative estimates I

In order to close the argument, we need to have estimates on ∂zv. We shall first
estimate ‖∂zv‖L∞t (Hm−2

co ). This is not sufficient to control the right hand side in the
above estimate, but this will be important in order to get L∞ estimates. The main
idea is to use the equivalent quantity

SN = ΠSϕv N
which vanishes on the boundary. This allows to perform conormal estimates on the
convection-diffusion type equation with homogeneous Dirichlet boundary condition
satisfied by SN . This yields again an estimate under the form

‖∂zv(t)‖2
m−2 ≤ C0 + tΛ(R) +

∫ t

0
‖∂zv‖2

m−1.

Step 3: L∞ estimates

We also have to estimate the L∞ norms that occur in the definition of Qm. The
estimate of ‖v‖2,∞ is a consequence of the anisotropic Sobolev estimate:

‖f‖2
2,∞ . ‖∂zf‖k−2 ‖f‖k, k ≥ 5.

Consequently, the difficult part is to estimate ‖∂zv‖1,∞. Again, it is more convenient
to estimate the equivalent quantity ‖SN‖1,∞ since SN solves a convection diffusion
equation with homogeneous boundary condition. The estimate of ‖SN‖L∞ is a con-
sequence of the maximum principle for this equation. The estimates for ‖ZiSN‖L∞
are more difficult to obtain. The main reason is that a crude estimate of the com-
mutator between Zi and the variable coefficient operator ∆ϕ involves terms with
two normal derivatives of SN and hence three normal derivatives of v. To fix this
difficulty, we note that at this step, the regularity of the surface is not really a prob-
lem: we want to estimate a fix low number of derivatives of v in L∞ while m can be
considered as large as we need. Consequently, the idea is to change the coordinate
system into a normal geodesic one in order to get the simplest possible expression
for the Laplacian. By neglecting all the terms that can be estimated by the previous
steps, we get a simple one-dimensional equation under the form

∂tS̃N + z∂zw3(t, y, 0)∂zS̃N + wh(t, y, 0) · ∇hS̃N − ε∂zzS̃N = l.o.t

where S̃N stands for SN expressed in the new coordinate system and w is the vector
field that we obtain from v by the change of variable. This is a one-dimensional
Fokker Planck type equation for which the Green function is explicit and hence, we
can use it to estimate ‖ZiS̃N‖L∞ .
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Again the conclusion of this step is an estimate under the form

‖∂zv‖2
1,∞ + ε‖∂zzv‖2

L∞ ≤ C0 + tΛ(R) +
∫ t

0
‖∂zv‖2

m−1

.

Step 4: Normal derivative estimate II

In order to close our estimate, we still need to estimate ‖∂zv‖m−1. For this estimate
it does not seem a good idea to use SN as an equivalent quantity for ∂zv. Indeed,
the equation for Zm−1SN involves Zm−1D2p as a source term and we note that since
the Euler part of the pressure involves an harmonic function that verifies pE = gh
on the boundary, we have that

Zm−1D2pE ∼ Zm−1D
3
2h ∼ |h|m+ 1

2

and hence we do not have enough regularity of the surface. For a better treatment
of the pressure, it is natural to try to use the vorticity ω = ∇ϕ× v in place since we
have the equation.

∂tZ
m−1ω + V · ∇Zm−1ω − ε∆ϕZm−1ω = l.o.t

Nevertheless, note that while for the Euler equation the vorticity which solves a
transport equation with characteristic boundary is very easy to estimate, for the
Navier-Stokes equation in domain with boundaries it is much more difficult. The
difficulty in the case of the Navier-Stokes equation is that we need an estimate
of the value of the vorticity on the boundary to estimate it in the interior. Since
on the boundary we have roughly Zm−1ω ∼ Zmv + Zmh, we only have by using a
trace estimate a (uniform) control by known quantities (and in particular the energy
dissipation of the Navier-Stokes equation) of

√
ε
∫ t

0
|Zm−1ω/z=0|2L2(R2).

To guess what is the best estimate that we can expect, we can study a similar
situation for the heat equation

∂tf − ε∆f = 0, z < 0, f/z=0 = f b

where we assume that the boundary value f b is such that
√
ε
∫ T

0

∫
R2
|f b(t, y)|2 dtdy ≤ C.

By using a Laplace-Fourier transform, we get that

f̂ = e

(
γ+iτ+ε|ξ|2

) 1
2

z√
ε f̂ b, z < 0

and hence we get

|f̂(γ, τ, ξ, ·)|2L2
z
≤

√
ε

(γ + |τ |+ ε|ξ|2) 1
2
|f̂ b|2.

This yields ∫ +∞

0
e−2γt

∥∥∥(γ + |∂t|)
1
4 )f

∥∥∥2
dt ≤

√
ε
∫ +∞

0
e−2γt‖f b‖2 dt.
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Consequently, we see that we get a control of f in H
1
4 ((0, T ), L2) which gives by

Sobolev embedding an estimate of f in L4([0, T ], L2(Ω)) only.
Motivated by this computation on the heat equation, we shall get an estimate of
‖Zm−1ω‖L4((0,T ),L2) by using a microlocal energy estimate. Note that the transport
term in the equation has an important effect. Indeed, in the previous example of
the heat equation, if we add a constant drift c · ∇f in the equation, we obtain a
smoothing effect under the form∫ +∞

0
e−2γt

∥∥∥(γ + |∂t + c · ∇|) 1
4 )f

∥∥∥2
dt.

Consequently, we first switch into Lagrangian coordinates in order to eliminate the
transport term and we look for an estimate of ‖(Zm−1ω) ◦ X‖

H
1
4 ([0,T ],L2)

. For this
estimate, we use a microlocal symmetrizer based on a "partially" semiclassical parad-
ifferential calculus i.e. based on the weight (γ2 + |τ |2 + |

√
ε ξ|4) 1

4 ). The main proper-
ties of this calculus can be seen as a consequence of the general quasihomogeneous
calculus studied in [30].

This finally allows to get an estimate of ‖Zm−1∂zv‖L4((0,T ),L2).
The general estimate follows by combining the estimates of the four steps. Note

that in the end, we also have to check that the Taylor sign condition and the con-
dition that Φ(t, ·) is a diffeomorphism remain true.
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