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Journées Équations aux dérivées partielles
Aussois, 19–23 juin 2024
RT AEDP (CNRS)

Multifractality and polygonal vortex filaments

Valeria Banica Daniel Eceizabarrena Andrea R. Nahmod Luis Vega

Multifractalité et des tourbillons filamentaires polygonaux
Résumé

Dans cet acte de conférence nous passons en revue les résultats de [5] et leur motivation, tels qu’ils
ont été présentés au 50e Journées Équations aux dérivées partielles 2024. Dans le but de quantifier
les comportements turbulents des filaments tourbillonnaires, nous étudions la multifractalité d’une
famille de fonctions non différentiables de Riemann généralisées. Ces fonctions représentent, dans une
certaine limite, la trajectoire de filaments tourbillonaires polygonaux réguliers qui évoluent selon le
flot binormal, le modèle classique pour la dynamique des tourbillons filamentaires. Nous expliquons
comment nous avons déterminé pour certaines de ces fonctions le spectre des singularités. La preuve
repose sur une construction d’ensembles diophantiens que nous étudions en utilisant le théorème de
Duffin–Schaeffer et le principe de transfert de masse.

Abstract

In this proceedings article we survey the results in [5] and their motivation, as presented at the 50th
Journées Équations aux dérivées partielles 2024. With the aim of quantifying turbulent behaviors of
vortex filaments, we study the multifractality of a family of generalized Riemann’s non-differentiable
functions. These functions represent, in a certain limit, the trajectory of regular polygonal vortex
filaments that evolve according to the binormal flow, the classical model for vortex filaments dynamics.
We explain how we determined their spectrum of singularities through a careful design of Diophantine
sets, which we study by using the Duffin–Schaeffer theorem and the Mass Transference Principle.

1. Multifractal analysis and Riemann’s non-differentiable function

Multifractal analysis started in the 1980s to explain the deviations from Kolmogorov’s 1941 theory
of turbulence observed by Anselmet et al. [1] (see Arneodo and Jaffard’s expository article [4]). In
these experiments, the speed of the turbulent fluid seems very irregular in some regions and less
in others, and the borders between regions are unclear. What is more, zooming in very irregular
regions one finds less irregular regions, and vice-versa. Facing such a non-uniform distribution of
regularities, instead of explicitly computing the regularity at each individual point it turns out
that it is more suitable to measure the sets where a given regularity is reached. A typical way to
formalize this is as follows.
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For f : R → R and 0 < α < 1, the local Hölder regularity of f at a point t is measured as
f ∈ Cα(t) ⇐⇒ |f(t+ h) − f(t)| ≤ Chα, ∀ h ≪ 1,

and the local Hölder exponent of f at a point t is given by
αf (t) = sup{α : f ∈ Cα(t)}.

A multifractal function is a function possessing infinitely many local Hölder exponents. The mul-
tifractal analysis of a function consists in computing its spectrum of singularities, that is, the
Hausdorff dimension1 of its iso-Hölder sets

df (α) = dimH{t : αf (t) = α}.
By convention, we set df (α) = −∞ if the set {t : αf (t) = α} is empty.

A classical example of a multifractal function is

R(t) =
∞∑
n=1

sin(n2t)
n2 ,

proposed by Riemann in 1860 when he was looking for continuous functions that are nowhere dif-
ferentiable. Weierstrass, who had failed to prove the claim that R is actually nowhere differentiable
(which eventually turned out to be false!), proved that the function

W (t) =
∞∑
n=1

cos(4nt)
2n ,

which is simpler to study, is nowhere differentiable. However, it is not multifractal because it has
Hölder exponent 1/2 everywhere; it is rather a monofractal function. In particular, its spectrum
of singularities is

dW (α) =
{

1, α = 1/2,
−∞, α ̸= 1/2.

Riemann’s function has a richer structure; Hardy [32] and Gerver [28, 29] showed that it actually
allows a derivative at certain points, and it was proved by Jaffard [37] to be a genuine multifractal
function with spectrum of singularities

dR(α) =


4α− 2, 1/2 ≤ α ≤ 3/4,
0, α = 3/2,
−∞, otherwise,

a result that holds too for its complex version given by the function

R0(t) =
∑

n∈Z\{0}

ein
2t

n2 .

Jaffard actually computed the local Hölder regularity at every point, a result for which Broucke
and Vindas [15] gave recently an alternative proof.

Other notions related to turbulence were successfully tested on Riemann’s function. Jaffard [37]
showed that it satisfies the Frisch–Parisi multifractal formalism (see (2.3)), and Boritchev, Eceiz-
abarrena and Vilaça Da Rocha [14] proved that it is intermittent (see (2.2)). Also, Eceizabar-
rena [23, 24] showed that the image of R0 has no tangents and has Hausdorff dimension2 less
than 4/3.

1We recall that the s-Hausdorff measure of a set is

Hs(A) = lim
δ→0

(
inf

{
∞∑

j=1

diam(Aj)s : A ⊂
∞⋃

j=1

Aj , diam(Aj) < δ

})
,

and the Hausdorff dimension of a set A is

dimH A = sup{s : Hs(A) = ∞} = inf{s : Hs(A) = 0}.

2Note that even the Hausdorff dimension of the graph of the Weierstrass function was determined only recently
in 2019 by Shen [44]
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Figure 1.1: The graphs of W , R, and the image of R̃0.

Generalizations of Riemann’s function were intensively studied after the work of Jaffard. For
example, Chamizo and Ubis [17], and Seuret and Ubis [43] obtained upper and lower bounds for
the spectrum of singularities of

∑
n
eiP (n)t

nα with P a polynomial with integer coefficients, with an
approach different from Jaffard’s wavelet techniques and the unimodular group action on Riemann’s
function. Vilaça Da Rocha and Eceizabarrena [25] studied the intermittency of

∑
n
ein2t

nα with
α > 1/2. Kapitanski and Rodnianski [40] gave fine regularity results for

∑
n e

in2t0+inx with t0
fixed, which represents the fundamental solution to the periodic Schrödinger equation at time t0.
Banica and Vega [7] proved that the spectrum of singularities of

∑
n∈N

ei(pn+q)2t

(pn+q)2 for p, q ∈ N is the
same as for Riemann’s function, and that the Frisch–Parisi multifractal formalism is also satisfied.

2. Main result

In [5] we study a different generalization of the Riemann function, namely

Rx0(t) =
∑

n∈Z\{0}

e2πi(n2t+nx0)

n2 , for x0 fixed.

These functions, or rather the closely related3

R̃x0(t) =
∑
n∈Z

ein
2t − 1
n2 einx0 ,

arise naturally in the setting of vortex filaments, as we explain in Section 3. In Figure 2.1 we
display the images of R̃x0 for different values of x0. The result from [5] that we here review is the
following.

Theorem 1. Let x0 ∈ R. Then, the function Rx0 is multifractal, with infinitely many local Hölder
exponents. If x0 ∈ Q, the spectrum of singularities of Rx0 is

dRx0
(α) =


4α− 2, 1/2 ≤ α ≤ 3/4,
0, α = 3/2,
−∞, otherwise.

(2.1)

The proof starts as in Jaffard’s [37] and then it follows the approach by Chamizo and Ubis
in [17], but it ends up with new Diophantine sets that approximate the iso-Hölder sets. We measure
these new sets combining the Duffin–Schaeffer theorem4 [22] and the Beresnevich–Velani Mass
Transference Principle [13]. We explain this procedure in detail in Section 4.

3In particular, the functions Rx0 and R̃x0 have the same regularity in t.
4The Duffin–Schaeffer theorem was conjectured by Duffin and Schaeffer [22] in 1941, and they proved it in some

particular cases that suffice to prove Theorem 1 for x0 ∈ Q. It was recently proved in all generality by Koukoulopoulos
and Maynard [42], which we need for our results in [5] when x0 ̸∈ Q.
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Figure 2.1: The curve R̃x0([0, 2π]) for several values of x0: 0 (black), 0.1 (blue),
0.2 (green), 0.3 (cyan), 0.4 (red), 0.5 (magenta).

In [5] we also showed that Rx0 is intermittent in small scales by proving that its flatness tends
to infinity when the scale parameter tends to zero, that is,

FRx0
(N) := ∥P≥NRx0∥4

4
∥P≥NRx0∥4

2

N→∞−→ ∞, (2.2)

where P≥N is the high-pass filter of Fourier modes larger than N . As a consequence, one can deduce
that the function satisfies the Frisch–Parisi multifractal formalism5

dRx0
(α) = inf

p

{
αp− ηRx0

(p) + 1
}
, for 1

2 ≤ α ≤ 3
4 , (2.3)

where ηRx0
(p) := sup{s, Rx0 ∈ B

s/p
p,∞} and B

s/p
p,∞ stands for the Besov space6.

Regarding the case when x0 is irrational, we proved that Rx0 is multifractal by giving a result
on its spectrum of singularities, although not recovering it explicitly. The difficulty comes from the
interference between the exponents of irrationality of both x0 and t.

3. Motivation from fluid dynamics

In this section we explain how Riemann’s function Rx0 appears naturally in the evolution of curves
that evolve according to the binormal flow model for vortex filaments dynamics. Let us first recall
this model and some very recent results related to it.

3.1. The binormal flow
The binormal flow (BF), also known as local induction approximation (LIA) or vortex filament
equation (VFE), is the oldest, simplest and richest formally derived model for one vortex filament

5The Frisch–Parisi multifractal formalism was originally proposed for the velocity in an Eulerian setting, but it
can be equally proposed in the Lagrangian setting, which Riemann’s function is in principle more related to since it
represents a time trajectory. See the work of Chevillard et al. [18] for a discussion on the differences between these
two frameworks.

6See the recent works by Barral and Seuret [10, 11] on the validity of the multifractal formalism in Besov spaces.
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dynamics in a 3D fluid governed by Euler’s equations. If the vorticity at time t is concentrated along
an arclength-parametrized curve χ(t) in R3, its evolution in time is expected to evolve according
to the equation

χt = χx × χxx, or equivalently χt = c b, (3.1)
where b is the binormal vector of the curve χ and c is its curvature. This model was derived formally
from the Biot–Savart formula by Da Rios in 1906 [19], and it was justified rigorously by Jerrard
and Seis in 2017 [38]. Understanding if and when the vorticity propagates its initial structure of
being concentrated along a curve is still a very difficult open problem.

Let us briefly recall a few very recent advances in this direction. Concerning the Navier–Stokes
equation, Bedrossian, Germain and Harrop-Griffiths [12] proved that the Cauchy problem is locally
well-posed for an initial filament data with no symmetry assumptions, but for times that are too
small to observe the binormal flow and to pass to the vanishing viscosity limit. The vanishing
viscosity limit was proved by Gallay and Sverak [27] for the particular case of axisymmetric vortex
rings. The BF dynamics was recovered by Fontelos and Vega [26] for Giga-Miyakawa solutions with
initial filament data with no symmetry assumptions, but this regime does not allow to pass to the
vanishing viscosity limit. For the Euler equations Donati, Lacave and Miot [21], and previously
Dávila, Del Pino, Musso and Wei [20] and Cao and Wan [16] with other methods, constructed
solutions with vorticity concentrated on helices, which are particular solutions of the binormal
flow. These are configurations with symmetries benefitting from a dimensional reduction. Thus,
despite recent efforts, the binormal flow conjecture is still a serious gap away from being understood.

3.2. Experiments, numerics, and a rigorous result
A special class of solutions of the binormal flow are self-similar solutions, which are smooth curves
that develop a singularity in the shape of a corner in finite time. They were known and used by
physicists since the 1980s in the framework of reconnection of vortex filaments in ferromagnetics,
but they were not rigorously studied until 2003 by Gutiérrez, Rivas and Vega [31]. This type of
dynamics appears in fluids passing over a triangular obstacle and in trail vortex reconnection,
as shown in Figure 3.1 left. The interaction of many corner singularities yields a range of com-
plex behaviors such as the Talbot effect, L∞-cascades of energy, rogue waves, intermittency and
multifractal behaviors [5, 6, 7, 8, 9]. It is the latter that we discuss in this article.

Figure 3.1: On the left: vortices in a fluid flowing over a triangular obstacle. On
the right: axis switching in numerical simulation of square jets.

On the other hand, noncircular jets such as square jets have been studied since the 1980s for the
turbulent features they produce. The experiments by Todoya and Hussain [45] and the numerics
by Grinstein and De Vore [30] are some examples of this, see Figure 3.1 right. At the level of
the binormal flow this corresponds to considering as initial data a closed curve with the shape of
a regular polygon. Such a regular polygon of M sides χM (0, x) with corners located7 at x ∈ Z
is expected to evolve by the binormal flow to skew polygons of Mq sides at times p/q ∈ Q, as
suggested by numerics by Jerrard and Smets [39] and by De la Hoz and Vega [36]. Moreover, the

7We see here the closed curve as being parametrized, in a periodic way, by x ∈ R.
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trajectories of the corners χM (t, 0) were numerically proved to behave like Riemann’s function
R0(t) when M → ∞ by De la Hoz and Vega [36] (see also De la Hoz, Kumar and Vega [35] and the
corresponding video [34], a screenshot of which we show in Figure 3.2). The presence of Riemann’s
function in this context was rigorously proved by Banica and Vega [7] by taking as initial data
polygonal line approximations made by regular M -polygons, even looped a large amount of times,
and two half-line, for which they used the solutions constructed in their previous work [6]. This
approach extends to the trajectories of all locations x0, giving rise to Rx0 .

Figure 3.2: On the left: Evolution by the binormal flow of a circle and of an M -
polygon with M = 15. On the right: the trajectory in time of the solution at x = 0.

3.3. Appearance of Riemann’s function
Let us explain with more details how Rx0 arises in this context. To do so, let us first briefly state the
links between the binormal flow and Schrödinger equations. One can immediately see by taking
the derivative in x in (3.1) that the tangent vector T of a smooth solution χ to the binormal
flow satisfies the Schrödinger map equation from R to S2, which is the Heisenberg ferromagnetic
continuous model

Tt = T ∧ Txx. (3.2)
On the other hand, in 1972 Hasimoto [33] introduced a transform8 that connects explicitly the
binormal flow and the 1D cubic Schrödinger equation (NLS). More precisely, for curves with non-
vanishing curvature, the function

u(t, x) = c(t, x)ei
∫ x

0
τ(t,y)dy

,

where c and τ are respectively the curvature and torsion of a smooth solution to the BF, solves

i∂tu+ ∆u+ 1
2(|u|2 −A(t))u = 0, (3.3)

where A(t) is a function that depends only on time and is defined in terms of the curvature
and torsion. Koiso [41] showed in 1997 that the non-vanishing condition on the curvature can be
removed by using parallel transport frames instead of Frenet frames, that is, by constructing an
orthonormal basis (T, e1, e2) verifying T

e1
e2


x

=

 0 α β
−α 0 0
−β 0 0

  T
e1
e2

 (3.4)

and  T
e1
e2


t

=

 0 −βx αx
βx 0 − 1

2 (α2 + β2 −A(t))
−αx 1

2 (α2 + β2 −A(t)) 0

  T
e1
e2

 (3.5)

8This transform can be seen as an inverse Madelung transform.
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In this case, u = α+ iβ solves (3.3), possibly with a different A(t).
Conversely, from a smooth solution u to NLS in (3.3) with any9 A(t), one can construct a smooth

solution to the BF with tangent vector T satisfying the Schrödinger map (3.2), and frames (T, e1, e2)
satisfying (3.4)–(3.5) with α = Re(u) and β = Im(u). Thus, one could generate singularities
for BF by generating singularities for smooth NLS solutions. For instance, Gutiérrez, Rivas and
Vega [31] showed that the self-similar solutions of the BF are obtained from solutions of the type
t−1/2 ei x

2/4t = eit∆δ of (3.3) with A(t) = 1/t. When this solution, which is smooth for t > 0,
generates the Dirac-singularity at t = 0, the associated smooth BF solution generates a corner.
The BF evolutions χM of polygonal-line approximations of M -regular polygons were constructed by
Banica and Vega [6] from NLS evolutions of truncations of the Dirac comb

∑
|n|≲M δn. These NLS

evolutions were proved to be themselves truncations of the type Σ|n|≲Me
it∆δn plus a remainder

term. By using the Poisson summation formula, they can be rewritten as truncations of type
Σ|n|≲Me

in2t+inx plus a remainder term. In view of (3.4), the derivative in time ∂tχM = TM ∧∂xTM
involves the corresponding NLS solution, so the leading term of the trajectories χM (t, x0) is proved
to be ∫ t

0

∑
n∈Z

ein
2τ+inx0 dτ = −iR̃x0(t),

whence Riemann’s function naturally arises.

3.4. Energy cascades

Let us briefly mention another consequence of the construction in [6]: the existence of an energy
cascade for the tangent vector T , which can also be understood as an energy cascade for a linear
Hamiltonian system. This was shown in [8] using the method in Section 3.3 and solutions of (3.3)
with A(t) ≡ 0 of the type

u(t, x) = 1
(it)1/2 e

i
|x|2

4t V

(
1
t
,
x

t

)
,

with V (x, t) a smooth function that is periodic in x. Therefore, (T, e1, e2) solves (3.4) which, due
to u = α+ iβ, becomes T

e1
e2


t

=

 0 − Im ux Reux
Im ux 0 − 1

2 |u|2
− Reux 1

2 |u|2 0

  T
e1
e2

 . (3.6)

The matrix coefficients involve

|u(t, x)|2 = 1
t

∣∣∣V (1
t
,
x

t

)∣∣∣2
which is a real potential, and also the derivatives in x given by

ux(t, x) = i
x

2tu(t, x) + Remainder term. (3.7)

The first term comes from the space derivative of the exponential, and the remainder term corre-
sponds to the space derivative hitting the smooth periodic in space function V . Therefore, with
this particular choice of u, the equation for Tt in (3.6) can be seen as a linear equation with vari-
able coefficients whose leading behaviour is given by the potential i x2tu. The multiplication by i x2t
creates a travelling wave in Fourier space. We refer to Theorem 1.1 in [8] for the details.

This phenomenon is reminiscent of the works of Apolinário et al. [2, 3] where they proposed
abstract linear equations that mimic the phenomenology of energy cascades when the external force
is a statistically homogeneous and stationary stochastic process. Indeed, these equations have a
potential of the type icx with c ∈ R (see (2.2) in [2]), independent of time. Existence of energy
cascades for linear systems have been also proved by Colin de Verdière and Saint-Raymond in [46].

9This general choice is possible due to a gauge invariance.
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4. Sketch of the proof of Theorem 1

In this last section we give an overview of the proof of Theorem 1 for α ∈ [1/2, 3/4]. Further details
can be found in [5]. To determine the spectrum of singularities of Rx0 we first estimate variations
near rational t. This will allow to understand the variations near irrationals, depending on how well
they can be approximated by rationals. By doing so, we will capture every iso-Hölder set between
a larger set A and a strictly smaller subset of irrationals B defined by a constrained Diophantine
condition that depends on x0. The Hausdorff dimension of the larger set A is settled directly by
the Jarník–Besicovitch theorem. However, the Hausdorff dimension of the smaller set B cannot
be obtained directly with the arguments that Jaffard [37] and Chamizo and Ubis [17] used for
x0 = 0, where the Diophantine condition is just a parity condition on the denominators. Instead,
we will use first the Duffin–Schaeffer theorem [22, 42] to compute the Lebesgue measure of the sets
B. Once we know that, since these sets are limsups of balls, we will use the Mass Transference
Principle [13] to give a lower bound for their Hausdorff dimension10.

4.1. Variation of Rx0 at rationals
To compute the behavior of Rx0 around a rational p/q ∈ Q, add the n = 0 term in the sum, split
it modulo q, and use the Poisson summation formula to get

Rx0

(p
q

+ h
)

−Rx0

(p
q

)
=
∑
n∈Z

e2πin2 p
q
e2πin2h − 1

n2 e2πinx0 − 2πih

=
√
h

q

∑
m∈Z

G(p,mx0,q +m, q)F
(

dist(x0,
Z
q ) − m

q√
h

)
− 2πih,

where dist(x0,
Z
q ) = x0 − mx0,q

q and F (x) = F( e
2πiξ2

−1
ξ2 )(x) = O( 1

x2 ) with F (0) ̸= 0. Also,

G(p, b, q) =
q−1∑
r=0

e2πi p r2+b r
q

are Gauss sums whose modulus is √
q except when q is even and q/2 and b have different parity,

in which case it is zero. Due to the decay of F , the leading term is m = 0, so

Rx0

(p
q

+ h
)

−Rx0

(p
q

)
=

√
h

q
G(p,mx0,q, q)F

(
dist(x0,

Z
q )

√
h

)
− 2πih+O

(
min

{√
qh, q

3
2h

3
2

})
.

From here, we obtain a general upper bound valid for all x0 given by∣∣∣Rx0

(p
q

+ h
)

−Rx0

(p
q

)∣∣∣ ≲ √
h

√
q

+ h+O
(

min
{√

qh, q
3
2h

3
2

})
. (4.1)

On the other hand, if G(p,mx0,q, q) ̸= 0 and dist(x0,
Z
q ) = 0, we get

Rx0

(p
q

+ h
)

−Rx0

(p
q

)
≃

√
h

√
q

+ ih+O
(

min
{√

qh, q
3
2h

3
2

})
. (4.2)

In particular, if x0 = P
Q ∈ Q, these conditions are satisfied for q ∈ 4QN, so

RP/Q ∈ C1/2 (p/q) if q ∈ 4QN. (4.3)

4.2. Upper and lower bounds for Hölder regularity at irrationals
To obtain a lower bound for Hölder regularity at an irrational t, we start by recalling that the
exponent of irrationality of t is

µ(t) = sup
{
µ > 0 :

∣∣∣t− p

q

∣∣∣ ≤ 1
qµ

for infinitely many coprime pairs (p, q) ∈ N × N
}
.

10Which will depend on how much the balls must be dilated so that the limsup of such dilated balls has Lebesgue
measure 1.
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The approximations by continuous fractions of t, denoted by pn/qn, satisfy∣∣∣t− pn
qn

∣∣∣ = 1
qµn
n

and µ(t) = lim sup
n→∞

µn.

Since pn/qn → t, we have that

∀ h > 0, ∃ n ∈ N :
∣∣∣t− pn

qn

∣∣∣ ≤ h ≤
∣∣∣t− pn−1

qn−1

∣∣∣. (4.4)

We use (4.1), (4.4) and the property |t− pn−1/qn−1| ≃ (qnqn−1)−1 to estimate

|Rx0(t+ h) −Rx0(t)| ≤
∣∣∣Rx0

(pn
qn

+
(
t− pn

qn
+ h
))

−Rx0

(pn
qn

)∣∣∣
+
∣∣∣Rx0

(pn
qn

+
(
t− pn

qn

))
−Rx0

(pn
qn

)∣∣∣
≲

√
h

√
qn

+ h+ min
{√

qnh, q
3
2
nh

3
2

}
≲ h

1
2 + 1

2µn + h
1
2 + 1

2µn−1

≲ h
1
2 + 1

2µ −δ,

which holds for all δ > 0. Thus, the Hölder exponent of Rx0 at t satisfies

αRx0
(t) ≥ 1

2 + 1
2µ(t) , ∀ t ̸∈ Q. (4.5)

To obtain an upper bound for Hölder regularity at irrational t, we shall fix from now on
x0 = P

Q ∈ Q and we shall use the poor regularity of RP/Q at the rationals specified in (4.3),
i.e. with denominator in 4QN. Indeed, consider the irrationals well approximated by rationals with
denominator restricted to 4QN,

Aµ,Q =
{
t /∈ Q :

∣∣∣t− p

q

∣∣∣ ≤ 1
qµ

for infinitely many coprime pairs (p, q) ∈ N × 4QN
}
.

In particular
t ∈ Aµ,Q =⇒ µ ≤ µ(t) = sup{ν : t ∈ Aν},

where

Aν =
{
t /∈ Q :

∣∣∣t− p

q

∣∣∣ ≤ 1
qν

for infinitely many coprime pairs (p, q) ∈ N × N
}
.

For t ∈ Aµ,Q, we can pick (pn, qn) ∈ N × 4QN and define µn such that
1
qµn
n

=
∣∣∣t− pn

qn

∣∣∣ ≤ 1
qµn
.

We set hn = t− pn

qn
and we use (4.2) to get the lower estimate

|Rx0(t+ hn) −Rx0(t)| =
∣∣∣Rx0

(pn
qn

)
−Rx0

(pn
qn

+ hn

)∣∣∣ ≳ √
hn√
qn

= h
1
2 + 1

2µn
n ≥ h

1
2 + 1

2µ
n .

Therefore, by combining this with (4.5) we obtain upper and lower bounds for the Hölder regularity
at irrationals of Aµ,Q given by

1
2 + 1

2µ(t) ≤ αRx0
(t) ≤ 1

2 + 1
2µ, ∀ t ∈ Aµ,Q. (4.6)

4.3. Measuring the iso-Hölder sets
In (4.6) the Hölder exponent would be completely determined if µ(t) = µ. However, this is not the
case for all t ∈ Aµ,Q. To fix this, we shall remove the points where the Hölder exponent is larger
than µ by introducing the sets

Bµ,Q = Aµ,Q \

(⋃
ϵ>0

Aµ+ϵ

)
.
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From Bµ,Q ⊂ Aµ \
(⋃

ϵ>0 Aµ+ϵ

)
and the definition of µ(t), we get that

t ∈ Bµ,Q =⇒ µ(t) = µ.

Therefore, by (4.6) and by the combination of (4.5) with µ(t) = sup{ν : t ∈ Aν} we get

Bµ,Q ⊂
{
t : αRx0

(t) = 1
2 + 1

2µ

}
⊂ Aµ−ϵ, ∀ ϵ > 0. (4.7)

Since Theorem 1 claims that

dimH

{
t : αRx0

(t) = 1
2 + 1

2µ

}
= 2
µ
,

and since dimH Aν = 2
ν for ν ≥ 2 by the Jarník–Besicovitch theorem, it suffices to show

dimH Bµ,Q ≥ 2
µ
.

Since H
2
µ (Aµ+ 1

n
) = 0 for all n ∈ N, we can write

H
2
µ (Bµ,Q) = H

2
µ (Aµ,Q) − lim

n→∞
H

2
µ (Aµ+ 1

n
) = H

2
µ (Aµ,Q),

so it is enough to prove H
2
µ (Aµ,Q) > 0. We will actually prove

H
2
µ (Aµ,Q) = ∞, (4.8)

which will complete the proof.
First, we use the Duffin–Schaeffer theorem [42], which states that if

∞∑
q=1

ψ(q)φ(q) = ∞, (4.9)

where φ is Euler’s totient function11 and ψ is an arbitrary function, then the set

Aψ =
{
t :
∣∣∣t− p

q

∣∣∣ ≤ ψ(q) for infinitely many coprime pairs (p, q) ∈ N × N
}

has Lebesgue measure 1. The function ψ(q) := 14QN(q)
q2 satisfies the hypothesis (4.9) and Aψ = A2,Q,

so the Duffin–Schaeffer theorem implies
L(A2,Q) = 1.

Once we know this, we use the Mass Transference Principle of Beresnevich and Velani [13], which
says that if B(xn, rn) is a sequence of balls in [0, 1]d with rn → 0, and if for some α < d we have

L
(

lim sup
n

B
(
xn, r

α/d
n

))
= 1,

then
dimH

(
lim sup

n
B(xn, rn)

)
≥ α, and Hα

(
lim sup

n
B(xn, rn)

)
= ∞.

Since in our case d = 1 and we have obtained

1 = L(A2,Q) = L

(
lim sup

q

⋃
p≤q,(p,q)=1

B

(
p

q
,
14QN(q)
q2

))

= L

(
lim sup

q

⋃
p≤q,(p,q)=1

B

(
p

q
,

(
14QN(q)
qµ

)2/µ))
,

(4.10)

applying the result above with α = 2/µ we get

H
2
µ

(
lim sup

q

⋃
p≤q,(p,q)=1

B

(
p

q
,
14QN(q)
qµ

))
= H

2
µ (Aµ,Q) = ∞,

which is what we wanted to prove in (4.8). The proof is complete.

11Euler’s totient function is φ(q) = #{1 ≤ m ≤ q : gcd(m, q) = 1}.
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