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Regularization by noise for some nonlinear dispersive PDEs

Tristan Robert

Abstract

In the context of ODEs or transport PDEs, there are examples where adding a rough stochastic
perturbation to the equation at hand actually improves the well-posedness theory. In these notes, we
review some results showing how a distributional modulation of the dispersion can also produce a
regularization by noise effect for a rather large class of nonlinear dispersive PDEs.

1. Introduction

In this note, we present some results regarding the Cauchy problem for some nonlinear dispersive
PDEs with modulated dispersion:

∂tu = dW

dt
Lu + N (u), t ∈ R, x ∈ M, (1.1)

where M is some spatial domain, the operator L is skew-adjoint, N is a nonlinearity, and Wt :
R → R is a given continuous but not differentiable function. Thus the term dW

dt in (1.1) above has
to be interpreted in the sense of distributions.

When L = i∆ and N (u) = ±i|u|p−1u for some p > 1, (1.1) corresponds to the non-linear
Schrödinger (NLS) equation with modulated dispersion

i∂tu + dW

dt
∆u ± |u|p−1u = 0. (1.2)

In case M = R and Wt is a Brownian motion, (1.2) was proposed by de Bouard and Debussche [1]
as an effective model for the propagation of a signal in an optical fibre with dispersion management.

While the well-posedness of the usual NLS equation
i∂tu + ∆u ± |u|p−1u = 0 (1.3)

has been extensively studied on various domains M, the irregularity of Wt in (1.2) raises the
question of its effect on the well-posedness theory of this equation. In particular, as far as rough
spatially dependent coefficients are concerned, e.g.

∑
j,k ∂j(a(x)∂k) with rough a in place of ∆, it

is known [21] that the roughness of the spatial coefficients can alter the Strichartz estimates on
the Schrödinger semi-group, hence an alteration of the well-posedness theory for the corresponding
nonlinear equation compared to the case of constant coefficients.

However, there is now a large body of literature dealing with singular stochastic nonlinear heat
or wave equations [2, 16], or random data nonlinear dispersive PDEs [4, 11], for which stochastic
source terms or random initial data of super-critical regularity can be dealt with. In these works,
one usually treats the stochastic source terms/rough initial data perturbatively with respect to
the deterministic well-posedness theory of the nonlinear equation, thus also perturbatively with
respect to the linear dynamics of the equation. This is done by cooking up some appropriate
ansatz for a solution, with a first part consisting of rather explicit objects built on the stochastic
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source terms/random initial data, and a remainder term which solves a suitable perturbation of
the equation so as to fall under the scope of the deterministic sub-critical well-posedness theory.

In [1], de Bouard and Debussche showed that despite the irregularity of the Brownian motion
Wt, the modulated NLS equation (1.2) is indeed still locally well-posed in the same (sub-critical)
range as the usual NLS equation (1.3). On the other hand, the “noise” term in (1.1) above being
in front of the dispersion, we expect that it will not act perturbatively, but instead affect also the
linear dynamics. Actually, there are several examples of ODEs and PDEs for which adding a non-
perturbative rough stochastic term in the equation can actually improve the well-posedness of the
equation: this is referred to as a regularization by noise phenomenon. In recent years, it has become
clearer that in many cases this phenomenon is actually entirely deterministic, namely that it comes
solely from the irregularity property of Wt but not of its stochastic properties, which is referred
to as noiseless regularization by noise. The question we address in this note is therefore that of
observing such a phenomenon for some nonlinear dispersive PDEs with modulated dispersion such
as (1.1), under some appropriate assumptions on the dispersion L and the nonlinearity N .

Although we can formulate an abstract condition on L and N for which this phenomenon indeed
occurs, here we will illustrate our results on two toy-models: the periodic fractional Korteweg - de
Vries (KdV) equation

∂tu + ∂xDαu + u∂xu = 0, (1.4)
corresponding to M = T = R/2πZ, L = ∂xDα for some α > 0, and N (u) = u∂xu, and the periodic
Wick-ordered fractional cubic NLS

i∂tu + Dαu ±
(
|u|2 − 2∥u∥2

L2
x

)
u = 0, (1.5)

corresponding to M = T, L = iDα for some α > 2, and N (u) =
(
|u|2 − 1

2π ∥u∥2
L2

x

)
u.

After briefly reviewing the literature on regularization by noise in Section 2, we present in
Section 3 the underlying mechanisms for the current well-posedness theory for the noiseless equa-
tions (1.3), (1.4), and (1.5). Then in Section 4 we discuss the regularization by noise phenomenon
for the modulated equations (1.1) corresponding to (1.3)–(1.4)–(1.5). We present some further
interesting directions in Section 5.

2. Regularization by noise phenomena

Regularization by noise in the context of stochastic differential equations has been observed since
the 80’s. For example, consider a general ODE in integral form:

x(t) = x0 +
∫ t

0
b(x(s)) ds. (2.1)

If b is locally Lipschitz continuous, then (2.1) has a unique continuous solution for any given initial
data x0, while if b is only continuous, one has existence of a solution to (2.1) but loses uniqueness
in general.

However, Veretennikov [23], and Krylov and Röckner [17], showed for example that by adding
a rough stochastic source term:

x(t) = x0 +
∫ t

0
b(x(s)) ds + Wt, (2.2)

with Wt a Brownian motion, then one can recover existence and uniqueness for b being merely
bounded and measurable.

A similar regularization by noise for linear transport PDEs with rough drifts was observed in [13]
under the adjunction of a multiplicative noise. Some other results studied stochastic scalar conser-
vation laws, stochastic Hamilton–Jacobi equations, or stochastic heat equation with multiplicative
noise.

All these results were exploiting the stochastic nature of the perturbation Wt, for example
through the use of tools from Itô calculus. Then Davie [9] proved a path-wise analogue of the
results of [17, 23] for stochastic differential equations, namely that for (2.1) with a merely bounded
measurable vector field b, for almost every given trajectory of the Brownian motion Wt, there is
indeed a unique solution to (2.1). In particular this result relies more on the properties of sample
paths of Wt and less on stochastic analysis.
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Then Catellier and Gubinelli [5] observed that this latter result indeed relied only on the irregu-
larity of Wt and not its randomness, provided that one captures the former appropriately. Indeed,
the point of view of [5] was to rewrite the perturbed ODE (2.2) as

y(t) = x0 +
∫ t

0
b
(
y(s) + Ws

)
ds, y(t) := x(t) − Wt. (2.3)

Attempting to solve (2.3) through a Picard iteration, one finds the first order approximation

y(t) ≈ x0 +
∫ t

0
b
(
x0 + Ws

)
ds. (2.4)

Then, mimicking the layer cake representation, we can rewrite (2.4) as

y(t) ≈ x0 +
∫
R

b
(
x0 + z

)
dµ[0;t](z) = x0 +

(
b ∗ µ[0;t](− · )

)
(x0), (2.5)

where for an interval I ⊂ R, µI is the occupation measure of Wt defined as

µI(A) :=
∫

I

1A(Wt) dt = Leb
(
{t ∈ I, Wt ∈ A}

)
, A ∈ B(R). (2.6)

Going from (2.4) to (2.5) is the so-called occupation time formula, which is better known in the
context of stochastic processes Wt, for which typically one has dµI(z) ≪ dz and dµI (z)

dz is the local
time in I of the stochastic process Wt.

It then becomes clear from (2.5) that if the measure µ[0;t] is regular enough (with respect to
both z and t in (2.5)), then the effective vector field b ∗ µ[0;t] appearing in (2.5) turns out to be
sufficiently regular so that one can indeed control this first Picard iterate. The same estimates
show that one in turn can successfully run a Picard iteration to solve (2.4), similarly as one would
to deal with (2.1) for Lipschitz vector fields.

Studying the properties of stochastic or deterministic rough real-valued functions through the
lens of their occupation measure has been an active field of investigation since the 70’s; we refer
to the very complete review [15] on this topic. In particular, there are several topologies used to
measure the regularity properties of µ: at first in Hölder spaces for both z and t [15], but more
recently in Fourier–Lebesgue spaces in z [5] or Besov spaces [20]. The common feature being that
regularity of µ implies irregularity of Wt, for example when measured as local Hölder continu-
ity [15]. In turn, sufficient conditions are known for stochastic processes Wt, in particular Gaussian
stochastic processes, to satisfy almost surely a given regularity assumption on µ.

This new perspective led to a systematic study of the noiseless analogue of the earlier results
on regularization by noise; we refer to the thesis of Galeati [14] for a review on the subject. In the
following, we will see how this approach can lead to a regularization effect for some modulated
dispersive PDEs (1.1).

3. Well-posedness of (1.3), (1.4), and (1.5)

Before addressing the effect of the modulation in (1.1) on the dispersive dynamics, we review the
mechanisms used to study the well-posedness of the nonlinear dispersive PDEs (1.3)–(1.4)–(1.5).

The NLS equation

We start with the NLS equation (1.3) on M = Rd, for which we refer to the monographs [6]
and [18]. In this case, the equation is invariant under the rescaling uλ(t, x) = λ

2
p−1 u(λ2t, λx),

λ > 0, such that the homogeneous Sobolev norm is rescaled as ∥uλ(t)∥Ḣs = λs−sc∥u(t)∥Ḣs for the
critical exponent sc = d

2 − 2
p−1 . This suggests that the equation should be well-posed for sub-critical

and critical exponents s ≥ max(sc, 0), and ill-posed for super-critical exponents s < sc.
To solve (1.3) for data u0 ∈ Hs(Rd), s ≥ max(sc, 0), one usually tries to implement a Picard

iteration on the Duhamel formula

u(t) = eit∆u0 ± i

∫ t

0
ei(t−t′)∆|u|p−1u(t′) dt′. (3.1)
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Naively, if one tries to control directly |u|p−1u in Hs(Rd), one faces the restriction s > d
2 for

Hs(Rd) to be an algebra. Thus one has to exploit better integrability properties associated with
the solution of the linear1 equation. In this case, we have (global) Strichartz estimates∥∥eit∆u0

∥∥
Lq

t Lr
x

≤ C∥u0∥L2 , (3.2)

for admissible pairs q, r ≥ 2 satisfying 2
q + d

r = d
2 and r < ∞ for d = 2 and r < 2d

d−2 for d ≥ 3. The
estimate (3.2) is itself a direct consequence of the dispersion estimate∥∥eit∆u0

∥∥
L∞

x
≤ C|t|− d

2 ∥u0∥L1 (3.3)

which, in the constant coefficient case, can be checked directly from the explicit expression of the
kernel of eit∆.

From (3.2), one finds the nonlinear estimate∥∥∥∥⟨D⟩s

∫ t

0
ei(t−t′)∆|u|p−1u(t′) dt′

∥∥∥∥
Lq

T
Lr

x

≤ CT ηs∥⟨D⟩su∥p
Lq

T
Lr

x
(3.4)

for any T > 0, where ηs > 0 when s > sc, while ηs = 0 for s = sc. This allows to get local
well-posedness of (1.3) on [0; T ] with T ∼ (1 + ∥u0∥Hs)−θ for some θ > 0 in case s > sc and s ≥ 0,
while T = T (u0) depends on the profile of u0 in case s = sc ≥ 0.

As for globalizing the solution, we can use the conserved quantities of the equation (1.3) to
iterate the local well-posedness result: the mass

M(u(t)) = 1
2∥u(t)∥2

L2
x

(3.5)

and the energy

E(u(t)) = 1
2∥∇u(t)∥2

L2
x

∓ 1
p + 1∥u(t)∥p+1

Lp+1 (3.6)

are invariant under the flow of (1.3). In the mass-subcritical case sc < 0, this allows to iterate
the local well-posedness in Hs(Rd), s ≥ 0, since the local time T only depends on the conserved
quantity ∥u(t)∥L2

x
= ∥u0∥L2

x
(3.5). Similarly, in the defocusing (plus sign in (3.6)) energy sub-

critical case sc < 1, one can use conservation of the energy (3.6) to iterate the local well-posedness
and globalize the solution in Hs(Rd), s ≥ 1. In the mass-critical case sc = 0, however, one can
only get small-data global well-posedness due to ηsc

= 0 in (3.4), and thus the bad dependence of
T on u0. One even has a net dichotomy: there is a constant C0 (the mass of the ground state) such
that if ∥u0∥L2 < C0 then the solution is global, while in the focusing case (minus sign in (3.6))
there are data with ∥u0∥L2 = C0 for which the solution blows-up in finite time.

The fractional KdV equation

The argument sketched above thus purely relies on the linear estimate (3.2). However, such esti-
mates are typically not true on compact manifolds such as M = Td (the estimate (3.3) cannot hold
for all t ̸= 0 for constant initial data), and one has to rely instead on multilinear estimates. This
is also suitable to deal with derivative losses in the nonlinearity such as in (1.4). To sketch how
these multilinear effects can be used, instead of looking for a solution u to the mild formulation

u(t) = et∂xDα

u0 +
∫ t

0
e(t−t′)∂xDα

∂x(u2)(t′) dt′

of (1.4), we can make the change of unknown v(t) := e−t∂xDα

u(t) which solves

v(t) = u0 +
∫ t

0
e−t′∂xDα

∂x

(
et′∂xDα

v
)2(t′) dt′. (3.7)

1Recall that we treat the nonlinearity perturbatively via a fixed-point argument.
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Decomposing v =
∑

k∈Z vk(t)eikx as a Fourier2 series, we can rewrite (3.7) as

vk(t) = (u0)k +
∑

k1,k2∈Z
k1+k2=k

ik

∫ t

0
eit′Φα(k1,k2)vk1(t′)vk2(t′) dt′, (3.8)

for any k ∈ Z, where∣∣Φα(k1, k2)
∣∣ =

∣∣k1|k1|α + k2|k2|α − (k1 + k2)|k1 + k2|α
∣∣ ∼ |kmax|α|kmin| (3.9)

where |kmax| = max(|k1|, |k2|, |k|) and |kmin| = min(|k1|, |k2|, |k|).
An important remark here is that we can ensure |Φα| ≳ |kmax|α ≥ 1 by considering initial

data with mean zero, which restricts the sum to k1, k2, k ̸= 0 in (3.8). This is not restrictive since∫
T u(x)dx is invariant under the flow of (1.4), and the change of unknown

ũ(t, x) := u(t, x + ct) − c (3.10)

with c =
∫
T u0(x)dx also leaves the equation (1.4) invariant, while mapping a function with non-

zero mean to one with zero mean.
The method developed by Bourgain then amounts to building a solution v to (3.8) in H

1
2 +

t Hs
x ⊂

CtH
s
x to benefit from the highly oscillatory factor eit′Φα : indeed, from the boundedness properties

of the time integral and a standard product estimate in Sobolev spaces, one finds3∥∥∥ik

∫ t

0
eit′Φα(k1,k2)vk1(t′)vk2(t′) dt′

∥∥∥
H

1
2

t

≲ |k|
∥∥eitΦα(k1,k2)vk1vk2

∥∥
H

− 1
2

t

≲ |k|
∥∥eitΦα(k1,k2)∥∥

W
− 1

2 ,∞
t

∥vk1∥
H

1
2

t

∥vk2

∥∥
H

1
2

t

. (3.11)

From an explicit computation for the norm of eitΦα , we find∥∥∥ik

∫ t

0
eit′Φα(k1,k2)vk1(t′)vk2(t′) dt′

∥∥∥
H

1
2

t

≲
|k|

|Φα(k1, k2)| 1
2

∥vk1∥
H

1
2

t

∥vk2

∥∥
H

1
2

t

∼ |k|
|kmax| α

2 |kmin| 1
2

∥vk1∥
H

1
2

t

∥vk2

∥∥
H

1
2

t

. (3.12)

We see on this computation that in the case α ≥ 2, corresponding to the usual KdV equation
(α = 2), or its higher dispersion analogue (α > 2), the phase Φα coming from the multilinear
interaction in the nonlinearity allows to compensate for the derivative loss, in particular in the
case |k| = |kmax|, and to run a fixed point argument to build v in H

1
2

t Hs
x. However, the case α < 2

is radically different: the gain of the factor |Φα| 1
2 in the previous computation is not enough to

compensate for the derivative loss. And this is not only technical, since one can show that due to
the problematic High×Low→High interaction (i.e. |k| ∼ |kmax| ≫ |kmin|), it is actually impossible
to solve (1.4) via a fixed point argument in (a subspace of) CtH

s
x for any s ∈ R, as the flow map

fails to be locally uniformly continuous.

The fractional Wick-ordered cubic NLS
As for the periodic Wick-ordered fractional cubic NLS (1.5), a mix of the two behaviours described
for (1.4) above occurs. We first explain the reason for the Wick-ordering of the nonlinearity in (1.5).
Starting from the mild formulation of the equation with a genuine cubic nonlinearity

u(t) = eitDα

u0 ∓ i

∫ t

0
ei(t−t′)Dα

|u|2u(t′) dt′,

one can similarly as above rewrite the equation for v = e−itDα

u as

vk(t) = (u0)k ∓ i
∑

k1,k2,k3∈Z
k1−k2+k3=k

∫ t

0
eit′Φαvk1(t′)vk2(t′)vk3(t′) dt′ (3.13)

2In the following, we will neglect various factors of 2π when decomposing in Fourier coefficients since they are
irrelevant to our analysis.

3Pretending here for the sake of the exposition that we can work with the endpoint case of the Sobolev embedding,
namely with H

1
2

t in place of H
1
2 +

t .
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for all k ∈ Z, where now∣∣Φα(k1, k2, k3)
∣∣ =

∣∣|k1|α − |k2|α + |k3|α − |k|α
∣∣ ∼ |kmax|α−2|(k1 − k2)(k3 − k2)|. (3.14)

In order to benefit as before from the multilinear interactions through a gain of |Φα| 1
2 , we see that

there is an issue with the contributions k1 = k2 and k3 = k2, similar to the case kmin = 0 discussed
for (1.4). By the change of unknown

ũ(t) = e−i4M(u0)tu(t), (3.15)

one can convert |u|2u into (|u|2 − 2∥u∥2
L2)u (recall that M is conserved under the flow of (1.5)),

thus (3.13) into

vk(t) = (u0)k ∓ i
∑

k1,k2,k3∈Z
k1−k2+k3=k
k2 ̸∈{k1,k3}

∫ t

0
eit′Φαvk1(t′)vk2(t′)vk3(t′) dt′ ± i

∫ t

0
|vk|2vk(t′) dt′. (3.16)

The point of this transformation is that, although there is still the contribution from∫ t

0 |vk|2vk(t′) dt′ in (3.16) for which Φα = 0, this last multilinear form is at least bounded on
Hs(T) for any s ≥ 0. Therefore, the same argument as above4 ensures well-posedness in Hs(T) for
any s ≥ 0. Note that in this regime the cubic equation (3.13) and the renormalized one (3.16) are
equivalent since the gauge transformation (3.15) is well-defined and bounded on Hs(T), s ≥ 0.

However, note that the scaling critical regularity for this model is sc = 1−α
2 , so that we could

expect to be able to treat initial data of regularity Hs for some s < 0. In view of (3.14) and the
argument above, this would be the case when α > 2 if not for the contribution of the resonant part
|vk|2vk. A key observation is that (1.5) has a Hamiltonian structure ∂tu = −i∇uH(u) with H =
H0 +N R+R where H0 = 1

2 ∥∇u∥2
L2 , N R is the non resonant part, and R is the problematic reso-

nant contribution, and that this latter Poisson commutes with H0: Re
{

i⟨∇uR(u), ⟨D⟩2su⟩L2
}

= 0
for any s ∈ R. This allows to derive energy estimates at negative regularity since the resonant part
does not contribute to the growth of the Sobolev norm. The obtained well-posedness at negative
regularity only holds for the renormalized equation (3.16), as one cannot invert the gauge trans-
form (3.15) since it is ill-defined when s < 0. Actually, one can exploit this to show that there
can be no solution to the original equation (3.13) in Hs(T) for s < 0. As for the renormalized
equation (3.16), the obtained flow map for s < 0 is not locally Lipschitz continuous, since the
solution is build by a compactness method, due to the need to use energy estimates to deal with
the resonant part of the nonlinearity.

Summary

To conclude this section, we summarize the current well-posedness results for (1.3)–(1.4)–(1.5)
discussed above:

• for NLS (1.3) on M = Rd, well-posedness via linear (Strichartz) estimates is known in the
whole sub-critical and critical regime s ≥ sc = d

2 − 2
p−1 ≥ 0, with only small data global

well-posedness in the mass-critical case s = sc = 0;

• the well-posedness of the periodic fractional KdV equation (1.4) differs drastically depending
on the value of α, and the various results in the litterature can be summarized by Figure 3.15,
where the scaling critical regularity is sc = 1

2 − α.

• the best well-posedness result to date for the fractional Wick-ordered cubic NLS is, to the
best of the author’s knowledge, that of [3] in Hs(T) for any s > 2−α

6 and α > 2.

4Actually, one also has the Strichartz estimate ∥eitDα
u0∥L4

t,x
(T×T) ≤ C∥u0∥L2(T) for any α ≥ 2, which is enough

to get well-posedness of (1.5) in Hs(T) for any s ≥ 0 as in the case M = R.
5Note that for the usual KdV equation (α = 2) and the Benjamin–Ono equation (α = 1), much better well-

posedness results hold than in the other cases, due to the complete integrability of these equations.
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Figure 3.1: Up-to-date well-posedness in Hs(T)

4. The case of strongly non-resonant modulated dispersive PDEs

We now proceed to show how the irregular modulation term in (1.1) can be dealt with for the
models corresponding to (1.3)–(1.4)–(1.5).

The modulated NLS equation
We start with (1.2). Writing the mild formulation of the equation

u(t) = ei(Wt−W0)∆ ± i

∫ t

0
ei(Wt−Wt′ )∆|u|p−1u(t′) dt′,

and up to replacing u0 by e−W0∆u0 which has the same Hs(Rd) norm as u0, we see that we
can assume that W0 = 0 and try to use Strichartz estimate for the semigroup eiWt∆. A direct
computation using the occupation time formula gives∥∥eiWt∆u0

∥∥q

Lq
T

Lr
x

=
∫ T

0

∥∥eiWt∆u0
∥∥q

Lr
x

dt =
∫
R

∥∥eiz∆u0
∥∥q

Lr
x

dµ[0;T ](z).

This shows that if dµ[0;T ](z) ≪ dz and the local time dµ[0;T ]
dz of Wt is bounded, then one has the

same (local) Strichartz estimates in both the deterministic and the modulated case:∥∥eiWt∆u0
∥∥

Lq
T

Lr
x

≤ C∥µ[0;T ]∥
1
q

L∞∥u0∥L2
x
. (4.1)

Thus one can get the same well-posedness result for (1.2) as that of (1.3). Since this property
of µ is satisfied for a large class of Gaussian stochastic processes, including the case of Wt a
(fractional) Brownian motion (of any Hurst parameter H ∈ (0; 1)), this computation unifies the
results of [1, 8, 10, 12]. In particular, if the local time dµ[0;t]

dz is jointly continuous in (t, z) and if
ω( · , z) is a modulus of continuity for t 7→ dµ[0;t]

dz (z), then using (4.1), the nonlinear estimate (3.4)
becomes in this case∥∥∥⟨D⟩s

∫ t

0
ei(Wt−Wt′ )∆|u|p−1u(t′) dt′

∥∥∥
Lq

T
Lr

x

≤ CT ηs∥ω(T, z)∥L∞
z

∥⟨D⟩su∥p
Lq

T
Lr

x
. (4.2)

This shows that even in the mass-critical case s = sc = 0 for which ηs = 0, one can still exploit the
factor ω(T, z) to get that there is T = T (∥u0∥L2) > 0, for which one can get well-posedness via a
fixed point argument in Strichartz space. Namely:

Theorem 1 ([19]). Assume that dµ[0;t] ≪ dz for any t ≥ 0, and that dµ[0;·]
dz ( · ) is jointly continuous,

then (1.2) is locally well-posed in Hs(Rd) for any s ≥ sc. Moreover, in the mass-critical case
s = sc = 0, (1.2) is globally well-posed in L2(Rd) for any initial data.
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As mentioned above, this result is similar to the results in [1, 8, 10, 12, 14] regarding (1.2).
Compared to [1, 10, 12], the result of Theorem 1 is entirely deterministic, and covers as a special
case the situation where Wt is a path of a (fractional) Brownian motion (of any Hurst parameter
H ∈ (0; 1)), which is the case dealt with in [1, 10, 12]. The assumption on µ is also weaker than
that of [8] which assumed µ[0;·]( · ) ∈ C

1
2 +ϵ
t FLρ,∞ for some 0 < ϵ ≪ 1 and ρ > 1, where FL denotes

the Fourier–Lebesgue space.
The last part in Theorem 1 can already be seen as a noiseless regularization by noise in view

of the discussion in Section 3 regarding the finite time blow-up for large initial data for the mass-
critical NLS equation (1.3). Actually, the discussion before the statement of Theorem 1 on the
dependence of the local time of existence on ∥u0∥L2 and not on the whole profile of u0 indicates
that the modulation in (1.2) turns the mass-critical equation into a sub-critical one.

However, we see no improvement for the modulated NLS (1.2) on the range s ≥ sc for which we
can show local well-posedness in Hs(Rd) compared to the deterministic case (1.3). This is actually
sharp in the following sense: since W0 = 0, if6 moreover dµ[0;T ]

dz (0) > 0, then by continuity there is
δ > 0 such that dµ[0;T ]

dz (z) ≥ 1
2

dµ[0;T ]
dz (0) > 0 on [−δ; δ], and∥∥eiWt∆u0

∥∥q

Lq
T

Lr
x

=
∫
R

∥∥eiz∆u0
∥∥q

Lr
x
dµ[0;T ](z) ≥

(
1
2

dµ[0;T ]

dz
(0)

) ∫ δ

−δ

∥∥eiz∆u0
∥∥q

Lr
x
dz,

which shows that one cannot expect an improvement on the range of (q, r) in the linear (Strichartz)
estimates. Thus any improvement (in the range of s for a given p, or in the range of p for, say,
s = 0) on the well-posedness theory for (1.2) can only come from multilinear estimates. The
computation above is similar to the result of Stewart [22] showing that in the case of the (mass-
critical) quintic periodic NLS, which is well-posed in Hs(T) for any s > 0 but for which the case
s = 0 is still open, then the same obstruction as in the deterministic case holds for the modulation
equation, preventing it from being well-posed in L2(T) by a fixed point argument. Note that the
same result (4.1) above on Strichartz estimates for the modulated equation shows well-posedness
for the modulated quintic NLS in Hs(T) for any s > 0 as in the deterministic case [19].

The case of strongly non-resonant models
Our main result is that there is indeed an improvement in the range of regularity s for well-
posedness for the modulated equation (1.1) associated with the toy-models (1.4)–(1.5), namely

∂tu + dWt

dt
∂xDαu + u∂xu = 0, (4.3)

and

i∂tu + dWt

dt
Dαu ±

(
|u|2 − 2∥u∥2

L2
x

)
u = 0, (4.4)

both on M = T.

Theorem 2 ([19]). Assume that µ[0;·]( · ) ∈ C
1
2 +ϵ
t FLρ,∞ for some 0 < ϵ ≪ 1 and ρ > 0.

(i) For any s ∈ R and α > 0, if ρ > max
( 1−4s

2α ; 3−2s
2(α+1)

)
, then (4.3) is locally well-posed in

Hs
0(T) =

{
u ∈ Hs(T),

∫
T u dx = 0

}
. Moreover the flow map is locally Lipschitz continuous;

(ii) For any s ∈ R and α > 2, if ρ > 1−3s
α−2 , then (4.4) is locally well-posed in Hs(T).

In view of the well-posedness for the deterministic equations (1.4)–(1.5) presented in Section 3,
we see that Theorem 2 is a manifestation of noiseless regularization by noise, actually on two
aspects. The first one is obviously the range of regularity s amenable to well-posedness in Theorem 2
compared to the well-posedness results presented in Section 3 for (1.4)–(1.5). The second one is
that, for (4.3), even in the case α < 2, the flow map constructed in Theorem 2 is locally Lipschitz
continuous, which is in sharp contrast with the situation for the deterministic equation (1.4), as
explained in Section 3. It may be surprising that the assumption of µ having enough regularity

6Note that in the case where Wt is a Brownian motion, LT (0) :=
dµ[0;T ]

dz
(0) has the same law as 1

2 max[0;T ] Wt,
which is a.s. positive.
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(measured in Fourier–Lebesgue spaces) implies that this regularization effect occurs when the
modulation Wt is irregular enough, which is in sharp contrast to the case of spatially dependent
coefficients as discussed in the introduction. As we will see below, the reason is that when Wt is very
rough, its oscillations actually concur with the oscillations coming from multilinear interactions.

The case α = 2 in Theorem 2(i) corresponds to the KdV equation and is treated in [7]. The
main observation in [19] is that this phenomenon actually occurs for the strongly non-resonant
models, i.e. all those for which the multilinear phase function Φα as in (3.9) and (3.14) satisfies a
bound

|Φα| ≳ |kmax|θ (4.5)
for some θ > 0. This explains why our result deal with periodic equations: up to gauge transforms as
in (3.10) or (3.15), one can sometimes get rid of exact resonances for which Φα = 0 to obtain (4.5)
for the gauged equation. On the contrary, on Rd, one faces the issue of very small frequencies, e.g.
|Φα| ≳ |ξmax|α|ξmin| for (1.4) on M = R, and the regime |ξmin| ≪ |ξmax|−α shows that one cannot
benefit from the amplification by µ of the multilinear oscillations (see (4.9) below), contrary to the
case when (4.5) holds.

The point in (ii) is that this phenomenon also occurs for models which are not strongly non-
resonant in the sense of (4.5) due to perturbations by completely resonant nonlinearities which
Poisson commute with the quadratic part of the Hamiltonian, as discussed for (4.4) in Section 3.

Sketch of the proof
Similarly to the computation in (3.11), the approach in [7] consists in making the change of unknown
v = e−Wt∂xDα

u, where u solves (4.3), so that we seek v as a solution to

vk(t) = (u0)k + ik
∑

k1,k2∈Z
k1+k2=k

∫ t

0
eiWt′ Φα(k1,k2)vk1(t′)vk2(t′) dt′,

for any k ∈ Z. In order to build v in C
1
2 +
t Hs

x, we rewrite the nonlinear part as∫ t

0
eiWt′ Φα(k1,k2)vk1(t′)vk2(t′) dt′ =

∫ t

0
(vk1vk2)(t′) dF Wt

k1,k2
(t′), (4.6)

where

F Wt

k1,k2
(t) =

∫ t

0
eiWt′ Φα(k1,k2) dt′ = µ̂[0;t]

(
Φα(k1, k2)

)
.

With our assumption on µ, we have that Fk1,k2 is not of bounded variation, but only in C
1
2 +ϵ
t for

some 0 < ϵ ≪ 1. Since this is also the case for v, the last integral in (4.6) cannot be made sense of
as a Stieltjes integral, but can as a Young integral.

Indeed, recall that when F is piecewise C1 and G is piecewise C0, then the Riemann integral∫ t

0
G(t′) dF (t′) =

∫ t

0
G(t′)F ′(t′) dt′

is defined as the limit of the Riemann sum∫ t

0
G(t′) dF (t′) = lim

|π|→0

∑
tj∈π

Gtj
F ′

tj
· (tj+1 − tj), (4.7)

where π denotes a partition of [0; t], and is bilinear and bounded C0 × C1 → C1.
When F is only of bounded variation C∞-var, (4.7) becomes ill-defined, and instead the

Riemann–Stieltjes integral∫ t

0
G(t′) dF (t′) := lim

|π|→0

∑
tj∈π

Gtj

(
Ftj+1 − Ftj

)
(4.8)

is well-defined and is bilinear and bounded C0 × C∞-var → C∞-var.
Then, if F is only of finite q variation Cq-var for some q < ∞, provided that now G is of finite p

variation Cp-var with 1
p + 1

q > 1, then (4.8) still makes sense and defines the Young integral, which
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is now bilinear and bounded Cp-var × Cq-var → Cq-var. In particular this is the case if F ∈ C
1
q

t and
G ∈ C

1
p

t .
In view of the time regularity for v and the assumption on µ, we see that we can indeed make

sense of (4.6) as a Young integral (4.8). This allows to close a fixed point argument for v in C
1
2 +
t Hs

x,
since due to the regularity of µ in Fourier–Lebesgue spaces and the expression for F Wt

k1,k2
above, we

get in place of (3.12) the estimate∥∥∥∥ik

∫ t

0
(vk1vk2)(t′)dF Wt

k1,k2
(t′)

∥∥∥∥
C

1
2 +

t

≲
|k|

|Φα(k1, k2)|ρ ∥vk1∥
C

1
2 +

t

∥vk2

∥∥
C

1
2 +

t

∼ |k|
|kmax|ρα|kmin|ρ

∥vk1∥
C

1
2 +

t

∥vk2

∥∥
C

1
2 +

t

. (4.9)

We thus see that, provided that ρ is large enough (depending on s), the estimate above allows to
sum in k1, k2 after adding the weight ⟨k⟩s

⟨k1⟩s⟨k2⟩s , showing local well-posedness for v via a fixed point

argument in C
1
2 +
t Hs

x for any s ∈ R. Note that the same approach works also in the case Wt = t

since an exact computation gives in this case F t
k1,k2

(t) = eitΦα(k1,k2)−1
iΦα(k1,k2) . Thus (4.9) recovers (3.11)

in this case.
The proof of (ii) follows similarly from a modification of the argument presented in Section 3

regarding (1.5), using the regularity of µ to amplify multilinear oscillations in the non-resonant
part, and dealing with the completely resonant part by an appropriate energy estimate.

Further remarks
Let us make some final comments on the set of “good” functions Wt for which Theorem 2 holds.
Catellier and Gubinelli [5] showed that for Wt a fractional Brownian motion of Hurst parameter
H ∈ (0; 1), µ[0;·]( · ) ∈ C

1
2 +
t FLρ,∞ a.s. for any ρ < 1

2H . This can be seen as follows: a fractional
Brownian motion with Hurst parameter H is a Gaussian stochastic process whose covariance
function is given by

E
[
WtWs] = 1

2
(
|t|2H + |s|2H − |t − s|2H

)
,

for any t, s ≥ 0. Using the Gaussianity of Wt, this allows to compute

E
∣∣µ̂[0;t](ξ)

∣∣2 = E
∣∣∣∣∫ t

0
eiWt′ ξ dt′

∣∣∣∣2
=

∫ t

0

∫ t

0
e− 1

2 ξ2E|Wt1 −Wt2 |2
dt1dt2 =

∫ t

0

∫ t

0
eξ2|t1−t2|2H

dt1dt2

∼ min
(
t2; |ξ|− 1

H t
)
.

This indicates that indeed µ[0;·]( · ) ∈ Cγ
t FL

1−γ
H ,∞ for any γ ∈ [ 1

2 ; 1].
In particular, Theorems 1 and 2 are not empty, and there are “plenty” of rough functions Wt

satisfying the assumptions. It is known that the fractional Brownian motion Wt as above is a.s. in
Cγ

t for γ < H, and a.s. not in Cγ
t for γ ≥ H. Thus we can see that regularity of µ indeed implies

irregularity of Wt is this case, through the lower bound on ρ giving an upper bound on H.

5. Perspectives

To conclude this note, we present two further directions of investigation that we believe are worth
digging into.

Failure of the strong non-resonance condition
As emphasized above, the noiseless regularization phenomenon presented in this note relies on
the strongly non-resonant character (4.5) of the deterministic models (1.4)–(1.5). However, as
soon as the degree of the algebraic nonlinearity N is too big, or the dimension increases, (4.5)
has lesser chances to hold. In particular, this does not hold for the NLS equation (1.2) on M =
R, which is the physically relevant model. For this model, there is another mechanism yielding
Strichartz estimates (3.2), which is transversality of the resonant interactions. Namely, in the
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bilinear interaction for NLS, when the corresponding phase satisfies |Φ| ≲ 1, it also holds |∇Φ| ≳
|ξmax|, which can be exploited by integrations by parts in x rather than in t. As a first step
towards understanding if this phenomenon can be exploited in the context of resonant modulated
equations, it would be interesting to study the case of the modulated KP-I equation, which is a
prototype of nonlinear dispersive PDE with a large set of resonances, but with a nonlinearity of
low degree (u∂xu).

Long time behaviour of the solutions
Another direction of interest is to study the long time behaviour of the local solutions built in
Theorem 2. Even if the deterministic equation is Hamiltonian, the modulation in (1.1) destroys the
conservation of the energy. One often still has the invariance of the L2 norm, allowing to globalize
solutions in L2. Due to the low regularity where one can show well-posedness, this can also be used
to prove invariance of the white noise for (1.1), which is a Gaussian measure supported on Hs(Td)
for any s < − d

2 , and formally given by “dν = e− 1
2 ∥u∥2

L2 du”. We see on this formal expression that
invariance of the L2 norm should in principle give invariance of ν. This latter property allows to
use Poincaré’s recurrence theorem to get a qualitative description of the long time behaviour of
the flow of (4.3) and (4.4) for initial data in the support of ν.
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