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RT AEDP (CNRS)

On Courant and Pleijel theorems for sub-Riemannian Laplacians

Rupert L. Frank Bernard Helffer

Théorèmes de Courant et de Pleijel pour les Laplaciens sous-Riemanniens
Résumé

Dans cet exposé (présenté oralement aux journées EDP 2024 à Aussois par le deuxième auteur),
nous nous intéressons au nombre d’ensembles nodaux de fonctions propres de sous-Laplaciens définis
sur des variétés riemanniennes. Plus précisément, nous explorons la validité du théorème de Pleijel
qui énonce que le nombre d’ensembles nodaux d’une fonction propre associée à une k-ième valeur
propre est strictement (et uniformément en un certain sens) inférieur à k pour k assez grand. Nous
réduisons d’abord la question générale à celle pour des ouverts de groupes nilpotents. Nous analysons
ensuite en détail le cas où le groupe nilpotent est le produit direct d’un groupe de Heisenberg et
d’un espace Euclidien. En cours de route, nous sommes conduits à améliorer des bornes connues
des constantes optimales pour les inégalités de Faber–Krahn ou isopérimétriques pour ces groupes.
C’est une annonce (détaillée sur ArXiv) de résultats dont les preuves feront l’objet d’un futur article.
Cette annonce reprend avec modification et inclusion de nouveaux résultats l’annonce plus détaillée
présentée dans [10].

Abstract

We are interested in the number of nodal domains of eigenfunctions of sub-Laplacians on sub-
Riemannian manifolds. Specifically, we investigate the validity of Pleijel’s theorem, which states that
the number of nodal domains of an eigenfunction corresponding to the k-th eigenvalue is strictly (and
uniformly, in a certain sense) smaller than k for large k. We first reduce this question from the case of
general sub-Riemannian manifolds to that of nilpotent groups. Secondly, we analyze in detail the case
where the nilpotent group is a Heisenberg group times a Euclidean space. Along the way we improve
known bounds on the optimal constants in the Faber–Krahn and isoperimetric inequalities on these
groups. This is an announcement and the proofs will be given in a future paper (see also in ArXiv).
This announcement is a modification with inclusion of new results of the more detailed announcement
published in [10].

1. Introduction

1.1. Sub-Laplacian and regularity
Motivated by some of the results of Eswarathasan and Letrouit in [6] and related open problems
initially discussed with C. Letrouit, we consider in a bounded open set Ω ⊂ Rn with smooth
boundary the Dirichlet realization of a sub-Laplacian (also called Hörmander’s operator)

−∆Ω
X := −

p∑
j=1

X2
j ,
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where the Xj (j = 1, . . . , p) are C∞ real vector fields on Ω satisfying the so-called Hörmander
condition of rank r introduced in [15], which reads:

Assumption (CH(r)). For some r ≥ 1 the Xj and the brackets up to order r generate at each
point x ∈ Ω the tangent space TxΩ.

More generally, we can consider a connected C∞ manifold M of dimension n (with or without
boundary) with a given measure µ (with a C∞-density with respect to the Lebesgue measure in
a local system of coordinates) and a system of p C∞ (p ≤ n) vector fields satisfying Assump-
tion (CH(r)). In this case

−∆M,µ
X :=

∑
j

X⋆
j Xj ,

where X⋆
j is the formal adjoint obtained by using the L2 scalar product with respect to the given

measure µ.
From [15], these operators are known to be hypoelliptic in M . Coming back to simplify to

Ω ⊂ Rn the analysis of their regularity at the boundary can be done under the assumption:

Assumption NC(X, ∂Ω). A system X is said non-characteristic for an open set Ω, if for each
point x ∈ ∂Ω there exists a vector field Xi that is transverse to the boundary at x .

Under these assumptions, it has been shown by M. Derridj [5] that we have hypoellipticity up
to the boundary.

We emphasize that we will not need NC(X, ∂Ω) for our results. Indeed, topological considera-
tions show that this last assumption is rather strong.

L.P. Rothschild and E.M. Stein have proven in 1976 that these sub-Laplacians are maximally
hypoelliptic [26], i.e. satisfy

∥XkXℓ u∥ ≤ C
(

∥∆Ω,µ
X u∥ + ∥u∥

)
, ∀ k, ℓ , ∀ u ∈ C∞

0 (Ω) ,

where ∥ · ∥ denotes the L2-norm in Ω with respect to the measure µ.
As a side remark we note that there is a characterization of those polynomials of vector fields

that are maximally hypoelliptic using a Rockland’s like criterion initially introduced by Helffer–
Nourrigat in 1979 [13]. The proof in full generality of this criterion was recently obtained by
Androulidakis–Juncken–Mohsen (2022) [1].

We do not need this characterization here, but the pseudo-differential calculus introduced by
Rothschild–Stein, in the version given by L. Rothschild in the equiregular case [25] (1979), is
important in our proof of a Faber–Krahn inequality.

Under Assumption (CH(r)) the sub-Laplacian on a bounded set Ω has compact resolvent and
concerning its discrete spectrum and the associated eigenfunctions we can consider all the questions
that have been solved along the years concerning the Dirichlet realization −∆Ω of the Euclidean
Laplacian. Here, we focus on two questions: Courant’s theorem and Pleijel’s Theorem. For further
properties we refer, for instance, to [6].

1.2. Courant’s theorem
Courant’s theorem [4] (1923) states that in the case of the Dirichlet Laplacian in Ω ⊂ Rn, an
eigenfunction associated with the ℓ-th eigenvalue has at most ℓ nodal domains:

νℓ ≤ ℓ .

Here νℓ denotes the maximum number of nodal domains of an eigenfunction corresponding to the
ℓ-th eigenvalue λℓ.

Following the standard proof of Courant’s theorem, this appears as a consequence of

• a restriction statement (the restriction of an eigenfunction to its nodal domain is the ground
state of the Dirichlet realization of the Laplacian in this domain),

• the minimax characterization of the eigenvalue,

• the Unique Continuation Theorem (UCT).
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Hence the difficulty is to determine under which conditions we can extend these results to
the sub-Riemannian Laplacians. Concerning the first item, having only rather limited information
about the nodal sets (i.e. the boundary of the nodal domains) we adapt a proof [21] of the restric-
tion statement to the sub-Riemannian case. This permits us to avoid to assume NC(X, ∂Ω). The
variational characterization then holds. Concerning the unique continuation theorem, K. Watan-
abe [31] proves (UCT) in the C∞ category in dimension 2, but H. Bahouri gives a discouraging
counter-example with two vector fields in R3. Nevertheless, J. M. Bony [3] proved that (UCT)
holds when the vector fields are analytic. Hence Courant’s theorem holds in the analytic category
as proved by Eswarathasan–Letrouit in [6]. We can also extend the statement (based on a remark
of D. Mangoubi [18]) given in [6] and prove that under (CH(r)), we have:

νℓ ≤ ℓ + Mult(λℓ) − 1 .

1.3. Pleijel’s theorem

In the case of the Dirichlet Laplacian in Ω ⊂ Rn, Pleijel’s theorem [24] (1956) says that, if n ≥ 2,
there exists an Ω-independent constant γ(n) in (0, 1) such that

lim sup
ℓ→+∞

νℓ

ℓ
≤ γ(n) . (1.1)

In the case of the Euclidean Laplacian, the proof of Pleijel’s theorem is a nice combination of
Weyl’s formula, which gives the asymptotic behavior as λ → +∞ of the counting function

N(λ, −∆Ω
eucl) ∼ Wn|Ω| λn/2 , (1.2)

and of the Faber–Krahn inequality, which states that

λ1(−∆Ω
eucl) ≥ |Ω|−2/n CF K(Rn) . (1.3)

Here, with B1 denoting the ball of unit volume,

CF K(Rn) := λ1(−∆B1) . (1.4)

Given these two ingredients one can establish (1.1) where, for n ≥ 2,

γ(n) = W −1
n CF K(Rn)−n/2 < 1 . (1.5)

Adapting this proof to the sub-Riemannian setting, we are led to the investigation of

• Weyl-type asymptotics,

• Faber–Krahn-type inequalities.

We review these in the following two subsections.

1.4. Métivier’s Weyl formula

Following the pioneering work of G. Métivier [20], we consider the following assumption (CEq),
which is called in the modern language of sub-Riemannian geometry the equiregularity condition:

Assumption (CEq). For each j ≤ r the dimension of the space spanned by the commutators of
length ≤ j at each point is constant.

In this case, we denote by Dj the span of all vector fields obtained as brackets of length ≤ j
of the Xk’s. By Assumption, x 7→ dim(Dj(x)) is constant (and denoted by nj) and we let (with
n0 := 0)

Q :=
r∑

j=1
j (nj − nj−1) , (1.6)

the homogeneous dimension.
Under Assumptions (CH(r)) and (CEq), G. Métivier shows:
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Theorem 1.1. There exists a continuous, positive function x 7→ cWeyl(x) on M such that the
counting function of the Dirichlet selfadjoint realization −∆M,µ

X of −∆X in M satisfies, as λ
tends to +∞,

N−∆M,µ
X

(λ) := #{j : λj(−∆M,µ
X ) ≤ λ} ∼

(∫
M

cWeyl(x) dµ(x)
)

λ
Q
2 . (1.7)

An analogous theorem is obtained in the case with boundary for the Dirichlet realization.
Note that in the case r = 2, related results are obtained in [19, 20] and Métivier’s theorem

(together with many other results) has been revisited recently at the light of sub-Riemannian
geometry in [28, 29, 30].

Combining our result about Faber–Krahn inequalities with Métivier’s Weyl-type formula, we
will obtain a sufficient condition for the validity of a Pleijel-type bound; see Theorem 2.1 below.
Our upper bound on lim supk→∞ νk/k is of the form(∫

M

(cFK(x))− Q
2 dµ(x)

)(∫
M

cWeyl(x) dµ(x)
)−1

, (1.8)

where

• cFK(x) is a certain local Faber–Krahn constant, defined in terms of the nilpotentization of
−∆M,µ

X at x ∈ M ,

• cWeyl(x) is the local Weyl constant from Theorem 1.1; in fact, it is defined in terms of the
same nilpotentization.

This strengthening of our original result (2023) is due to Y. Colin de Verdière, who kindly allowed
us to include his argument.

The role of the Borel measure

D 7→
∫

D

cWeyl(x) dµ(x)

on M is emphasized in the work of Colin de Verdière–Hillairet–Trélat [30], where it is called the
Weyl measure.

Similarly, we introduce what may be called the Faber–Krahn measure

D 7→
∫

D

(cFK(x))− Q
2 dµ(x) .

It is interesting to compare (1.8) with the Pleijel formula (1.5), to which it reduces in the case
of open subsets of Rn. More generally, in the Riemannian case (where p = n and where µ is the
Riemannian volume measure) the expression (1.8) reduces to (1.5) and we recover the result of
Bérard and Meyer [2].

However, our result is already new in this case when µ is different from the Riemannian volume
measure. In the general sub-Riemannian case, the integration with respect to the measure µ takes
into account that the model spaces Gx may vary with the point x ∈ M .

In this respect it is also interesting to note that (1.8) depends on M and the vector fields
X1, . . . , Xp, but does not depend on the measure µ. Indeed, both integrals in (1.8) do not depend
on µ.

According to (1.8), a sufficient condition for the validity of Pleijel’s theorem is the following
bound on the “local Pleijel constants”:(

cFK(x)
)− Q

2
(
cWeyl(x)

)−1
< 1 for all x ∈ M ;

We emphasize that the latter condition involves the corresponding Faber–Krahn constants for
Dirichlet realizations of sub-Laplacians in open set of nilpotent groups.

Hence in the second part of the talk we will describe what we have obtained in this particular
case.
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1.5. Nilpotent approximation
We recall that we are interested in two aspects of the sub-Laplacian on sub-Riemannian manifolds,
namely the existence of Weyl-type asymptotics and the existence of a Faber–Krahn type theo-
rem. Compared to our knowledge about Weyl-type asymptotics, which we recalled in the previous
subsection, our knowledge is rather poor concerning the constant in the Faber–Krahn inequality
in the sub-Riemannian setting. In the case of the Heisenberg group, one can think of a result
by P. Pansu [23] concerning the isoperimetric inequality. C. Léna’s approach [17] for treating the
Neumann problem for the Laplacian could be helpful if the set in Ω where the system of the Xj

is not elliptic is “small” in some sense. We will follow another way by revisiting in a first part the
nilpotenzation procedure permitting to deduce Faber–Krahn inequalities for sub-Laplacians from
Faber–Krahn inequalities for sub-Laplacians on nilpotent groups.

Concerning the nilpotent approximation we refer to Métivier [20], Rothschild–Stein [26] and the
presentation of Rothschild [25] (based on assumptions and definitions given earlier by Folland [8].
Since this period in the seventies, a huge literature has developed the so-called sub-Riemannian
geometry analyzing in particular this nilpotent approximation.

We assume that Assumptions (CH(r)) and (CEq) are satisfied. To simplify, in this abstract we
also assume that the Xj are linearly independent.

We can locally construct a family of vector fields Yj such that Yj = Xj for j = 1, . . . , n1 and
such that, for 2 ≤ i ≤ r, Y1, . . . , Yni gives at each x a basis of Di(x). Given these Yj , we can
construct at each x ∈ M the map θx given by

θx(y) := u = (ui) if y = exp
(∑

uiYi

)
· x , (1.9)

where exp denotes the exponential map defined in some small neighborhood of x. In this way
we identify a neighborhood of x ∈ M with a neighborhood of 0 in Rn. It has been shown by G.
Métivier that everything depends smoothly on x. We now introduce the notion of nilpotentized
measure dµ̂x at x ∈ M . There is a definition in the formalism of sub-Riemannian geometry but we
prefer to explain it “by hand”. On Rn we have the Lebesgue measure du =

∏
i dui , and in these

local coordinates the measure dµ is of the form dµ = a(x, u)du , where (x, u) 7→ a(x, u) is C∞ in
both variables x and u.

In a small neighborhood of 0, the nilpotentized measure at x can be defined by
dµ̂x := a(x, 0)du . (1.10)

Then we denote by Yi,x , the image of Yi by θx, which is simply Yi written in the local canonical
coordinates around x.

On Rn, with coordinates u = (ui), we introduce the family of dilations given by
δt(ui) = (twiui) ,

where, for each i, wi is the unique j ∈ {1, . . . , n} such that nj−1 + 1 ≤ i ≤ nj .
With this dilation, we have a natural definition of order for a differential operator and G.

Métivier [20, Theorem 3.1] proves (in addition to the regularity of θx already mentioned above)
the following theorem.

Theorem 1.2. For any x, Xj,x is of order ≤ 1 (for j = 1, . . . , p). Furthermore,

•
Xj,x = X̂j,x + Rj,x ,

where X̂j,x is homogeneous of order 1 and Rj,x is of order ≤ 0.

• The X̂j,x generate a nilpotent Lie algebra Gx of dimension n and rank r.

• The mapping x 7→ X̂j,x is smooth.

Acknowledgements
We particularly thank Cyril Letrouit and Yves Colin de Verdière for their help and suggestions of
improvements. The second author would like to thank the organizing committee for inviting him
to the conference of Aussois.
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2. Main result for sub-Laplacians in the equiregular case

2.1. Main statement
By the nilpotent approximation, we can associate with each point x ∈ M a nilpotent group Gx

(identified with the algebra Gx in the exponential coordinates) and a corresponding sub-Laplacian

∆̂x =
p∑

j=1
X̂ 2

j,x

in U2(Gx) (i.e. the elements in the enveloping algebra that are homogeneous of degree 2).
Using results of [8, 25, 27], we see that for all x ∈ M , for all Ω ⊂ Gx open and for all v ∈ C∞

0 (Ω)
we have a Faber–Krahn inequality in the form

⟨−∆̂xv, v⟩
L2(Gx,µ̂x) ≥ cFK(x) µ̂x(Ω)− 2

Q ∥v∥2
L2(Gx,µ̂x) . (2.1)

By definition cFK(x) is the largest constant such that (2.1) holds. Note that this constant depends
on µ through µ̂x and on X through the Xj,x.

Using Sobolev-type inequalities, we can show that
cFK(M, X, µ) = inf

x∈M
cFK(x) > 0 .

Our main statement is the following theorem:
Theorem 2.1. Under Assumptions (CH(r)) and (CEq), let −∆ =

∑
ℓ X⋆

ℓ Xℓ be an equiregular
sub-Riemannian Laplacian on a closed connected manifold M . Then

lim sup
ℓ→+∞

νℓ

ℓ
≤
(∫

M

(cFK(x))− Q
2 dµ(x)

)
·
(∫

M

cWeyl(x) dµ(x)
)−1

, (2.2)

where νℓ denotes the maximal number of nodal domains of an eigenfunction of −∆ associated with
eigenvalue λℓ .

Note that, in comparison with the first versions that were presented in ArXiv, this improved
statement has been proposed by Yves Colin de Verdière in March 2024.
Corollary 2.2. If

(cFK(x))
Q
2 cWeyl(x) > 1 for all x ∈ M , (2.3)

then Pleijel’s theorem holds.

2.2. Basic example
In an open set Ω ⊂ R3, we consider

X1 = ∂

∂x
+ K1(x, y) ∂

∂z
, X2 = ∂

∂y
+ K2(x, y) ∂

∂z
,

with
curl K⃗ = ∂

∂x
K2 − ∂

∂y
K1 > 0 in Ω .

The measure µ is simply the Lebesgue measure dxdydz. At each point (x, y, z) ∈ Ω, the nilpotent
group G(x,y,z) is the Heisenberg group H1, and we have

X1,(x,y,z) = ∂

∂u1
− 1

2u2
∂

∂u3
, X2,(x,y,z) = ∂

∂u2
+ 1

2u1
∂

∂u3
,

and
dµ̂(x,y,z)(u) = curl K⃗(x, y) du .

It can be shown that

cWeyl(x, y, z) = Ŵ (H1)
curl K⃗(x, y)

with Ŵ (H1) := 1
32 .

We denote by cFK(H1) the Faber–Krahn constant on the Heisenberg group H1. The condi-
tion (2.3) reads (note that Q = 4) (

cFK(H1)
)2

Ŵ (H1) > 1 . (2.4)
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Under this condition, Pleijel’s theorem holds. Currently we have no proof that (2.4) holds. We can
show, however, that it holds, provided a well-known conjecture by Pansu concerning the isoperi-
metric inequality on the Heisenberg group is true; see Theorem 3.5.

3. Pleijel theorem for particular groups: Hn × Rk

In the previous section we have shown how the general case of a sub-Riemannian manifold satisfying
Hörmander’s assumption and the equiregularity assumption can be reduced to the analysis of the
same problem for domains in nilpotent stratified Lie groups (see [26] for the main definitions
or [7]). In this setting the vector fields are left invariant on the group and, viewed as elements of
the associated Lie algebra, they generate the algebra.

3.1. Main result for Hn × Rk

We focus on Hn × Rk, where n ∈ N, k ∈ N and Hn is the Heisenberg group. Typically, we denote
coordinates in Hn by (x, y, z) with x, y ∈ Rn and z ∈ R, and we denote coordinates in Rk by w.
The measure dx dy dz dw is the Lebesgue measure on R2n+1+k. For the vector fields we use in this
section the following normalization,

Xj = ∂xj + 2yj∂z , Yj = ∂yj − 2xj∂z , Wj = ∂wj .

The sub-Laplacian is

∆Hn×Rk

=
n∑

j=1
(X2

j + Y 2
j ) +

k∑
i=1

W 2
i .

If Ω ⊂ Hn × Rk is an open set of finite measure, then the spectrum of the Dirichlet realization
of −∆Hn×Rk

Ω is discrete (we denote by λℓ(Ω) the non decreasing sequence of its eigenvalues) and
we can apply Métivier’s theorem. Due to the left invariance, (1.7) takes the form

N(µ, −∆Hn×Rk

Ω ) ∼ W(Hn × Rk) |Ω| µ
2n+2+k

2 . (3.1)

Later we will give a (relatively) explicit expression for the constant W(Hn × Rk).
The Faber–Krahn constant CFK(Hn × Rk) is the largest constant such that for any open Ω ⊂

Hn × Rk of finite measure and for any u ∈ C∞
0 (Ω) one has

∫
Ω

(
n∑

j=1
((Xju)2 + (Yju)2) +

k∑
i=1

(Wiu)2

)
dx dy dz dw

≥ CFK(Hn × Rk)|Ω|−
2

2n+2+k

∫
Ω

u2 dx dy dz dw . (3.2)

Let us set

γ(Hn × Rk) :=
(
CFK(Hn × Rk)

)− 2n+2+k
2

(
W(Hn × Rk)

)−1
. (3.3)

Following the standard proof of Pleijel’s theorem, we get

Theorem 3.1. For any open Ω ⊂ Hn × Rk of finite measure,

lim sup
ℓ→∞

νℓ(Ω)
ℓ

≤ γ(Hn × Rk) .

Here νℓ(Ω) denotes the maximum number of nodal domains of an eigenfunction corresponding
to λℓ(Ω).

It remains to give conditions on n and k for which γ(Hn × Rk) < 1.
We recall that for n = 0 this was shown to be the case for k = 2 by Pleijel [24] and for general

k by Bérard and Meyer [2]. Moreover, Helffer and Persson Sundqvist [14] showed that, for n = 0,
k 7→ γ(Rk) is decreasing.

Our main result in this section is the following:
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Theorem 3.2.

• If k = 0, then for all n ≥ 4 one has γ(Hn) < 1.

• If k = 1, then for all n ≥ 2 one has γ(Hn × R) < 1.

• If k ≥ 2, then for all n ≥ 1 one has γ(Hn × Rk) < 1.

3.2. The constant in the Weyl asymptotics in the case of Hn × Rk

We start with the case k = 0. Here we follow explicit computations of Hansson–Laptev [12],
providing an alternative proof of Métivier’s theorem in the special case of Hn.

A conceptual way of thinking about the Weyl asymptotics is to write them as µ → ∞ in the
form

N(µ, −∆Hn

Ω ) ∼
∫

Ω
1(−∆Hn < µ)((x, y, z), (x, y, z)) dx dy dz , (3.4)

where 1(−∆Hn < µ)((x, y, z), (x, y, z)) is the on-diagonal spectral density of the sub-Laplacian on
all of Hn.

By translation invariance and dilation covariance, we get

1(−∆Hn < µ)((x, y, z), (x, y, z)) = W(Hn) µ
Q
2 , (3.5)

and we obtain the above form of the spectral asymptotics. One can then show that

W(Hn) = 1
2(n + 1)

1
(2π)n+1 cn , (3.6)

where cn is defined by

cn :=
∑
m∈N

(
m + n − 1

m

)
1

(2m + n)n+1 .

Note that W(H) = 1
128 and W(H2) = 1

482π and that we can have a more explicit form of W(Hn)
for n ≤ 13 using Mathematica.

For general k, we can prove the formula

W(Hn × Rk) = W(Hn) (4π)− k
2

Γ(n + 2)
Γ( 2n+k+4

2 )
. (3.7)

3.3. Faber–Krahn and Sobolev inequalities for Hn × Rk

We obtain a bound on the Faber–Krahn constant in terms of the (critical) Sobolev inequality on
Hn × Rk. By definition, CSob(Hn × Rk) is the largest constant such that for all u ∈ C∞

0 (Hn × Rk)

∫
Hn×Rk

(
n∑

j=1
((Xju)2 + (Yju)2) +

k∑
i=1

(Wiu)2

)
dx dy dz dw

≥ CSob(Hn × Rk)
(∫

Hn×Rk

|u|
2(2n+2+k)

2n+k dx dy dz dw

) 2n+k
2n+2+k

.

By an application of Hölder, we obtain

CFK(Hn × Rk) ≥ CSob(Hn × Rk).

An explicit expression for CSob(Hn) was found by Jerison and Lee [16]; for an alternative proof
see [11]. We have

CSob(Hn) = 4πn2

(22nn!)
1

n+1
. (3.8)
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3.4. Upper bound for the Pleijel constant γ(Hn)

Let us explain our proof of the part of Theorem 3.2 concerning k = 0, that is, the assertion that
γ(Hn) < 1 for n ≥ 4. From our previous bounds to get

γ(Hn) ≤
(
CSob(Hn)

)−n−1 W(Hn)−1 = 2n(n + 1)!
n2(n+1)

1
cn

=: γ̃n . (3.9)

Numerics treats the case n ≤ 13. The second step is to show that γ̃n/γ̃n−1 becomes < 1 as
n → +∞. In a third step, the estimate of the remainder in the asymptotics shows that this holds
for n ≥ 13.

3.5. Sobolev for Hn × Rk

In order to deal with the case k ≥ 1, we will derive a lower bound on the constant CSob(Hn ×Rk).
For this, we will need to use a certain Sobolev interpolation inequality on Rk. Assume 2 ≤ q < ∞
if k ≤ 2 and 2 ≤ q ≤ 2k

k−2 if k > 2, and denote by CGN
q (Rk) the largest possible constant in the

inequality, (∫
Rk

|∇u|2 dw

)θ (∫
Rk

|u|2 dw

)1−θ

≥ CGN
q (Rk)

(∫
Rk

|u|q dw

) 2
q

, (3.10a)

where

θ = k

(
1
2 − 1

q

)
. (3.10b)

For k = 1 the explicit value of the constant CGN
q (R) is known from work of Nagy [22]:

CGN
q (R) =

(
QQ

4 (Q − 1)Q−1

) 1
Q+1

(
√

π
Γ( Q+1

2 )
Γ( Q+2

2 )

) 2
Q+1

with q = 2(Q + 1)
Q − 1 .

For k ≥ 2 its explicit value is not known, but we are still be able to derive some results by modifying
the strategy.

Proposition 3.3. For all n, k ∈ N, setting Q = 2n + 2 and q = 2(Q+k)
Q+k−2 ,

CSob(Hn × Rk) ≥ CGN
q (Rk) (CSob(Hn))

Q
Q+k

Q + k

Q
Q

Q+k k
k

Q+k

.

Using this proposition and Nagy’s value for the optimal constant, we can show that the part of
Theorem 3.2 concerning k = 1, that is, Pleijel’s theorem for Hn × R for all n ≥ 3.

3.6. A second bound on the Faber–Krahn constant

In order to prove the parts of Theorem 3.2 concerning n = 1 and n = 2, we use a different
approach to lower bounds on the Faber–Krahn constant on Hn × Rk, which we briefly discuss in
this subsection.

We proceed via the isoperimetric constant on Hn × Rk. We define1 the (horizontal) perimeter
of a measurable set E ⊂ Hn × Rk by

perHn×Rk (E) := sup
{∫

E

(
n∑

j=1
(Xjϕ + Yjϕ) +

k∑
i=1

Wiϕ

)
dx dy dz dw : ϕ ∈ C1

c (Hn×Rk), |ϕ| ≤ 1
}

.

We denote by I(Hn ×Rk) the largest constant such that for every set E ⊂ Hn ×Rk of finite measure
one has

perHn×Rk (E) ≥ I(Hn × Rk) |E|
2n+1+k
2n+2+k .

Using a rearrangement argument, we can prove a lower bound on the Faber–Krahn constant in
terms of the isoperimetric constant.

1This is the natural extension of the Euclidean definition due to Caccioppoli.
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Proposition 3.4. For n ≥ 0 and k ≥ 0, we have
CFK(Hn × Rk) ≥ I(Hn × Rk)2 (2n + 2 + k)−2j2

2n+k
2 ,1 .

where jν,1 denotes the first positive zero of the Bessel function Jν .

Hence it remains to investigate the best known lower bounds to the isoperimetric constant. In
the case of Hn (that is, k = 0), this is related to an old conjecture by Pierre Pansu.

Using an analogue of the Sobolev representation formula involving the Green’s function on Hn,
we find lower bounds on I(Hn). Independently, we prove a lower bound on I(Hn × Rk) in terms
of I(Hn) and I(Rk). Combining these bounds and inserting them into Proposition 3.4, we deduce
Pleijel’s theorem on Hn × Rk where either n = 1 and k ≥ 2 or n = 2 and k ≥ 1.

This approach also allows us to show:

Theorem 3.5. If Pansu’s conjecture holds on Hn, then Pleijel’s theorem holds on Hn × Rk for
any k ≥ 0.

We refer to [9] for more details.
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