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Journées Équations aux dérivées partielles
Aussois, 19–23 juin 2023
RT AEDP (CNRS)

Linear Landau damping in R3

Toan T. Nguyen

Amortissement Landau linéaire en R3

Résumé

Cet article donne un aperçu de l’amortissement Landau linéaire pour les modèles cinétiques sans
collision tels que les systèmes non relativistes de Vlasov–Poisson et relativistes de Vlasov–Maxwell
proches d’états stationnaires radiaux spatialement homogènes sur l’espace des phases R3

x × R3
v.

Abstract

This article gives an overview on linear Landau damping for collisionless kinetic models such as the
non-relativistic Vlasov–Poisson and relativistic Vlasov–Maxwell systems near spatially homogenous
radial steady states on the phase space R3

x × R3
v.

1. Introduction

We are interested in the large time behavior of solutions to the linearized non-relativistic Vlasov–
Poisson and relativistic Vlasov–Maxwell systems near spatially homogenous steady states. These
are classical collisionless kinetic models that are used to describe the dynamics of charged particles
with a self-consistent electromagnetic field in a uniform ions background. Specifically, letting µ(v)
be a spatially homogenous fixed background profile for electrons, the linearized Vlasov–Maxwell
system reads 

∂tf + v̂ · ∇xf +
(

E + 1
c

v̂ × B

)
· ∇vµ = 0,

1
c

∂tB + ∇x × E = 0, ∇x · E = ρ[f ],

−1
c

∂tE + ∇x × B = 1
c

j[f ], ∇x · B = 0,

(1.1)

in the phase space (x, v) ∈ R3
x × R3

v, in which c is the speed of light and v̂ = v/
√

1 + |v|2/c2

denotes the relativistic velocity. The system (1.1) describes the linearized dynamics of density
distribution for electrons near the background profile µ(v), having the electromagnetic fields E, B
being generated self-consistently through the Maxwell equations by the charge and current densities

ρ[f ] =
∫
R3

f(t, x, v) dv, j[f ] =
∫
R3

v̂f(t, x, v) dv. (1.2)
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In the non-relativistic limit of c → ∞, the system (1.1) reduces to the classical Vlasov–Poisson
system {

∂tf + v · ∇xf + E · ∇vµ = 0,

∇x × E = 0, ∇x · E = ρ[f ], (1.3)

in the phase space (x, v) ∈ R3
x × R3

v.
Of great interest is to identify decaying mechanism and the large time behavior of solutions to

both the linearized systems (1.1) and (1.3). The study will play an important role in understanding
the large time dynamics of charged particles in a nonlinear setting. In absence of the background
profile µ(v) = 0, the particles follow the free transport dynamics ∂tf

0 + v̂ ·∇xf0 = 0, whose charge
and current densities are computed by

ρ0(t, x) =
∫
R3

fin(x − v̂t, v) dv, j0(t, x) =
∫
R3

v̂fin(x − v̂t, v) dv (1.4)

for initial data f0(0, x, v) = fin(x, v). Namely, the particles travel along the free transport char-
acteristics x(t) = x + v̂t. Upon introducing the change of variable y = x − v̂t, the densities
ρ0(t, x), j0(t, x) thus decay at rate of order t−3 in the large time. As a result, the electromagnetic
fields disperse in space like a free wave. Such a dispersion in fact persists at the nonlinear level
near vacuum [1, 2, 14, 16] in the three-dimensional case; see also recent works [9, 10].

The main objective of this article is to review recent results concerning decay of electromagnetic
fields in presence of nontrivial background profiles µ(v), namely solutions to the linear systems (1.1)
and (1.3). Observe that the dynamics of f(t, x, v) is no longer decoupled from the fields, but solving
the transport equation in (1.1), which gives the charge and current densities ρ[f ] and j[f ]

ρ[f ] = ρ0(t, x) −
∫ t

0

∫
R3

K(s, x − (t − s)v̂, v) · ∇vµ dvds

j[f ] = j0(t, x) −
∫ t

0

∫
R3

v̂K(s, x − (t − s)v̂, v) · ∇vµ dvds

(1.5)

in which K = E + 1
c v̂ × B and ρ0, j0 are the densities generated by the free dynamics as in (1.4).

Putting these into the Maxwell equations, one can easily obtain a closed system for the electromag-
netic fields E, B, involving the nonlocal operators as in (1.5), cf. [27, 28] where the orbital stability
and instability of inhomogenous equilibria was studied. The system is however delicate to analyze
due to the nonlocal nature of the integral terms in (1.5). As a matter of facts, it has been elusive
to determine if there were any spectrally stable equilibria µ(v) (in the presence of magnetic fields),
not to mention the apparent lack of study on boundedness and decay of the fields. The question
remains open for general equilibria.

Most recently, in a joint work with D. Han-Kwan and F. Rousset [22], we resolve the linear
stability problem completely for radial equilibria. To proceed, we shall work with the Coulomb
gauge for the electromagnetic potentials ϕ(t, x) ∈ R and A(t, x) ∈ R3 defined through E = −∇xϕ−
1
c ∂tA and B = ∇x × A, together with ∇x · A = 0. The Maxwell equations then become

−∆xϕ = ρ[f ], (∂2
t − c2∆x)A = cPj[f ] (1.6)

where P denotes the classical Leray projector, that is Pj = j − ∇x∆−1
x ∇x · j for j ∈ R3. Using (1.5),

we now obtain the following closed system for the potential functions

M
(

ϕ
A

)
=

(
ρ0

cPj0

)
(1.7)

for some matrix operator M, which can be derived explicitly. The decoupling of the electric and
magnetic potentials in (1.6) appears to be the advantage of employing the Coulomb gauge for the
electromagnetic fields. However, the matrix operator M remains complicated to study, again due
to the presence of the nonlocal operators as in (1.5).

As discovered in [22], in the case when µ(v) is radial in v, the matrix operator M turns out
to be diagonal, and therefore the electric and magnetic potentials are completely decoupled (for
the linearized system (1.1)), which we now describe, following the classical Laplace–Fourier ap-
proach. Indeed, let ϕ̃k(λ), Ãk(λ) be the Laplace–Fourier transform of the potentials ϕ(t, x), A(t, x),
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respectively. It follows that for each λ ∈ C and k ∈ R3, we obtain

|k|2D(λ, k)ϕ̃k = ρ̃0
k

M(λ, k)Ãk = cPk j̃0
k + λÂ0

k + Â1
k

(1.8)

for initial data Â0
k, Â1

k, where D(λ, k) and M(λ, k) are scalar functions defined by

D(λ, k) = 1 − 1
|k|2

∫
R3

ik · ∇vµ

λ + ik · v̂
dv,

M(λ, k) = λ2 + c2|k|2 − cλ

2

∫
R3

|Pkv̂|2

ik · v̂

ik · ∇vµ

λ + ik · v̂
dv,

(1.9)

in which Pk = (I− k⊗k
|k|2 ) is the Fourier symbol for the Leray projector. Namely, in the case of radial

equilibria, the resolvent solutions are completely decoupled for the electric and magnetic potentials.
In (1.8), ρ̃0, j̃0 are the Laplace–Fourier transform of the densities propagated by the free dynamics,
see (1.4). It thus reduces to study the spacetime scalar symbols (1.9) independently, which we
shall refer to them as the electric and magnetic dispersion functions, respectively. In view of the
resolvent equations (1.8), we obtain the electric and magnetic potentials in the physical space via
a spacetime convolution with the corresponding electric and magnetic Green functions G(t, x) and
H(t, x) against the charge and current densities ρ0(t, x), j0(t, x) by the free dynamics (1.4), plus
initial data contributions. Here, the Green functions are constructed by

G(t, x) = 1
2πi

∫
{ℜλ=γ0}

∫
R3

eλt+ik·x 1
D(λ, k) dkdλ,

H(t, x) = 1
2πi

∫
{ℜλ=γ0}

∫
R3

eλt+ik·x 1
M(λ, k) dkdλ,

(1.10)

which are well-defined as oscillatory integrals for γ0 > 0. The main results established in [22] are
pointwise decay estimates on the Green functions.

Observe that for each k ∈ R3, the zeros λelec(k) of D(λ, k) = 0 yield mode solutions of the
form ϕ(t, x) = eλelec(k)t+ik·xak and A(t, x) = 0 for any constant ak, while the zeros λmag(k) of
M(λ, k) = 0 yields mode solutions of the form ϕ(t, x) = 0 and A(t, x) = eλmag(k)t+ik·xPkAk for
any vector constant Ak in R3. Therefore, growing solutions correspond to those with ℜλelec(k) > 0
or λmag(k) > 0. In this article, we focus precisely on radial equilibria, for which such an unstable
mode solution does not exist. However, there are purely oscillating solutions both for the electric
dispersion relation D(λ, k) = 0 and the magnetic dispersion relation M(λ, k) = 0, which we shall
now present.

Finally, we note that in the case of the linearized Vlasov–Poisson system (1.3), the resolvent
equation (1.8) simply reduces to |k|2D(λ, k)ϕ̃k = ρ̃0

k, for the same symbol D(λ, k) in (1.9) with v̂
replaced by v.

1.1. Landau damping

In this section, we shall focus on the electric dispersion function D(λ, k) for the linearized Vlasov–
Poisson system (1.3), namely

D(λ, k) = 1 − 1
|k|2

∫
R3

ik · ∇vµ

λ + ik · v
dv.

Three regimes follow.

• |k| ≫ 1: free transport regime. In this case the electric field is negligible with respect to
the transport part, since D(λ, k) → 1. As a consequence, the linearized electric field is a
perturbation of that generated by the free transport dynamics, which decays rapidly fast
to 0, with a speed proportional to k, exponentially if data are analytic and polynomially if
data are Sobolev. This exponential damping is at the heart of Mouhot–Villani’s celebrated
proof of the asymptotic behavior of solutions to the nonlinear Vlasov–Poisson system in the
periodic case, see [4, 17, 29].
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• |k| ∼ 1: Penrose’s stable regime. In this regime, the electric field and the free transport
are of the same magnitude, and the plasma may or may not be stable, depending on the
background profile µ( · ). It is spectrally stable if and only if D(λ, k) never vanishes on
ℜλ > 0, which holds for a large class of positive radial equilibria [29]. Under a stronger,
quantitative Penrose stability condition: namely,

inf
k

inf
ℜλ≥0

|D(λ, k)| ≥ θ0 > 0, (1.11)

the dynamics can again be approximated by that of the free transport and therefore the
main damping mechanism in this regime is again phase mixing, which was also justified
for the nonlinear problem with analytic or Gevrey data on the torus, see [4, 17, 29]. See
also [5, 20] for the screened Vlasov–Poisson system on the whole space, for which (1.11) holds
for k ∈ R3, and the free transport dynamics remains dominant. Specifically, we establish
in [17, 20] that the linearized electric field Êk(t) in this Penrose’s stable regime can be
written as

Êk(t) = Ê0
k(t) + Ĝk ⋆t Ê0

k(t) (1.12)
for each wave number k, where ⋆t denotes the convolution in time, Ê0

k(t) is again the free
transport electric field and Ĝk(t) is exponentially localized |Ĝk(t)| ≲ e−⟨kt⟩, leading to a
much simplified proof of the nonlinear Landau damping [17] and a construction of echoes
solutions for a large class of Sobolev data [18]. We mention that such a representation of
the electric field was also established for the weakly collisional regime [12].

• |k| ≪ 1: Landau’s damping regime. It turns out that in this regime, the strong Penrose
stability condition (1.11) never holds for any equilibria! In fact, it is classical in the physical
literature that at the very low frequency, plasmas oscillate and disperse with a Schrödinger
type dispersion relation

ℑλ±(k) = ±
(

τ0 + τ2
1

2τ3
0

|k|2 + O(|k|4)
)

(1.13)

for |k| ≪ 1, where τ2
j =

∫
R3 |v|2jµ(v) dv, j = 0, 1. These oscillations are classically known as

Langmuir’s waves in plasma physics [33]. Naturally, the central question is that whether such
oscillations are damped. Landau in his 1946 seminal paper [26] addressed this very issue, and
managed to compute the dispersion relation λ = λ±(k) (i.e. solutions of D(λ±(k), k) = 0)
for Gaussians µ = e− 1

2 |v|2 , yielding

ℜλ±(k) ≈ 1
4|k|2

∂vµ(v)|v=ν∗(k) (1.14)

for sufficiently small |k|, where ν∗(k) ∼ τ0
|k| denotes the phase velocity of the oscillatory

Langmuir’s waves (1.13). Note in particular that (1.11) fails as |k| → 0, since ℜλ±(k) → 0
super exponentially fast. The same damping law (1.14) holds for any positive radial equilib-
ria [33]. Physically, this leads to a transfer of energy from the electric energy to the kinetic
energy of these particles (i.e. damping in the L2 energy norm). This transfer of energy at
the resonant velocity defines the classical notion of Landau damping. In the other words,
Landau damping occurs due to the resonant interaction between particles and the oscillatory
waves.
The faster the profile µ(v) decays, the weaker Landau damping is. In particular, it is polyno-
mially small for power-law equilibria and super exponentially small for Gaussian equilibria.
The main mechanism is therefore the dispersion of the electric field, which is seen on the
imaginary part of Landau’s dispersion relation (1.14), whereas the Landau damping rate is
seen on its real part of (1.14). As a consequence, the electric field is not exponentially de-
creasing at the very low frequency regime, but oscillatory like a Schrödinger type equation.

The Schrödinger type dispersion (1.13) leads to a dispersive decay of the electric field of order
t−3/2 as was proven recently in [6, 21] for general radial analytic equilibria. The Landau damping
rate and its sensitivity to the decay of µ(v) were also seen in the pioneering works by Glassey and
Schaeffer [13, 15], where the authors proved that for the linearized Vlasov–Poisson system near a
Maxwellian on the whole line, the electric field cannot in general decay faster than 1/(log t)13/2 in
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L2 norm, while near polynomially decaying equilibria at rate ⟨v⟩−α, α > 1, it cannot decay faster
than t− 1

2(α−1) . In addition, it was also shown in [13, 15] that there is no Landau damping (i.e. no
decay for L2 norm of the electric field) near compactly supported equilibria.

1.2. The survival threshold

As a matter of facts, the three regimes described in the previous section apply precisely to the case
when equilibria are positive for all v ∈ R3. For compactly supported equilibria µ(v), we established
in [30] for the non-relativistic Vlasov–Poisson system (1.3) that there is a survival threshold of
wave numbers κ0 > 0, which may not be small, below which the Penrose stability condition (1.11)
fails. See Figure 1.1 for an illustration of the threshold. The survival threshold κ0 depends on the
maximal speed of the particle velocities present in the background profile µ(v): κ0 = 0 for positive
equilibria (e.g., for Gaussians), while κ0 > 0 for compactly supported equilibria. Similar results
are also established for quantum meanfield models [31].

We now focus on the relativistic Vlasov–Maxwell system (1.1), for which the particle velocities
are always bounded by the speed of light, and therefore the threshold κ0 exists and is positive. Let
us detail this point. In what follows, we shall consider the radial and rapidly decaying equilibria of
the form µ = µ(⟨v⟩) with ⟨v⟩ =

√
1 + |v|2/c2, and set

Υ := sup
{

|v̂|, µ(⟨v⟩) ̸= 0
}

(1.15)

to be the maximal speed of particle velocities, which is finite and bounded by the speed of light c,
recalling that v̂ = v/⟨v⟩. We then introduce the survival threshold of wave numbers κ0 defined by

κ2
0 = 2

∫ Υ

0

u2κ(u)
Υ2 − u2 du (1.16)

in which κ(u) = −2πc2 ∫ ∞
1/

√
1−u2/c2 µ′(s)s2 ds. For the derivation of the survival threshold κ0,

see Section C. Since µ(s) is non-negative and decays rapidly to zero as s → ∞, κ(u) ≥ 0, upon
integrating by parts in s. As a result, κ0 is well-defined and finite. Note that κ0 > 0 for any non-
negative radial equilibria µ(v), since Υ ≤ c < ∞. In the non-relativistic limit of c → ∞, we study
radial equilibria of the form µ = µ( 1

2 |v|2), and so introduce the survival threshold κ0 as in (1.16)
with κ(u) = 2πµ( 1

2 u2), for which κ0 = 0 in the case of positive equilibria, since Υ = ∞.
Our main results established in [22, 30] are as follows.

• Plasma oscillations: for 0 ≤ |k| ≤ κ0, there are exactly two pure imaginary solutions
λelec

± (k) = ±iτ∗(k) of the dispersion relation D(λ, k) = 0, which obey a Klein–Gordon
type dispersion relation: namely, for 0 < |k| < κ0,

τ0 < τ∗(|k|) < κ0, |k| < τ∗(|k|) <
√

τ2
0 + |k|2, (1.17)

and for some constants c0, c1, C0 > 0,

c0|k| ≤ τ ′
∗(|k|) ≤ C0|k|, c1 ≤ τ ′′

∗ (|k|), (1.18)

for all 0 ≤ |k| ≤ κ0. These oscillatory modes experience no Landau damping ℜλelec
± (k) =

0, but disperse in space, since the group velocity τ ′
∗(k) is strictly increasing in |k|. This

dispersion leads to a t−3/2 decay of the electric field in the physical space. These oscillations
are known as Langmuir’s waves in plasma physics [33]. In addition, the phase velocity of
these oscillatory waves ν∗(k) = τ∗(k)/|k| is a decreasing function in |k| with ν∗(0) = ∞ and
ν∗(κ0) = Υ (the maximal speed of particle velocities).

• Landau damping: as |k| increases past the critical wave number κ0, the phase velocity
of Langmuir’s oscillatory waves enters the range of admissible particle velocities, namely
|ν∗(k)| < Υ. That is, there are particles that move at the same propagation speed of the
waves. This resonant interaction causes the dispersion functions λelec

± (k) to leave the imag-
inary axis, and thus the purely oscillatory modes get damped. Landau [26] computed this
law of damping for Gaussians in the non-relativistic case (and hence, κ0 = 0) as reported
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0{ℜλ ≲ −|k|}

C

iτ0

i
√

τ2
0 + κ2

1

λ+(k)

λ−(k)

−iτ0

−i
√

τ2
0 + κ2

1

Figure 1.1: Depicted are the solutions λ±(k) to the electric dispersion relation
D(λ, k) = 0 that start from λ±(0) = ±iτ0, remain on the imaginary axis and obey
a Klein–Gordon’s dispersion relation τ∗(k) ∼

√
τ2

0 + |k|2 for 0 ≤ |k| ≤ κ0, and
then depart from the imaginary axis at |k| = κ+

0 due to Landau damping towards
the phase mixing regime {ℜλ ≲ −|k|}, as the wave numbers |k| increase. The group
velocity τ ′

∗(k) is strictly increasing, while the phase velocity ν∗(k) = τ∗(k)/|k| is
strictly decreasing in |k|, with ν∗(0) = ∞ and ν∗(κ0) = Υ.

in (1.14). For the case of relativistic equilibria Υ ≤ c < ∞, we have κ0 > 0, and the Landau’s
law of decay can be explicitly computed1, giving

ℜλelec
± (k) ≈ −κ2

1

[
uµ

(
u√

1 − u2/c2

)]
u=ν∗(k)

(1.19)

as |k| → κ+
0 , where ν∗(k) = Υ − 2κ0κ2

1(|k| − κ0) for some positive constant κ1. That is, the
vanishing rate of equilibria at the maximal velocity dictates the Landau damping rate of
the oscillations at the critical wave number. The faster µ(v) vanishes, the weaker Landau
damping is.

• Penrose’s stable regime: for |k| > κ+
0 , the strong Penrose stability condition (1.11) holds,

and therefore the behavior of the electric field is governed by the free transport dynamics
as discussed in the previous section.

The above results confirm the existence of plasma oscillations or Langmuir’s oscillatory waves
known in the physical literature. In particular, it is shown that there is a survival threshold of
wave numbers κ0, below which Langmuir’s plasma oscillations survive Landau damping, while at
the threshold, Landau’s law of damping is present and explicitly computed. Beyond κ0, the strong
Penrose stability condition is ensured, and the free transport dynamics is a good approximation for
the large time behavior of solutions to the linearized electric potential. In particular, we note that
oscillations obey a Klein–Gordon’s dispersion relation: namely τ∗(k) ∼

√
1 + |k|2, which coincides

with the dispersion of a Schrödinger’s type at the very low frequency (1.13).

1.3. Magnetic dispersion relation
In this section, we study the magnetic dispersion relation M(λ, k) = 0, which can be written as

M(λ, k) = λ2 + c2|k|2 − icλ

2|k|

∫ Υ

−Υ

q(u)
−iλ/|k| + u

du,

1Note that this is computed for radial equilibria in dimension three, cf. (1.14) in dimension one.
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for some non-negative and even function q(u) (depending on the equilibrium µ(⟨v⟩)). See Section C
for the details. At vacuum µ = 0, the function M(λ, k) = λ2 + c2|k|2 is the spacetime symbol of
the free wave operator ∂2

t − c2∆x. At nontrivial equilibria µ(⟨v⟩), the symbol M(λ, k) turns out
to resemble a Klein–Gordon type dispersion, see Section D. It is remarkable that the nonlocal
effect has some monotonicity in the temporal frequency, which contributes a positive mass into
the spacetime symbol M(λ, k), yielding the two unique zeros λmag

± (k) = ±iν∗(k) of the magnetic
dispersion relation M(λ, k) = 0. In addition, ν∗(k) obeys a Klein–Gordon type dispersion: namely,

c0
√

1 + |k|2 ≤ ν∗(|k|) ≤ C0
√

1 + |k|2, (1.20)

c0
|k|√

1 + |k|2
≤ ν′

∗(|k|) ≤ C0
|k|√

1 + |k|2
, (1.21)

c0(1 + |k|2)−3/2 ≤ ν′′
∗ (|k|) ≤ C0. (1.22)

uniformly with respect to k ∈ R3, for some positive constants c0, C0.
Unlike the case near vacuum, the symbol M(λ, k) is not holomorphic in λ for ℜλ < 0. This

causes a fundamental issue in calculating the residual at the poles of the resolvent kernel 1
M(λ,k) .

More precisely, we may write M(λ, k) = λ2 + c2|k|2 − icλ
2|k| H(−iλ/|k|), where

H(z) =
∫ Υ

−Υ

q(u)
z + u

du =
∫ ∞

0
e−izt

∫ Υ

−Υ
e−iutq(u) dudt =

∫ ∞

0
e−iztq̂(t) dt

in which q̂(t) denotes the Fourier transform of q(u) in u. The regularity of q(u) yields a rapid decay
of q̂(t) in t. Therefore, the function H(z) is analytic in ℑz < 0 and well-defined up to the real axis
ℑz = 0, or equivalently M(λ, k) is analytic in ℜλ > 0 and well-defined up to the imaginary axis
ℜλ = 0. However, as q(u) is compactly supported on [−Υ, Υ], its Fourier transform q̂(t) does not
decay exponentially fast. As a result, H(z) cannot be meromorphically extended past the real axis.
This causes a serious issue in applying the standard Cauchy’s theory to isolate the oscillatory modes
(for instance, as done in [6, 21]). We bypass this issue via a sufficiently accurate approximation by
rational functions with appropriate poles, for which we can use Cauchy’s residue theorem, leaving
the errors acceptable [22, 30].

Finally, after extracting the oscillatory modes (i.e. poles of the resolvent kernel 1
M(λ,k) ), we’d

expect to obtain phase mixing type estimates on the regular part of the kernel (e.g., similar to
those obtained for Ĝk(t) in (1.12)). This turns out to be delicate, and in fact, false at the very low
frequency. A new phenomenon arises. Precisely, in order to gain a factor of decay in time at order
t−1 from the representation (1.10), we are obliged to bound the ratio

∂λM(λ, k)
M(λ, k) . (1.23)

In the low frequency regime |k| ≪ 1 and λ = iτ̃ |k| with |τ̃ | ≪ 1, a direct calculation yields
|M(iτ̃ |k|, k)| ≳ |k|2, see (D.1) below, while |∂λM(λ, k)| ≲ 1 + |k|−1, where the |k|−1 term is due
to the integral term in M(λ, k). This proves that the above ratio is bounded by |k|−3, yielding
that the regular part of the Green function Ĥk(t) decays at rate of order ⟨|k|3t⟩−N in the very low
frequency regime |k| ≪ 1.

2. Landau damping results

In this section, we report the main damping results established in [22] for the relativistic Vlasov–
Maxwell system (1.1). Throughout the section, we assume that equilibria are sufficiently regular
and rapidly decaying in v, and are of the form µ(⟨v⟩).

Theorem 2.1. Let G(t, x) and H(t, x) be the electric and magnetic Green functions defined as
in (1.10), and let λelec

± (k) and λmag
± (k) be the solutions to the electric and magnetic dispersion

relations as described in Section 1.2 and Section 1.3, respectively. Then, there hold

G(t, x) = δt=0 +
∑

±
Gosc

± (t, x) + Gr(t, x)

H(t, x) =
∑

±
Hosc

± (t, x) + Hr(t, x)
(2.1)
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where Gosc
± (t, x) and Hosc

± (t, x) are oscillatory kernels whose Fourier transforms are

Ĝosc
± (t, k) = eλelec

± (k)ta±(k), Ĥosc
± (t, k) = eλmag

± (k)tb±(k),

for some smooth functions a±(k) = α±(|k|2) whose support is contained in B(0, κ+
0 ) and b±(k)

satisfying |b±(k)| ≲ ⟨k⟩−1 for all k ∈ R3. In particular, we obtain the following dispersive estimates:
for p ∈ [2, ∞),

∥Gosc
± ⋆x f∥Lp

x
≲ ⟨t⟩−3( 1

2 − 1
p )∥f∥

Lp′
x

,

∥Hosc
± ⋆x f∥Lp

x
≲ ⟨t⟩−3( 1

2 − 1
p )∥b±(i∂x)f∥

B
3(1− 2

p )
p′,2

,
(2.2)

with 1
p + 1

p′ = 1, with ∥ · ∥Bs
p,q

denoting the standard Besov spaces. In addition, letting χ0(k) be a
smooth cutoff function whose support is contained in {|k| ≤ 1}, for n ≥ 0 and p ∈ [1, ∞], there
hold

∥χ0(i∂x)∂n
x ∆−1

x Gr(t)∥Lp
x
≲ ⟨t⟩−4+3/p−n,

∥χ0(i∂x)∂n
x Hr(t)∥Lp

x
≲ ⟨t⟩−4/3+1/p−n/3,

(2.3)

and
∥(1 − χ0(i∂x))∂n

x Gr(t)∥Lp
x

+ ∥(1 − χ0(i∂x))∂n
x Hr(t)∥Lp

x
≲ ⟨t⟩−N , (2.4)

for some large N .

Having introduced the Green functions as in (1.10), we obtain the electric and magnetic po-
tentials in the physical space by inverting the Laplace–Fourier transform of the resolvent equa-
tions (1.8). Namely,

ϕ = (−∆x)−1G ⋆t,x ρ0 (2.5)
and

A = ∂tH(t) ⋆x A0 + H(t) ⋆x A1 + H ⋆t,x Pj0. (2.6)
for initial data A0, A1, where ρ0, j0 denote the charge and current densities by the free dynam-
ics (1.4). Next, using the representations in (2.1) on the Green functions, we may decompose the
potentials into oscillatory and regular components. To proceed, we shall solve the Vlasov–Maxwell
system (1.1), together with initial data

f|t=0 = fin(x, v), E|t=0 = Ein(x), B|t=0 = Bin(x), (2.7)

satisfying the following compatibility conditions

∇x · Ein =
∫
R3

fin(x, v) dv, ∇x · Bin = 0,

∫∫
fin(x, v) dxdv = 0. (2.8)

The initial data A0, A1 in (2.6) are computed by A0 = −∆−1
x ∇x × Bin and A1 = −Ein +

∇x∆−1
x ρ[fin].

The second main result established in [22] reads as follows.

Theorem 2.2. Let µ(⟨v⟩) be any sufficiently smooth and rapidly decaying equilibrium, and let ρ0, j0

be defined as in (1.4). Then, the electric and magnetic potentials ϕ, A to the linearized Vlasov–
Maxwell system (1.1) with sufficiently regular initial data (2.7)–(2.8) can be expressed as

ϕ =
∑

±
ϕosc

± (t, x) + ϕr(t, x),

A =
∑

±
Aosc

± (t, x) + Ar(t, x).
(2.9)

In addition, there hold the following decay estimates:

∥∇xϕosc(t)∥Lp
x
≲ ⟨t⟩−3(1/2−1/p), p ∈ [2, ∞),

∥∂α
x ∇xϕr(t)∥Lp

x
≲ ⟨t⟩−3(1−1/p)−|α|, p ∈ [1, ∞],

(2.10)

and
∥∂tA

osc(t)∥Lp
x

+ ∥∇x × Aosc(t)∥Lp
x
≲ ⟨t⟩−3(1/2−1/p), p ∈ [2, ∞),

∥∂α
x ∂tA

r(t)∥Lp
x

+ ∥∂α
x ∇x × Ar(t)∥Lp

x
≲ ⟨t⟩−4/3−|α|/3+1/p+δ, p ∈ [1, ∞].

(2.11)
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From the decay estimates on the potential functions established in Theorem 2.2, we immediately
obtain decay estimates on the electromagnetic fields through E = −∇xϕ − ∂tA and B = ∇x × A.
Observe that the leading dynamics is oscillatory and dispersive like a Klein–Gordon wave of the
form e±i

√
1−∆xt. On the other hand, the remainder has the property that derivatives in x gain extra

decay. Interestingly, the extra decay rate for the magnetic potential A is only of t−1/3 per extra
derivative, not t−1 as would be expected from the dispersion for the transport dynamics. This is
due to the emergence of a wave structure in the magnetic part due to the long range interaction,
see (1.23). We refer the interested readers to [22] for the complete proof of the above damping
results.

We shall end the article with some brief remarks on the literature, starting with the celebrated
work by Mouhot and Villani [29] who proved the nonlinear Landau damping on the torus Td for
analytic or some high Gevrey data. This was extended and the proof was simplified in [4] and
more recently in [17, 18]. These results were also adapted to the relativistic Vlasov–Poisson system
in [34, 35] on the torus. Let us also mention the works [3, 12, 32] which are concerned with the
regime of weak collisions, described by a Fokker–Planck operator for the former twos, and by a
Landau collisional operator for the latter.

The stability problem on the whole space is proven to be extremely rich both physically and
mathematically, including plasma oscillations or Langmuir’s oscillatory waves, survival threshold,
and Landau damping at the resonant frequency. For the screened Vlasov–Poisson system, plasma
oscillations and survival threshold are absent, and the large time dynamics is proved to be well
approximated by that of the free dynamics. This was first established by [5] via the Fourier approach
and latter by [20] via the Lagrangian approach and dispersive estimates in the physical space. The
results were sharpened in [23, 24] that include low dimensions. We also mention the work [25] which
treats a special equilibrium, for which the Landau damping and the phase mixing incidentally occur
at the same time scaling, see (1.14).

Systems including magnetic fields were less studied in the mathematical literature. We mention
the works [7, 11] which are concerned with the linearized Vlasov–Poisson on the torus, in the
presence of a constant magnetic field, in relation with the findings of [8]. For the study of the
linear stability of general equilibria, we refer to [27, 28]. In [19], we have considered the relativistic
Vlasov–Maxwell on the torus, and provided long (finite) time stability estimates, for well-prepared
data; long time has to be understood in terms of powers of the speed of light c in the regime
c → +∞.

Appendix A. Reformulation of dispersion functions

In this section, we reformulate the dispersion functions D(λ, k) and M(λ, k) defined as in (1.9).
Precisely, we obtain the following.

Lemma A.1. Let Υ be the maximal particle speed as in (1.15). For each k ̸= 0 and ℜλ > 0, we
may write the electric and magnetic dispersion functions in the following form

D(λ, k) = 1 + 1
|k|2

∫ Υ

−Υ

uκ(u)
−iλ/|k| + u

du,

M(λ, k) = λ2 + c2|k|2 − icλ

2|k|

∫ Υ

−Υ

q(u)
−iλ/|k| + u

du,

(A.1)

for some functions κ(u) and q(u) that are even and non-negative on [−Υ, Υ]. Explicitly, we have

κ(u) = −2πc2
∫ ∞

1/
√

1−u2/c2
µ′(s)s2 ds,

q(u) = 4πc4(1 − u2/c2)
∫ ∞

1/
√

1−u2/c2
µ(s)s ds.

(A.2)

Proof. Indeed, in view of (1.9) with ∇vµ = v̂µ′(⟨v⟩), we write the electric dispersion function as

D(λ, k) = 1 − 1
|k|2

∫
R3

ik · v̂

λ + ik · v̂
µ′(⟨v⟩)dv.
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For k ̸= 0, we introduce the change of variables v 7→ (u, w) defined by

u := k · v

|k|⟨v⟩
, w := v − (k · v)k

|k|2
, (A.3)

with u ∈ [−Υ, Υ] and w ∈ k⊥, the hyperplane orthogonal to k. We note that the Jacobian
determinant is

Ju,w = ⟨v⟩(1 − u2/c2)−1,

with ⟨v⟩ = ⟨w⟩/
√

1 − u2/c2. Therefore, we have

D(λ, k) = 1 + 1
|k|2

∫ Υ

−Υ

u

−iλ/|k| + u

(
−

∫
w∈k⊥

µ′
(

⟨w⟩√
1 − u2/c2

)
⟨w⟩

(1 − u2/c2)3/2 dw

)
du.

Letting κ(u) be the integral term in w ∈ k⊥, we obtain (A.1) for D(λ, k). In addition, we note
that we may parametrize the hyperplane k⊥ = R2 via polar coordinates with radius r = |w|, and
set s =

√
1 + r2/c2/

√
1 − u2/c2, giving

κ(u) = −
∫
R2

µ′
(

⟨w⟩√
1 − u2/c2

)
⟨w⟩

(1 − u2/c2)3/2 dw

= −2π

∫ ∞

0
µ′

( √
1 + r2/c2√
1 − u2/c2

) √
1 + r2/c2

(1 − u2/c2)3/2 rdr

= −2πc2
∫ ∞

1/
√

1−u2/c2
µ′(s)s2 ds,

as defined in (A.2). Similarly, note that Pkv̂ = ⟨v⟩−1Pkv = ⟨v⟩−1w and so |Pkv̂|2 = |w|2⟨v⟩−2 =
(1 − u2)|w|2⟨w⟩−2. Therefore, we may write

M(λ, k) = λ2 + c2|k|2 − icλ

2|k|

∫ 1

−1

1
−iλ/|k| + u

(
−

∫
R2

µ′
(

⟨w⟩√
1 − u2/c2

)
|w|2

⟨w⟩
√

1 − u2/c2
dw

)
du.

Letting q(u) be the integral term in w, we obtain (A.1) for M(λ, k). In addition, we compute

q(u) = −
∫
R2

µ′
(

⟨w⟩√
1 − u2/c2

)
|w|2

⟨w⟩
√

1 − u2/c2
dw

= −2π

∫ ∞

0
µ′

( √
1 + r2/c2√
1 − u2/c2

)
r2√

1 + r2/c2
√

1 − u2/c2
rdr

= −2πc4
∫ ∞

1/
√

1−u2/c2
µ′(s)

(
s2(1 − u2/c2) − 1

)
ds.

Thus, integrating by parts in s gives (A.2), upon noting that the boundary terms vanish. The
lemma follows. □

Appendix B. Spectral stability

In this section, we prove that there is no exponential growing mode of the linearized Vlasov–
Maxwell system (1.1). Namely, we obtain the following.

Proposition B.1. For any non-negative radial equilibria µ(⟨v⟩) in R3, the linearized system (1.1)
has no nontrivial solution of the form eλt+ik·x(f̃k, ϕ̃k, Ãk) with ℜλ ̸= 0 for any nonzero triple
(f̃k, ϕ̃k, Ãk).

Proof. In view of the resolvent equations (1.8), it suffices to prove that for each k ∈ R3, there are
no zeros of the electric or magnetic dispersion relation: D(λ, k) = 0 or M(λ, k) = 0 with ℜλ ̸= 0.
Indeed, starting with the dispersion function D(λ, k), we use (A.1) for λ = γ + iτ to write

D(γ + iτ, k) = 1 + 1
|k|2

∫ Υ

−Υ

uκ(u)
−iγ/|k| + τ/|k| + u

du

= 1 + 1
|k|2

∫ Υ

−Υ

u(τ/|k| + u)κ(u)
|−iγ/|k| + τ/|k| + u|2

du + iγ

|k|3

∫ Υ

−Υ

uκ(u)
|−iγ/|k| + τ/|k| + u|2

du.
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Now fix k ∈ R3, and suppose that D(γ + iτ, k) = 0 for some γ ̸= 0. Taking the imaginary part of
the above identity yields ∫ 1

−1

uκ(u)
|−iγ/|k| + τ/|k| + u|2

du = 0.

Plugging this identity into D(γ + iτ, k), we get

D(γ + iτ, k) = 1 + 1
|k|2

∫ Υ

−Υ

u2κ(u)
|−iγ/|k| + τ/|k| + u|2

du,

which never vanishes, since κ(u) ≥ 0 by Lemma A.1. That is, D(λ, k) never vanishes for ℜλ ̸= 0.
Similarly, we study the magnetic dispersion function M(λ, k). Using (A.1) for λ = γ + iτ , we
compute

M(γ + iτ, k) = γ2 − τ2 + 2iγτ + c2|k|2 + c|γ + iτ |2

2|k|2

∫ 1

−1

q(u)
|−iγ/|k| + τ/|k| + u|2

du

− ic(γ + iτ)
2|k|

∫ Υ

−Υ

uq(u)
|−iγ/|k| + τ/|k| + u|2

du.

Now suppose that M(γ + iτ, k) = 0 for some γ ̸= 0. The vanishing of the imaginary part gives

2τ − c

2|k|

∫ Υ

−Υ

uq(u)
|−iγ/|k| + τ/|k| + u|2

du = 0.

Plugging this identity into M(γ + iτ, k), we get

M(γ + iτ, k) = γ2 + τ2 + c2|k|2 + c|γ + iτ |2

2|k|2

∫ Υ

−Υ

q(u)
|−iγ/|k| + τ/|k| + u|2

du,

which again never vanishes, since q(u) ≥ 0 by Lemma A.1. That is, M(λ, k) never vanishes for
ℜλ ̸= 0. The proposition follows. □

Remark B.2. In fact, the results in Proposition B.1 hold for any non-negative radial equilibria
µ(⟨v⟩) without any monotonicity in dimensions d ≥ 3, while monotonicity is required for equilibria
in dimensions d = 1, 2.

Appendix C. Derivation of the survival threshold

In this section, we derive the survival threshold of wave numbers as introduced in Section 1.2, using
the new formulation in Lemma A.1. We first observe that at λ = iτ with |τ | < |k|Υ (namely, λ in
the continuous spectrum of the transport operator ∂t + v̂ · ∇x with v in the support of µ(⟨ · ⟩)), the
electric dispersion function can be computed from (A.1), using the Plemelj’s formula as ℜλ → 0+,
giving

D(iτ, k) = 1 + P.V.

∫ Υ

−Υ

uκ(u)
u + τ/|k|

du − iπτ

|k|
κ

(
τ

|k|

)
. (C.1)

This proves that D(iτ, k) is nonzero for 0 < |τ | < |k|Υ, since its imaginary part is nonzero. In
addition, D(0, k) = 1 + 1

|k|2

∫ Υ
−Υ κ(u) du, which is again nonzero, since κ(u) ≥ 0. Next, we study

the case when |τ | ≥ |k|Υ, for which the integrand in (A.1) has no singularity. Using the fact that
κ(u) is even in u, for λ = iτ , we write

D(iτ, k) = 1 − 1
|k|2

∫ Υ

−Υ

u2κ(u)
τ2/|k|2 − u2 du, (C.2)

for |τ |≥|k|Υ. Clearly, D(iτ, k) is a strictly increasing function in τ2 ∈ [|k|2Υ2, ∞] with D(±i∞, k) =
1 and

D(±i|k|Υ, k) = 1 − 1
|k|2

∫ Υ

−Υ

u2κ(u)
Υ2 − u2 du = 1 − κ2

0
|k|2

,

recalling the definition of κ0 in (1.16). That is, for |k| ≤ κ0, there is a unique τ∗(k) in [|k|Υ, ∞] so
that D(±iτ∗(k), k) = 0, while for |k| > κ0, D(iτ, k) never vanishes for all τ ∈ R. The zeros λ± =
±iτ∗(k) for |k| ≤ κ0 gives rise to purely oscillating modes, known as Langmuir’s oscillatory waves
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in the physical literature [33], which obey a Klein–Gordon type dispersion relation. See [22, 30] for
the rigorous proof of these results.

Appendix D. Klein–Gordon dispersion for magnetic potentials

In this section, we derive the Klein–Gordon type dispersion for the magnetic potential, using the
new formulation in Lemma A.1. Indeed, as in the previous section, we first consider the range of
λ = iτ with |τ | < |k|Υ. Using the Plemelj’s formula as ℜλ → 0+, we obtain from (A.1),

M(iτ, k) = −τ2 + c2|k|2 − cτ

|k|
P.V.

∫ Υ

−Υ

1
u + τ/|k|

q(u) du − iπτ

|k|
q

(
τ

|k|

)
(D.1)

which is nonzero for 0 < |τ | < |k|Υ, since its imaginary part is nonzero. In addition, M(0, k) =
c2|k|2 ̸= 0 for k ̸= 0. On the other hand, for |τ | ≥ |k|Υ, the integrand in (A.1) is no longer singular.
We can thus write

M(iτ, k) = −τ2 + c2|k|2 + cτ2

2|k|2

∫ Υ

−Υ

q(u)
τ2/|k|2 − u2 du,

upon using the fact that q(u) is even in u. Clearly, M(iτ, k) is a strictly decreasing function in
τ2 ∈ [|k|2Υ2, ∞] with M(±i∞, k) = −∞ and

M(±i|k|Υ, k) = (c2 − Υ2)|k|2 + cΥ2

2

∫ Υ

−Υ

q(u)
Υ2 − u2 du,

which is strictly positive, since Υ ≤ c and q(u) ≥ 0. That is, for all k ∈ R3, there is a unique
ν∗(k) in [|k|Υ, ∞] so that M(±iτ∗(k), k) = 0. In addition, ν∗(k) satisfies Klein–Gordon dispersion
properties for all k ∈ R3. See [22] for the rigorous proof of these results.
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