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A review on asymptotic stability of solitary waves in nonlinear
dispersive problems in dimension one

Pierre Germain

Étude de la stabilité asymptotique des ondes solitaires dans les problèmes dispersifs
non linéaires en dimension un

Résumé

Cet article de survol s’intéresse à la stabilité asymptotique des ondes solitaires d’équations dis-
persives non-linéaires. Nous nous attacherons plus particulièrement à l’équation de Schrödinger non-
linéaire, à la notion de stabilité asymptotique complète (qui demande que la solution se décompose
asymptotiquement en une onde solitaire et une radiation décroissante) et aux méthodes spectrales.
Nous tenterons aussi de présenter l’état de l’art dans un contexte plus général, incluant l’équation de
Klein–Gordon non-linéaire, la notion de stabilité asymptotique locale et les méthodes de viriel.

Abstract

We review asymptotic stability of solitary waves for nonlinear dispersive equations set on the line.
Our focus is threefold: first, the nonlinear Schrödinger equation; second, the notion of full asymptotic
stability (which states that perturbations of a solitary wave decompose globally into a solitary wave
and a decaying solution); and third, spectral methods. Besides this focus, we summarize the state
of the art in a broader context, including nonlinear Klein–Gordon equations, the notion of local
asymptotic stability, and virial methods.

1. Introduction

This text aims at reviewing the asymptotic stability of solitary waves in nonlinear dispersive
equations set in Euclidean space. Given the breadth of the subject, we had to emphasize some
directions rather than others, and our choice was the following

• We set the space dimension equal to one – this is the best understood case as of now.

• We focused on the nonlinear Schrödinger equation (NLS), which is one of the canonical
models.

• We favored full asymptotic stability over various other notions of stability which will be
reviewed below. It can be roughly defined as follows: perturbations of a solitary wave de-
compose globally, as time goes to infinity, into the sum of a solitary wave and a pointwise
decaying part.

• Finally, spectral methods seem unavoidable to prove that this strong notion of stability
is satisfied; here, spectral is understood in the sense of the Fourier transform, or of the
linearized group around a traveling wave.

Keywords: nonlinear dispersive equations, solitary waves, asymptotic stability.
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We believe that the ideas and methods which we will present for (NLS) are valid for most
nonlinear dispersive problems, in dimension one and higher. Indeed, we will see that they have
immediate counterparts for nonlinear Klein–Gordon equations. Besides full asymptotic stability,
local asymptotic stability has seen important progress over the last decade, in connection with
viral or energy methods. We will describe the results and sketch the associated ideas.

Finally, we refer to the textbooks [76, 89] and the reviews [17, 46, 62, 64, 86, 91] to give the
reader a more complete picture of the subject.

2. The equation, its solitary waves, and their stability

2.1. The equation and its solitary waves
We consider the Cauchy problem for the nonlinear Schrödinger equation{

i∂tv − ∂2
xv − F ′(|v|2)v = 0

v(t = 0) = v0.
(NLS)

set on the real line v = v(t, x), t, x ∈ R. It is stemming from the Hamiltonian

H(v) =
∫

[|∂xv|2 − F (|v|2)] dx.

The interaction potential F will be assumed to be smooth and to have a non-degenerate local
minimum at zero1. Stationary waves of the type

v(t) = e−itωΦω, ω > 0,
are given by solutions of

∂2
xΦω − ωΦω + F ′(Φ2

ω)Φω = 0. (2.1)
Under our assumptions on F , there exists a unique solution up to translation of this ODE on a
non-trivial interval ω ∈ (0, ω∗).

For p, γ, y ∈ R, Galilean, phase and translation symmetries

v(t, x) 7→ ei(px+p2t+γ)v(t, x+ 2pt− y)
leave the set of solutions of (NLS) invariant. In particular, this gives the family of traveling waves

ei(px+(p2−ω)t+γ)Φω(x+ 2pt− y). (2.2)

2.2. Existence and uniqueness of solutions
These questions will not concern us in the present review paper. Suffice it to say that local well-
posedness holds in H1 and that the solutions are global if F grows slower than at a cubic rate at
infinity (|F (z)| ≲ |z|3−δ with δ > 0). If F grows faster than cubic, then blowup becomes possible,
even for perturbations of solitary waves. While this has to be kept in mind, the focus of the present
paper will be the opposite case, where solitons are stable.

For this and more, we refer to the classical textbooks [8, 89, 90].

2.3. Different kinds of stability
Whether the solitary waves Φω are stable or not is of foremost importance from a mathematical as
well as a physical viewpoint, since stable objects are of greater relevance to the dynamics. Stability
will depend on the norm ∥ · ∥ under consideration - it will not specified for the time being. Once
the topology is chosen, different kinds of stability can be considered

Lyapunov stability would be asking for any ϵ > 0 the existence of δ > 0 such that supt>0 ∥v(t) −
eitΦω∥ < ϵ provided ∥v0 − Φω∥ < δ. As is well known, this is too naive and does not hold. Indeed,
the data Φω gives the solution e−iωtΦω(x); modifying this data slighlty to Φωe

ipx (for any p ̸= 0)
leads to the solution ei(px+p2t)Φω(x+ 2pt) which inexorably drifts away from the earlier solution.

1Besides smoothness, all we need of F is the existence of stationary waves, which is a consequence of having a
local minimum at zero, but not equivalent, see [4] for the exact condition.
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Orbital stability is meant to fix the problem that was just identified by incorporating the sym-
metries of the equation. Given ϵ > 0, we now look for δ > 0 such that, if ∥v0 − Φω∥ < δ, then

sup
t>0

inf
ω,p,θ,y∈R

∥v(t, x) − ei(px+θ)Φω(x+ y)∥ < ϵ. (2.3)

Orbital stability is by now completely understood [9, 35, 93]; it holds in the H1 topology if and
only if

cω = d
dω

∫
|Φω|2 dx > 0 (2.4)

(ignoring the degenerate case where this quantity is zero). This is sometimes called the Vakhitov–
Kolokolov condition.

Local asymptotic stability describes a stronger property than orbital stability: namely, it is asking
that the solutions converge locally to the soliton. For a cutoff function χ, we ask that, if ∥v0 − Φω∥
is sufficiently small, then

sup
R>0

lim
t→∞

inf
ω,p,θ,y∈R

∥∥∥∥χ(
x+ y

R

) [
v(t, x) − ei(px+θ)Φω(x+ y)

]∥∥∥∥ = 0.

Full asymptotic stability is asking for a full description of the solution if ∥v0 − Φω∥ is sufficiently
small. Namely, we are asking for a decomposition

v(t, x) = ei(p(t)x+θ(t))Φω(t)(x+ y(t)) + {time-decaying solution} as t → ∞ (2.5)

where the asymptotic behavior of p(t), θ(t), ω(t), y(t) is described and the decaying solution, or
radiation, w(t) will be characterized as undergoing scattering or modified scattering.

The soliton resolution conjecture is asking for a decomposition similar to (2.5) with two impor-
tant differences: first, it should hold for all (or almost all, in an appropriate sense) data, and second,
it shoud allow for a finite number of solitary waves on the right-hand side. Such a statement seems
out of reach of present tools for (NLS), except in the completely integrable case that we will come
back to; but full asymptotic stability is the first step towards this much more ambitious goal.

Having recapitulated these different notions of stability, we now formulate the question that will
be at the heart of the present review.

Question: For which F can full asymptotic stability be established?

2.4. Notation

We adopt the following normalization for the Fourier transform of u

û(ξ) = 1√
2π

∫ ∞

−∞
u(x)e−ixξ dξ, u(x) = 1√

2π

∫ ∞

−∞
û(ξ)eixξ dξ.

Sobolev and weighted L2 spaces are denoted as follows

∥u∥Hs = ∥⟨∂x⟩su∥L2 ∥u∥L2,s = ∥⟨x⟩su∥L2 .

3. The main characters

In this section, we want to present in greater detail the two main characters of the story: on the
one hand, the solitary wave, and on the other, the decaying wave or radiation, whose behavior is
characterized by scattering or modified scattering. As we saw earlier, full asymptotic stability is
asking for a behavior as t → ∞ which is a linear combintion of these two types of solutions.

We will also mention a third character, namely breathers. These objects do not resolve as t → ∞
into a sum of solitary wave and radiation, and thus we should be careful to avoid them given our
definition of asymptotic stability.
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Figure 3.1: The modulus of the stationary wave solution of the cubic (NLS):
Φ1(x) = |eitΦ1(x)|

3.1. The solitary waves
Recall that stationary waves

v(t) = e−itωΦω

are given by solutions of the ODE

∂2
xΦω − ωΦω + F ′(Φ2

ω)Φω = 0. (3.1)

By our assumptions on F , there is a unique solution up to translation on an interval ω ∈ (0, ω∗), for
some ω∗ > 0. Furthermore, Φω is even, positive, decreasing on x > 0, and exponentially decreasing
at infinity, along with its derivatives (see [4] for these facts and optimal conditions on F for the
existence of stationary waves).

In general, there does not exist an explicit formula for the solitary waves, but this is for instance
the case if F is a pure power:

if F (z) = 1
σ+1 zσ+1, Φ1(x) = (σ + 1) 1

2σ

cosh(σx) 1
σ

.

The solitary wave is shown in Figure 3.1.
Still in the pure power case, the equation enjoys a scaling invariance which leads to the formula

Φω(x) = ω
1

2σ Φ1(ω 1
2 x).

This formula has two interesting consequences. First, substituting it in the criterion (2.3) for
orbital stability gives the condition σ < 2 for orbital stability. Second, if σ = 1 (cubic (NLS)), the
above formula yields

∥Φω∥H1 ∼ ω
1
4 and ∥Φω∥L2,1 ∼ ω− 1

4

(the same would be true if F (z) is quadratic to leading order as z → 0, rather than exactly equal
to z2). This shows the importance of the norm in which the perturbation to the solitary wave is
measured:

• Any H1 neighborhood of a given solitary wave will contain small solitary waves, which
invalidates full asymptotic stability as stated in (2.5) (of course, solitary waves can only
be added rigorously in the asymptotic regime t → ∞, see [66] for a construction of a
multi-soliton solution). The obvious fix is to add small solitons in (2.5), but proving such a
decomposition might be as hard as the soliton resolution conjecture.

• But a neighborhood in L2,1 of a given solitary wave should exclude the presence of small
solitons in the background.

4

Figure 3.1: The modulus of the stationary wave solution of the cubic (NLS):
Φ1(x) = |eitΦ1(x)|
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be added rigorously in the asymptotic regime t → ∞, see [66] for a construction of a
multi-soliton solution). The obvious fix is to add small solitons in (2.5), but proving such a
decomposition might be as hard as the soliton resolution conjecture.

• But a neighborhood in L2,1 of a given solitary wave should exclude the presence of small
solitons in the background.
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Figure 3.2: The modulus of a small scattering solution

3.2. Time-decaying solutions
We now turn to small data u0 (say in H1 ∩ L2,1) which lead to decaying solutions, thus excluding
the appearance of solitary waves.

Scattering

If the potential F vanishes to order > 2 at the origin 2 the solutions scatter, which means that
they behave as t → ∞ like linear solutions, or in other words that the profile f converges:

f(t) = eit∂2
xv(t) → f∞ as t → ∞.

In terms of the solution v, it resembles asymptotically e−it∂2
xf∞, which, by the stationary phase

lemma, implies that

u(t, x) ≍ eit∂2
xf∞(x) ≍ e−i π

4
1√
2t

cf∞
� x

2t

�
ei x2

4t as t → ∞.

A scattering solution is represented in Figure 3.2.

Modified scattering

If the potential F vanishes to order 2 exactly at the origin (which is the "generic" situation if F
has a minimum at zero), then the nonlinearity is cubic to leading order. This is critical from the
point of view of asymptotic behavior: namely, if u satisfies the standard decay estimates for linear
solutions ∥u∥L2 ∼ 1, ∥u(t)∥L∞ ∼ t− 1

2 , a naive computation gives logarithmic growth
Z T

0
∥|u(t)|2u(t)∥L2 dt ≲

Z T

0
∥|u(t)∥2

L∞∥u(t)∥L2 dt ∼
Z T

0

dt

t
∼ log T as T → ∞. (3.2)

This will ultimately lead to a correction to scattering.
To understand the nature of this correction, we will follow the general idea of the space-time

resonance method and view the nonlinear term as an oscillatory integral in Fourier space. The
equation (NLS) can be written as as an evolution problem for the profile f(t) in Fourier space:
using basic properties of the Fourier transform, we obtain

i∂t
bf(t, ξ) = c

π

ZZ
eit(ξ2−η2−σ2−(ξ−η−σ)2) bf(t, η) bf(t, σ) bf(t, −ξ + η + σ) dη dσ + {negligible} (3.3)

(here, c is the coefficient of z2 in the expansion of F (z) at zero, or equivalenty the coefficient of
|u|2u in (NLS); as already discussed, higher order terms do not matter here). To deal with this

2In other words, F (z) = O(z3), since we are assuming F to be smooth, but more generally, F (z) = O(zα with
α > 2 would suffice.
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integral, we assume that f̂ is smooth in t and ξ, making the application of the stationary phase
lemma legitimate. The phase is

φ(η, σ) = ξ2 − η2 − σ2 + (ξ − η − σ)2 = 2(ξ2 − ξη − ξσ + ησ).

It is stationary if

∂ηφ(ξ, η, σ) = ∂σφ(ξ, η, σ) = 0 ⇐⇒ η = σ = ξ.

At the stationary point, ϕ(ξ, ξ, ξ) = 0 and the Hessian is ( 0 2
2 0 ) with determinant 4 and signature

zero. By the stationary phase lemma, the right-hand side of (3.3) is ≍ c
t ||f̂(t, ξ)|2f̂(t, ξ), leading

to the following asymptotic ODE for f̂

i∂tf̂(t, ξ) = c

t
|f̂(t, ξ)|2f̂(t, ξ).

Integrating this ODE gives a logarithmic correction to scattering, namely

f̂(t, ξ) ≍ f̂∞(ξ)eic|f̂∞(ξ)|2 log t or u(t, x) ≍ e−i π
4

1√
2t
f̂∞

( x
2t

)
e

i
[

x2
4t +c|f̂∞( x

2t )|2 log t
]

as t → ∞.

for an asymptotic profile f∞.
We followed the argument in Kato–Pusateri [39] in deriving heuristically this formula for mod-

ified scattering. We refer to that pater for further details and a full justification. Many other
approaches were put forward to show modified scattering [36, 37, 59], see the review [71].

3.3. Breather solutions
We borrow the following formula from [1], see also [2, 74]. For any c1, c2 > 0, if γ± = c1 ± c2, then
an explicit solution of the cubic (NLS) (ie F (z) = z2) is

B(t, x) = 2
√

2γ+γ−e
−ic2

1t[c1 cosh(c2x) + c2e
iγ+γ−t cosh(c1x)]

γ2
− cosh(γ+x) + γ2

+ cosh(γ−x) + 4c1c2 cos(γ+γ−t)
.

It is instructive to consider a few special cases for c1 and c2

• If c1 = 1, c2 = 0, this is the solitary wave e−itΦ1.

• If c1 = 1, c2 = 3, this is the Satsuma–Yajima breather [83] which is depicted in Figure 3.3

4
√

2e−it(cosh(3x) + 3e8it cosh x)
cosh(4x) + 4 cosh(2x) + 3 cos(8t) .

• If c1 = 1, c2 ≪ 1, one obtains a breather which looks like the solitary wave e−itΦ1 for x
small, but which decays much slower, like c2e

−c2|x|, as x → ∞.

As a consequence of the last point, any neighborhood of Φ1 in H1 contains nonlinear solutions
which are time-periodic, and are not resolved into solitary wave plus radiation as time goes to
infinity – even though these breather solutions are unstable. This is clearly an obstacle to full and
even local asymptotic stability as stated above. This obstacle can be lifted in two ways: either by
considering a stronger topology than H1, or by replacing the family of solitons in the definition of
asymptotic stability by the larger family including breathers – but a practical implementation of
this idea seems very delicate!

4. Linearization around a solitary wave and decay

In order to linearize atound the stationary wave e−itωΦω, one filters first the time oscillation by
setting u(t) = eitωv(t). The equation satisfied by u is now

i∂tu+ ωu− ∂2
xu− F ′(|u|2)u = 0.
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Figure 3.3: The modulus of the Satsuma-Yajima breather

For this new equation, Φω is a stationary solution. Linearizing around it leads to a problem which
is not complex-linear in u (because of the nonlinearity). To make this equation complex-linear, we

write it as a vector problem in U =
�

u
u

�
. The resulting linearized problem is

i∂tU + HωU = 0.

where

Hω =
�

−∂2
x + ω 0
0 ∂2

x − ω

�
−

�
V+ V−

−V− −V+

�

V− = F ′′(Φ2)Φ2 and V+ = F ′(Φ2) + V−.

The operator Hω is a vector Schrödinger operator, with a matrix potential; such operator shares
many common features with the more classical scalar Schrödinger operators, but there are also
important differences, first of all since it is not self-adjoint.

4.1. Spectrum of the linearized operator
The spectrum of Hω is obviously a fundamental ingredient to understand the stability of solitary
waves. It can be understood rather precisely [6, 27]

• The essential spectrum equals (−∞, −ω] ∪ [ω, ∞) by the Weyl criterion.

• Eigenvalues belong to R ∪ iR.

• Unstable modes are by definition eigenvalues in iR \ {0}; they are absent if cω > 0.

• The generalized kernel has geometric dimension at least 2 and algebraic dimension at least
4, which is the dimension of the manifold of solitary waves (2.2). Indeed, differentiating the
equation with respect to the parameters (p, ω, γ, y) leads to the following four elements in

the generalized kernel:
�

Φ
−Φ

�
,

�
∂ωΦ
∂ωΦ

�
,

�
∂xΦ
∂xΦ

�
,

�
xΦ

−xΦ

�
. If cω > 0, the generalized kernel

is spanned by them.

• Embedded eigenvalues (eigenvalues contained in the essential spectrum) are conjectured not
to exist in [27], but it seems that a proof is only known in the pure power case [50, 78].

• Internal modes are by definition eigenvalues in (−ω0, ω0); see [80] for a characterization of
potentials F which are cubic to leading order and for which internal modes are absent.
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For this new equation, Φω is a stationary solution. Linearizing around it leads to a problem which
is not complex-linear in u (because of the nonlinearity). To make this equation complex-linear, we
write it as a vector problem in U = ( u

u ). The resulting linearized problem is
i∂tU + HωU = 0.

where

Hω =
(

−∂2
x + ω 0
0 ∂2

x − ω

)
−

(
V+ V−

−V− −V+

)
V− = F ′′(Φ2)Φ2 and V+ = F ′(Φ2) + V−.

The operator Hω is a vector Schrödinger operator, with a matrix potential; such operator shares
many common features with the more classical scalar Schrödinger operators, but there are also
important differences, first of all since it is not self-adjoint.

4.1. Spectrum of the linearized operator
The spectrum of Hω is obviously a fundamental ingredient to understand the stability of solitary
waves. It can be understood rather precisely [6, 27]

• The essential spectrum equals (−∞,−ω] ∪ [ω,∞) by the Weyl criterion.

• Eigenvalues belong to R ∪ iR.

• Unstable modes are by definition eigenvalues in iR \ {0}; they are absent if cω > 0.

• The generalized kernel has geometric dimension at least 2 and algebraic dimension at least
4, which is the dimension of the manifold of solitary waves (2.2). Indeed, differentiating the
equation with respect to the parameters (p, ω, γ, y) leads to the following four elements in
the generalized kernel:

( Φ
−Φ

)
,

(
∂ωΦ
∂ωΦ

)
,

(
∂xΦ
∂xΦ

)
,

(
xΦ

−xΦ
)
. If cω > 0, the generalized kernel is

spanned by them.

• Embedded eigenvalues (eigenvalues contained in the essential spectrum) are conjectured not
to exist in [27], but it seems that a proof is only known in the pure power case [50, 78].

• Internal modes are by definition eigenvalues in (−ω0, ω0); see [80] for a characterization of
potentials F which are cubic to leading order and for which internal modes are absent.

• Edge resonances (in other words, bounded generalized eigenfunctions corresponding to the
eigenvalues ±ω) exist for certain F , see below.
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spectrum or edge resonances. For σ = 1, edge resonances are present; for σ < 1 < 2
internal modes; for σ = 2 the generalized kernel degenerates, hence the bigger
point at the origin; for σ > 2 unstable modes appear. Observe how the eigenvalues
bifurcate from the resonance for σ → 1.

-

6

-

6

-

6

t t tt t t t

a < 0 a = 0 (cubic NLS) a > 0

Figure 4.2: The spectrum of Hω for the cubic-quintic (NLS), namely F (z) =
z2 + az3 after [77]. Spectrum is in red, lines represent essential spectrum and
points discrete spectrum or edge resonances. For a < 0, there are neither internal
modes nor resonances; for a = 0 (cubic case), a resonance appear; it bifurcates
into an internal mode for a > 0.

Figures 4.1 and 4.1 illustrate the spectrum of the linearized operator around the solitary wave
in two emblematic cases: the pure power noninearity and the cubic-quintic nonlinearity. In both
cases, it is interesting to observe how the spectrum evolves with the parameter.

4.2. Decay estimates
Decay estimates for the group eitHω are key to the stability of solitary waves. They can only hold
on the essential spectrum; we let Pe denote the associated projector.

In the absence of embedded eigenvalues, dispersive and Schrödinger estimates for the group
eitHω are identical to those for eit∂2

x , see [6, 50]

∥Pee
itHωf∥Lp ≲ |t|

1
p − 1

2 ∥f∥Lp′ if 2 ≤ p ≤ ∞

∥Pee
itHωf∥Lp

t Lq
x
≲ ∥f∥L2 if 1

p
+ 2
q

= 1, p, q > 2.

In addition to these classical dispersive and Strichartz estimates, it may come as a surprise that
the group eitHω enjoys stronger local estimates than the flat case eit∂2

x . Indeed, in the absence of
embedded eigenvalues and edge resonances3, we have the improved local decay estimate

∥⟨x⟩−1eitHωf∥L∞ ≲ |t|− 3
2 ∥⟨x⟩f∥L1 .

3Note that ∂2
x does have an edge resonance at zero frequency, since ∂2

x 1 = 0
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This is the sharp estimate [50], following [6] and the sharp scalar case [84]. When a resonance is
present, improved local decay can be retrieved after projecting off the resonance [34, 53].

4.3. Modulation and application to the nonlinear problem
Though the decay estimates give a mechanism for stability in the span of the essential spectrum,
perturbations in the span of the discrete spectrum will not decay at the linear level. Let us assume
for simplicity that no internal modes are present, so that the discrete spectrum reduces to the
generalized kernel. We now explain how modulation is the key to dealing with the discrete spectrum.

The idea is to add time-dependent parameters (ω, p, γ, y) which span the manifold of solitary
waves. More specifically, we choose the ansatz

v(t, x) = ei(p(t)x−γ(t)) [
(Φω(t) + u(t))(x+ y(t))

]
.

Complexifying the equation as earlier by setting U = ( u
u ), and plugging the above ansatz, the

equation becomes
i∂tU + HωU = V U2 + . . .︸ ︷︷ ︸

expansion of the nonlinearity

+ iω̇(t)Ξ1 + . . .︸ ︷︷ ︸
modulation terms

, (4.1)

where Ξ1 =
(

∂ωΦ
∂ωΦ

)
, and we omitted most terms on the right-hand side for the sake of clarity. Here

arises a subtle point which we will mention and then gloss over. Namely, we linearize around the
soliton Φω with parameter ω, which is the soliton parameter “at t = ∞”, and which does not, in
general, agree with the current soliton parameter ω(t). . .

The coefficients (ω, p, γ, y) are now chosen so that P0U = 0, where P0 is the spectral projector
on the generalized kernel. To obtain an evolution equation for these parameters, we project (4.1)
on the generalized kernel. This ultimately results into an equation of the type

d
dt (p(t), γ(t), ω(t), y(t)) = {nonlinear terms},

where we need to show that the nonlinear terms decay sufficiently fast for the parameters to
converge.

Similarly, projecting (4.1) on the essential spectrum gives
i∂tPeU + HωPeU = Pe

[
V U2 + {higher-order terms} + {modulation terms}

]
The worst term in the above right-hand side is V U2, and other terms are omitted. It is now easy

to understand why the improved local decay estimate is key to the stability of solitons, The point
is that the term V U2 is not time integrable in the absence of improved local decay: if U decays like
t−

1
2 in L∞, then UV 2 has size ∼ t−1 in L2, which is not time integrable. But improved local decay

gives a much stronger control of V U2, and ultimately allows to control the nonlinear problem by
resorting only to the various decay estimates stated above (dispersive, Strichartz, improved local).
One of the main remaining difficulties is the control of the weighted norm on the profile f , which
is needed to obtain improved local decay.

4.4. Full asymptotic stability via decay
By following the approach sketched above, Buslaev and Perelman proved the following theorem,
which was the first such result in dimension one.

Theorem 4.1 (Buslaev–Perelman [6] – simplified statement). Assume that F (z) = O(z5), that
cω > 0 and that the linearized operator does not have embedded eigenvalues, internal modes or edge
resonances. If furthermore ∥v0 − Φω0∥H1∩L2,2 is sufficiently small, then there exists parameters
(p, ω, θ, y) and a scattering state f∞ such that

v(t) = ei(p(t)x+θ(t))Φω(t)(x+ y(t)) + eit∂2
xf∞ + oL2(1) as t → ∞.

The above theorem was the first to address asymptotic stability of stationary waves in dimen-
sion 1. Its main drawback is the requirement that F vanishes at order 5: at the level of (NLS), this
means that the nonlinearity has order 9 at least.

The following result by Krieger and Schlag used sharper local decay estimates and Strichartz
estimates, thus weakening the hypothesis to a vanishing of F at order 3+; furthermore, it provided
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a precise justification of many steps which were only sketched in [6]. It focused on the pure power
case F (z) = zσ+1 with σ > 2; as is depicted in Figure 4.1, unstable eigenvalues are present and
full asymptotic stability can only be obtained on a stable manifold. We also mention [70] which
used similar tools to deal with the simpler problem of small solitary waves generated by an exterior
potential; and [69, 68] where the case of a Dirac potential is considered.

Theorem 4.2 (Krieger–Schlag [50] – simplified statement). Assume that F (z) = zσ+1 with σ >
2. If v0 is sufficiently close to Φω0 for the norm ∥f∥H1 + ∥⟨x⟩f∥L1∩L2 + ∥⟨x⟩∂xf∥L1 , then full
asymptotic stability holds on a manifold of codimension one. Namely, on that manifold, there
exists parameters (p, ω, θ, y) and a scattering state f∞ such that

v(t) = ei(p(t)x+θ(t))Φω(t)(x+ y(t)) + eit∂2
xf∞ + oL2(1) as t → ∞.

5. Distorted Fourier transform and nonlinear resonances

By exploiting only the decay of the linearized problem, it seems impossible to prove full asymptotic
stability for potentials F vanishing to order < 3, and Theorem 4.2 seems optimal in this respect.

But generic and physically relevant potentials vanish to order 2! In order to deal with such
potentials, it is necessary to take advantage of the time oscillations induced by the linearized
operator, which play a key role in the nonlinear problem through resonances. This section is
dedicated to the exploration of this idea.

5.1. The distorted Fourier transform
In order to see most clearly the resonances induced by the linearized operator Hω, it is convenient
to diagonalize this operator, which is the object of the distorted Fourier transform. The linear
operator Hω is vectorial, making details significantly more intricate than for scalar Schrödinger
operators, for which the corresponding theory is classical [24, 94].

We will now summarize the theory of the distorted Fourier transform, referring to [6, 16, 50] for
further details. The distorted Fourier transform of a function from R to C2 is defined as the pair
of scalar functions (f̃+, f̃−) given by (once again omitting indices)

f̃±(ξ) = 1√
2π

∫
f(x) · σ3ψ±(x, ξ) dx, for ξ ∈ R

where σ3 is the Pauli matrix
( 1 0

0 −1
)

and the functions ψ±(x, ξ) are bounded solutions of

Hωψ±(x, ξ) = ±(ω + ξ2)Hωψ±(x, ξ)

The projection of the function f on the essential spectrum can be recovered through the formula

Pef(x) = 1√
2π

∑
±

±
∫
f̃±(ξ)ψ±(x, ξ) dξ

(analogous to the inverse Fourier transform). Finally, denoting F̃ for the map f 7→ (f̃+, f̃−), it
diagonalizes Hω in the sense that

F̃−1(±)(ω + ξ2)F̃ = Hω

(the analog for the classical Fourier transform F̂ being the formula F̂−1ξ2F̂ = −∂2
x).

While the distorted transform F̃ has much in common with its classical cousin, there are also
important differences. First, it is not unitary, since Hω is not self-adjoint. More importantly for
our purposes, the operator Hω is not translation invariant, and the formula f̂g = f̂ ∗ ĝ is lost. This
formula is crucial to treat nonlinear terms after the Fourier transform has been taken; what can
replace it will be the subject of the next subsection.

5.2. Nonlinear spectral distributions
With the help of the distorted Fourier transform, we can diagonalize the linear part of the equation

i∂tU + HωU = 0,
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which gives an essentially complete understanding of the linear dynamics. . . But there remains
the nonlinear terms, which we will also need to view on the distorted Fourier side. Amongst the
many terms which arise when writing the equation for the perturbation U , the most significant are
V (U,U) (where V is a smooth and decaying matrix potential) and

(
U2

1 U2

−U2
2 U1

)
, which corresponds

to the term |u|2u written in U coordinates.
We can express the distorted Fourier transforms of these terms through the nonlinear spectral

distributions µ and ν:

F̃(V (g, g))(ξ) =
∫
g̃(η)g̃(σ)µ(ξ, η, σ) dη dσ

F̃
(
g2

1g2
−g2

2g1

)
=

∫
g̃(η)g̃(σ)g̃(ζ)ν(ξ, η, σ) dη dσ.

Here, we dropped all indices on the right-hand side to make notations lighter - but g, g̃ take
values in C2 while µ and ν take values in C2×2×2 and C2×2×2×2 respectively. Since the matrix
potential V is in the Schwartz class, the associated quadratic spectral distribution µ is smooth and
localized. But the cubic term does not feature any localized potential, and the associated cubic
spectral distribution ν is given by

ν(ξ, η, σ.ζ) =
∑

δ(ξ ± η ± σ ± ζ) × {smooth} +
∑

p. v. 1
ξ ± η ± σ ± ζ

× {smooth} + {smooth}.

The sums above are over all possible choices of signs, and {smooth} stands for a smooth function.
That this formula can be thought of as a generalization of the classical formula f̂g = 1√

2π
f̂ ∗ ĝ

becomes obvious after writing the convolution of f̂ and ĝ under the form

f̂ ∗ ĝ(ξ) =
∫
f̂(η)f̂(σ)δ(ξ − η − σ) dη dσ

5.3. Nonlinear resonances
Writing U for the perturbation to the soliton (recall that it is valued in C2 and stands for ( u

u )),
the equation we are facing is

i∂tU + HωU = V (U,U) + c

(
U2

1U2
−U2

2U1

)
+ {higher order terms} + {modulation terms} + . . . .

Here, V is a decaying matrix potential which can be expressed in terms of F and Φ; as for
(

U2
1 U2

−U2
2 U1

)
,

it corresponds to the term |u|2u written in U coordinates, and it is present since we are assuming
that F is quadratic to leading order.

We want to proceed in the same way that we did when deriving the equation (3.3) and take
the distorted Fourier transform before examining resonances. To carry out this plan, we need to
understand the terms V (U,U) and

(
U2

1 U2

−U2
2 U1

)
when viewed in distorted Fourier space - the other

terms as well, but these two are the most problematic!
We now change the unknown function to work with to the (C2-valued) profile

f = e−itHωU.

Using the nonlinear spectral distributions introduced in the previous subsection to write the equa-
tion on f̃ , it takes the form

if̃(ξ) =
∫ t

0

∫
eitΦ2(ξ,η,σ)f̃(η)f̃(σ)µ(ξ, η, σ) dη dσ dt

+
∫ t

0

∫
eitΦ3(ξ,η,σ,ζ)f̃(η)f̃(σ)f̃(ζ)ν(ξ, η, σ) dη dσ dζ dt+ {higher order terms}; (5.1)

as above, this is a simplified expression where indices have been omitted. The quadratic and cubic
phases are

Φ2(ξ, η, σ) = [ξ2 + ω] ± [η2 + ω] ± [σ2 + ω]
Φ3(ξ, η, σ, ζ) = [ξ2 + ω] ± [η2 + ω] ± [σ2 + ω] ± [ζ2 + ω],
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and the signs are + or − depending on the various indices which were omitted.
The idea is now to regard the two integrals on the right-hand side as oscillatory integrals. From

this point of view, several features will play an important role

• Time resonances correspond to points at which the phase Φ (either Φ2 or Φ3) vanishes.
Interactions of frequencies for which Φ is not zero will be weakened through averaging by
time oscillations.

• Space resonances correspond to points at which the gradient of the phase ∇Φ (in the fre-
quency variables η, σ, ζ) vanishes. Away from these points, time decay will follow from
oscillations in the frequency variables.

• Space-time resonances are points at which Φ = ∇Φ = 0, and they are the main obstructions
to decay of U , as explained in the two previous points.

• We also need to take into account the nonlinear spectral distribution, and more specifically
its singular set. For quadratic terms, it is empty, and this does not play any role; but for
cubic terms, it is of the type ξ ± η ± σ ± ζ = 0, and oscillations of the phase only matter
along this singular set, rather than across.

• Finally, this whole discussion is only justified as long as the profiles f are sufficiently well-
controlled: we have to show as part of the analysis that they vary slowly with time, and
that they maintain some regularity in the frequency variable - typically, one propagates an
H1 norm in frequency.

The method which was sketched, relying on the formalism of oscillatory integrals, is an adapta-
tion of the method of space-time resonances [28, 29, 30], to the context of asymptotic stability of
solitary waves. An intermediary step consisted of the study of cubic (NLS) with exterior potential,
which was pursued by a number of authors [13, 14, 25, 32, 67, 72, 73, 88].

We focused in this subsection on the control of the radiation, but modulation terms must also
be taken into account. For them too, nonlinear resonances must be tracked since decay of the
radiation is not enough to bound them.

5.4. Full asymptotic stability via nonlinear resonances
The following theorem can be proved by the approach that was sketched above; it was preceded
by [11], which deals by the same means with the case of small solitary waves generated by exterior
potentials.

Theorem 5.1 (Collot–Germain [16] – simplified statement). Assume that cω > 0 and that the
linearized operator does not have embedded eigenvalues, internal modes or edge resonances. If
furthermore ∥v0 − Φω∥H1∩L2,1 is sufficiently small, then there exists parameters (p, ω, θ, y) and a
solution uMS undergoing modified scattering such that

v(t) = ei(p(t)x+θ(t))Φω(t)(x+ y(t)) + uMS + oL2(1) as t → ∞.

This theorem gives a satisfactory answer to the question of full asymptotic stability if neither
edge resonances nor internal modes are present. When they are present, the problem is much more
challenging; this will be the subject of the next two sections.

6. Edge resonances and the cubic (NLS)

6.1. The problem with edge resonances
6.1.1. Quadratic interactions

To understand the specifif problem posed by edge resonances, we consider first the quadratic term
appearing in (5.1) ∫ t

0

∫
eitΦ2(ξ,η,σ)f̃(η)f̃(σ)µ(ξ, η, σ) dη dσ dt (6.1)
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with
Φ2(ξ, η, σ) = [ξ2 + ω] − [η2 + ω] − [σ2 + ω] = ξ2 − η2 − σ2 − ω

(notice the specific choice of signs in Φ2). We now compute space-time resonances, in other words
frequencies (ξ, η, σ) such that

∂ηΦ2(ξ, η, σ) = ∂σΦ2(ξ, η, σ) = Φ2(ξ, η, σ) = 0 ⇐⇒ (ξ, η, σ) = (±ω 1
2 , 0, 0).

This specific interaction is degenerate in the sense that the phase is stationary in all the inte-
gration variables, namely η, σ, t. . . But the nonlinear spectral distribution might help! Indeed, in
the absence of an edge resonance, we have µ(ξ, 0, 0) = 0 for any ξ (this is essentially equivalent to
improved local decay), which effectively cancels the space-time resonance.

If there is an edge resonance however, such a strong cancellation is not present. As a result of
the space-time resonance which we pointed out, logarithmic growth will occur for the profile f̃ at
the frequency ξ = ±ω 1

2 , as observed by Lindblad–Lührman–Schlag–Soffer [56]. Translating this in
terms of the solution U = eitHωf itself, these same authors find that

∥U(t)∥∞ ∼ log t
t

1
2

as t → ∞.

This is only a logarithmic loss compared to the dispersive linear decay, but this will cause our
method of proof to break down.

6.1.2. Cubic interactions

The difficulty, which has not been overcome for the time being, stems from cubic interactions
involving the “bad” frequencies ±ω 1

2 . Arguing heuristically first, we observe that the logarithmic
loss in decay pointed out above has important consequences when we consider the cubic term.
Indeed, it was already critical as noted in (3.2), and any slower decay will have sizeable effects.

To be more precise, we now consider the cubic term∫ t

0

∫
eitΦ3(ξ,η,σ,ζ)f̃(η)f̃(σ)f̃(ζ)ν(ξ, η, σ) dη dσ dζ dt

with the following choice of signs in the cubic phase

Φ3(ξ, η, σ, ζ) = [ξ2 + ω] − [η2 + ω] + [σ2 + ω] − [ζ2 + ω] = ξ2 − η2 + σ2 − ζ2.

For the right choice of signs, the singular set of the nonlinear spectral distribution is {ξ − η + σ −
ζ = 0}. With this singular set and the phase above, we are essentially brought back to (3.3). In
particular, the frequency interaction (ξ, η, σ, ζ) = (ω 1

2 , ω
1
2 , ω

1
2 , ω

1
2 ) is a space-time resonant. This

self-interaction of the bad frequecy ω 1
2 is very hard to control at the nonlinear level.

In the essentially equivalent context of nonlinear Klein–Gordon, Lührmann and Schlag [61]
were able to push the argument up to exponential time scales in the inverse of the size of the
perturbation. Going beyond this threshold and obtaining a global result seems very hard! One way
to explain the difficulty is that the correct ansatz for f̃ is unclear: it should still involve modified
scattering (phase correction), and account for the logarithmic slowdown. . . but the precise form of
the correction is difficult to pin down.

6.2. Cubic (NLS) and integrability
The cubic (NLS)

i∂tv − ∂2
xv − |v|2v = 0

is probably the most important example in the class of nonlinear Schrödinger equations. As noted
in [10], the linearized operator for the soliton features an edge resonance. As a consequence, the
methods discussed above seem unable to prove full asymptotic stability.

However, it was discovered by Zakharov and Shabat [85] that the cubic (NLS) is completely
integrable, and explicitly solvable through the Inverse Scattering Transform. This approach pro-
vides a means of showing full asymptotic stability of the solitary wave, which was exploited by
Cuccagna–Pelinovsky [23], and extended to multi-soliton configurations [5, 82].
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6.3. The null form in cubic (NLS)
Surprisingly, it is possible to prove full asymptotic stability for the cubic (NLS) equation without
resorting to the completely integrable structure, in spite of the seemingly unsurmountable difficulty
explained above.

The key is to look more precisely into the structure of the quadratic term (6.1). We saw that
the worst interaction was the space-time resonance at frequencies (ω 1

2 , 0, 0); and we also saw that
the nonlinear spectral distribution µ(ξ, η, σ) vanishes for η = σ = 0 in the absence of an edge
resonance. The crucial observation of Li and Lührmann [55] is that, in the case of cubic (NLS),
µ(ω 1

2 , 0, 0) = 0, as follows from an explicit computation! While this observation allows to deal
with the radiation part of the solution, it is not sufficient to obtain control of the modulation;
and indeed a second cancellation can be identified in the modulation terms! Leveraging these two
cancellation allowed these authors to prove the following theorem.

Theorem 6.1 (Li–Lührmann [55] – simplified statement). Consider the cubic (NLS) with even
data. If ∥v0 − Φ1∥H1∩L2,1 is sufficiently small, then there exists parameters (ω, θ) and a solution
uMS undergoing modified scattering such that

v(t) = eiθ(t)Φω(t)(x) + uMS + oL2(1) as t → ∞.

7. Internal modes and radiation damping

7.1. The mechanism of radiation damping
In the presence of an internal mode, the linearized equation would not lead to asymptotic stability
– indeed, the internal mode would oscillate indefinitely without decaying.

A striking realization is that the coupling with the continuous spectrum (under appropriate
assumptions) leads to the decay of the internal mode. To be more specific, the nonlinearity enables
energy to be transfered from the discrete to the continuous spectrum, and then carried away to
infinity through dispersive decay. The first mathematical proof of this phenomenon is due to Soffer
and Weinstein [87].

To explain very roughly the mechanism of radiation damping, we will henceforth ignore modu-
lation questions and decompose the perturbation of the solitary wave into

U(t) = a(t)
(
φ
φ

)
+ Ue(t) + {generalized kernel elements},

where ( φ
φ ) is the internal mode and Ue is the projection of U onto the essential spectrum of the

operator.
The evolution equation for U can then be written as a coupled system for a and Ue:

i∂ta− iλa = Pi(V aφUe) + . . .

i∂tUe + HωUe = Pe(V a2φ2) + . . . .

The notations used here are quite loose; in particular, the vectorial nature of the problem is mostly
ignored. Most terms are omitted on the right-hand side: the only terms that are kept are the
ones responsible for radiation damping. Finally, Pi and Pe stand for the projections on the internal
mode and the essential spectrum respectively, and λ is the time frequency associated to the internal
mode.

From the ODE satisfied by a, we deduce after setting A(t) = a(t)eiλt that
i∂tA(t) = e2iλtPi(V AφUe) + . . .

Turning to the equation satisfied by Ue, we substitute A for a, write the Duhamel formula and use
a rough approximation to obtain

iUe(t) =
∫ t

0
ei(t−s)HωA(s)2e−2iλs ds Pe(V φ2)

∼ A(t)2
∫ t

0
ei(t−s)Hωe−2iλs ds Pe(V φ2)

∼ e−2iλtA(t)2δ(H + 2λ)Pe(V φ2).
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Combining the equations on ∂tA and Ue gives

∂tA(t) = −|A|2APi(V φδ(H + 2λ)Pe(V φ2)).

Provided the coefficient Pi(V φδ(H + 2λ)Pe(V φ2)) is positive, this gives the desired decay of A(t).
This condition is known as nonlinear Fermi golden rule.

7.2. Full asymptotic stability through radiation damping
By exploiting the radiation damping mechanism explained above, Buslaev and Sulem were able to
show the following theorem.

Theorem 7.1 (Buslaev–Sulem [7] – simplified statement). Assume that F (z) = O(z5), that cω >
0, and that the linearized operator has one internal mode, but no embedded spectrum or edge
resonances.

If furthermore the data v0 is even and ∥v0 − Φω∥H1∩L2,2 is sufficiently small, then there exists
parameters (p, ω, θ, y) and a scattering state f∞ such that

v(t) = ei(p(t)x+θ(t))Φω(t)(x+ y(t)) + {time-decaying solution} as t → ∞.

Though this theorem shows that nonlinear stability results from radiation damping, it does so
under a very strong assumption on the nonlinearity, namely that it vanishes to order 9 or higher. . .
It would of course be desirable to relax this condition.

The problem one faces to do so is similar to the one occuring in the presence of edge resonances.
Namely, the radiation damping mechanism results in the growth of a given (distorted) frequency,
and the self-interactions of this frequency through the cubic term (in the case where the nonlinearity
is cubic to leading order, say) seem very difficult to control. In the related context of nonlinear
Klein–Gordon equations, the best result in this direction is due to Delort–Masmoudi [26], who
were able to reach a time scale ∼ ϵ−4, denoting ϵ the size of the initial perturbation.

Given the paucity of results in dimension 1, it is worthwhile looking into the case of dimension 3,
where the picture is much more complete. The seminal work of Soffer–Weinstein [87] on radiation
damping for cubic Klein–Gordon equations was extended by [3, 92]. The case of quadratic Klein–
Gordon seemed out of reach until the very recent work by Léger and Pusateri [51, 52] who analyzed
nonlinear resonances with the help of harmonic analytic tools developed in [79].

8. The virial method and local asymptotic stability

We have been reviewing up to this point the spectral approach to full asymptotic stability; in this
section, we turn to the virial approach. It was first applied to nonlinear Klein–Gordon equations (see
the next section) and has proved extremely successful. This approach relies on a very different point
of view on the question of asymptotic stability, with complementary results under complementary
assumptions to the spectral approach. To give a meaningful introduction to the virial method in
the framework of (NLS) would go beyond the scope of this review, and we refer to [64]. Rather, we
will try here to compare the virial and spectral approaches as far as their aims, their tools, their
outcomes and their shortcomings go.

• Local versus full asymptotic stability (these two notions are defined in the introduction).
The former can be proved through the virial method and the latter through the spectral
method.

• Fourier versus energy methods. As is already clear from their names, the heart of the virial
method consists of energy estimates while the spectral method relies on estimates in Fourier
or spectral space. As such, the virial method can tolerate more nonlinear situations while
the spectral method is more closely tied to linear(ized) behavior.

• Energy space versus weighted spaces. Since it relies on energy estimates, the virial method
naturally applies to perturbations in the energy space H1. As far as the spectral method
goes, it seems to require perturbations in weighted spaces; this condition is in particular
crucial to obtain local improved decay and to take advantage of nonlinear resonances.
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• Small solitary waves. By its very definition, full asymptotic stability excludes additional
small solitary waves in the limit t → ∞. By contrast, they are not precluded by the virial
method; indeed, taking the perturbation to be small in the energy space does not exclude
them, see Subsection 3.1. Since these small solitary waves are asymptotically moving away
from the main solitary wave, they are not violating the definition of local asymptotic sta-
bility.

• Breathers. For the cubic (NLS) and other integrable models, breathers exist in an H1 neigh-
borhood of solitary waves, see Subsection 3.3; thus, they need to be taken into account
when applying the virial method, which has proved difficult. Weighted topologies exclude
breathers, which for instance do not appear in the theorem of Li and Lührmann stated
earlier.

• Decay rate. In the known applications of the spectral method, it is essential to be able to
control the decay of the radiation in an appropriate norm by an inverse power of t. This is
not the case for the virial method, and indeed, the presence of small solitary waves shows
that a decay rate for the radiation in a window around the solitary wave cannot be expected.

• Limitations. For reasons which have been explained above, full asymptotic stability in the
presence of edge resonances or internal modes seems currently out of reach of the spectral
method. As for the virial method, it was applied successfully to deal with internal modes,
but edge resonances seem to constitute an obstruction.

The application of the virial method to asymptotic stability in (NLS) is very recent. The theorem
by Martel stated below was seminal, and it immediately sparked further developments [19, 20, 63,
65, 80, 81].

Theorem 8.1 (Martel [63, 65]). In the cubic-quintic case F (z) = z2 + az3, with a ̸= 0, consider
a solitary wave Φω with ω sufficiently small. If v0 is even and ∥v0 − Φω∥H1 is sufficiently small,
then there exists parameters (ω, θ) such that

sup
N>0

lim
t→∞

∥v(t) − eiθ(t)Φω(t)∥L∞(−N,N) = 0.

9. The nonlinear Klein–Gordon equation

This section will be dedicated to a quick overview of full asymptotic stability for the nonlinear
Klein–Gordon equation. We will emphasize how much the development of the theory was parallel
to that for (NLS): indeed, the questions are remarkably close, and the same tools apply. There are
nevertheless differences, which will be highlighted.

9.1. The equation
Consider the one-dimensional nonlinear Klein–Gordon equation

∂2
tw − ∂2

xw −G′(w) = 0
w(t = 0) = w0

∂tw(t = 0) = w1,

(NLKG)

where w(t, x) is real-valued, and (t, x) ∈ R × R. It derives from the energy∫ ∞

−∞

[
1
2 |∂tw|2 + 1

2 |∂xw|2 −G(w)
]

dx.

We assume that G′′ does not vanish at the minima of G (to ensure that the resulting PDE,
namely (NLKG), has a non-trivial mass term).

A stationary solution Φ is given by the ODE
∂2

xΦ +G′(Φ) = 0.
This ODE obviously reduces to the equation (3.1) for solitary waves of (NLS) for an appropriate
F ; the condition ω > 0 corresponds to G having a non-degenerate local maximum at its minimum.
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The above ODE gives a stationary solution of (NLKG), which generates a one-parameter family
by space translation. Traveling waves can be deduced by applying the Lorentz transform.

9.2. Decaying solitary waves

By this, we mean solitary waves Φ which are localized in space, similar to the solitary waves
of (NLS) that we have been discussing; this corresponds to potentials G with a single well. These
solitary waves are never stable, so that asymptotic stability can only be reached on a stable
manifold; a more ambitious aim is to classify solutions in a neighborhood of the solitary wave,
including solitary waves away from the stable manifold [49].

Full asymptotic stability was first proved by Krieger–Nakanishi–Schlag [49] via decay estimates,
for nonlinearities of order > 5 (same numerology as (NLS)). Kairzhan and Pusateri [38] analyzed
the equation through the distorted Fourier and were able to treat the quartic case.

Local asymptotic stability was obtained in many cases [21, 22, 47, 54, 75], the main obstacle to
the application of this method being the presence of an edge resonance.

9.3. Topological solitary waves

Solitary waves which have a non-trivial behavior at infinity (nonzero limit) are called topological
solitary waves, or kinks in the context of (NLKG). Such solitary waves occur if the potential G
has a double-well structure, and kinks are connecting the two nimima, converging to either one as
x → ±∞.

The most classical example is the kink solution K(x) = tanh
(

x√
2

)
of the Φ4 model given by

the potential G(w) = − 1
2 (1 − w2)2. This was the first model for which local asymptotic stability

was established, in the breakthrough paper by Kowalczyk–Martel–Munoz [44], which was followed
by [45, 48, 18, 43]. The virial method introduced by Kowalczyk–Martel–Munoz is very effective to
deal with internal modes, but edge resonances remain an obstacle.

Full asymptotic stability was first approached via decay estimates [41, 42] for sufficiently high
order nonlinearities. As a next step, toy models were investigated [56, 57, 58] which incorporated
many of the difficulties of the equation for the perturbation of the solitary wave of (NLKG). Finally,
full asymptotic stability of the kink was obtained in [31, 33] under some restrictions: odd solutions,
absence of edge resonances and internal modes. If these spectral assumptions are relaxed, the best
known results give stability over large time intervals [26, 61].

Finally, the Sine–Gordon equation, which corresponds to the potential G(w) = − cosw, is
known to be integrable. There is a striking analogy with the cubic (NLS) equation: not only are
both models integrable, but they both support a variety of (unstable) breather-like solutions which
do not fit into the standard asymptotic decomposition as a sum of radiation and a solitary wave.
Full asymptotic stability of the kink could be established by integrable means [12, 40] but also by
more direct spectral PDE methods [60]. As was the case for cubic (NLS), the latter approach is
successful thanks to a subtle cancellation in quadratic interactions.

10. Perspectives

The two main gaps in our understanding of full asymptotic stability of solitary waves in 1D non-
linear dispersive equations are the cases where resonances or internal modes are present in the
linearized operator; this was discussed in Sections 6 and 7 respectively. It would be most desirable
to close these gaps!

A variety of other semilinear dispersive problems are of interest in dimension one, and it is our
belief that the methods developed for (NLS) will apply there.

Going beyond this class of equations, the asymptotic stability of solitary waves is very poorly
understood, in particular for

• Discrete problems (set on the lattice)

• Quasilinear problems (in particular, involving waves in fluids)
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• Higher-dimensional problems (the case of dimension 1 is harder in that the decay is slower,
but in dimension ≥ 2 the geometry of resonances as well as spectral theory become more
challenging).

It is our hope that some of the methods reviewed here can find applications to solve these problems!
Finally, as mentioned earlier, the soliton resolution conjecture would be the ultimate aim in

understanding large-time behavior of nonlinear dispersive problems set on Euclidean space. . .
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