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Asymptotics for vectorial Allen–Cahn type problems

Fabrice Bethuel

Abstract

These notes present some recent results concerning the convergence of solutions to the elliptic
vectorial Allen–Cahn equation in dimension two as the parameter ε tends to zero, and its connections
to minimal surface theory in the weak sense of stationary varifolds. We first describe the results
obtained so far in the scalar theory, which can be considered as quite satisfactory, and provide some
ideas about the proofs and their main steps. We then present some adaptations necessary to handle
the vectorial case in dimension two.

1. The problem

1.1. The system of elliptic equations

We investigate the asymptotic behavior, as ε → 0 of families of solutions (uε)ε>0 to gradient-type
equations

−∆uε = −ε−2∇Vu(uε), on a domain Ω ⊂ RN , N ≥ 1, (VACε)

where 0 < ε < 1 represents a (small) parameter, uε denotes a map from the subdomain Ω of RN

into an euclidean space Rk, k ∈ N∗ and where V , the potential, is a map from Rk into R+, hence
scalar. In particular, equation (VACε) represents a system of k coupled scalar elliptic equations.
Solutions to (VACε) are critical points of the energy

Eε(u) =
∫

Ω
eε(u) =

∫
Ω

ε
|∇u|2

2 + V (u)
ε

, for u : Ω 7→ Rk. (1.1)

If V is convex, then Eε is strictly convex and non negative. Throughout, we will impose a bound
of the type

Eε(u) ≤ M0, (1.2)

for some constant M0 > 0. This bound will allow us to recover suitable compactness properties,
under specific assumptions on V .

Remark 1. For a strictly convex potential which is bounded below, solutions to (VACε) are
locally bounded. If one imposes a mild compactness assumption on the sequence (uε)ε>0, then one
may prove that

uε → σ, as ε → 0, (1.3)

where σ represents the unique minimizer. The speed of the convergence depends on the properties
of the potential near σ, in particular the second derivative.

Remark 2. The parabolic case

∂u

∂t
− ∆uε = −ε−2∇Vu(uε). (PVACε)

is also of great interest, but will not be discussed in details here.
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1.2. Assumptions on the potential V

The behavior of solutions to (VACε) depend crucially on properties of the potential V : Rk → R.
The main assumptions on the potential V in these notes are the following :

inf V = 0 and the set of minimizers Σ ≡ {y ∈ Rk, V (y) = 0} (H1)

is finite and contains at least two distinct elements, i.e.

Σ = {σ1, . . . ,σq} , q ≥ 2, σi ∈ Rk, ∀ i = 1, . . . , q.

Besides (H1), we impose a behavior at infinity, namely

V (x) −→
|x|→+∞

+∞. (H∞)

Assumption (H1) hence excludes in particular the case of a strict convex potential, for which the
infimum would be unique, as discussed in Remark 1. A potential with such properties is represented
in Figure 1.1.

V

1

2

3

Figure 1.1: Shape of the graph of V with three zeroes.

For potentials satisfying assumptions (H1) and (H∞), we may construct solutions which take
values, for small ε, close to different minimizers in Σ. Such a phenomenon is sometimes called
phase segregation, since it divides the domain in regions where the solution takes values near one
of the minimizers, creating interfaces between the minimizers. The geometric interpretation of this
interfaces is one of the central questions of the theory.

1.3. A classical scalar example: The Allen–Cahn potential

In the scalar case k = 1, a classical and typical example is given the Allen–Cahn potential:

V (s) = (1 − s2)2

4 , s ∈ R. (AC)

The minimizers here are hence σ1 = +1 and σ2 = −1, Σ = {+1, −1}
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2. One-dimensional problems N = 1

We first turn to the one-dimension case. It provides us with first examples yielding segregation. One
dimensional solutions turn out to be one of the building blocks for solutions in higher dimensions.
The study for N = 1 also highlights important differences between the scalar and the vectorial
case.

2.1. Heteroclinic connections

For Ω = R, we may assume, by scaling, that ε = 1, and (VACε) reduces to the second order ODE

−d2w

ds2 = ∇wV (w) on R, w(x) = u(εx). (ODE)

In view of the form (1.1) of the energy, finite energy solutions necessarily connect at ±∞ two
minimizers σ− and σ+: They are called profiles or heteroclinic connections, if σ− ̸= σ+, and
homoclinic connection otherwise. Multiplying (ODE) by dw

dx , we obtain the conservation law

d
dx

ξ = 0, where ξ(x) = V (w) − |w′|2

2 , for x ∈ R, (2.1)

so that the function ξ is constant. For profiles, the function ξ has to vanish, since the energy given
in (1.1) is assumed finite, so that one is led to the identity

|w′| =
√

2V (w), on R. (2.2)

2.2. The scalar case

In the scalar case, we may remove the absolute value in (2.2), which yields a first order equation

w′ = ±
√

2V (w), on R.

We may integrate this equation using standard separation of variables. One then shows that profiles
connect only nearby minimizers σ− and σ+, and that the solution is unique up to translations and
symmetries. For the Allen–Cahn potential, it is given by

w(s) = tanh
(

s√
2

)
.

2.3. The vectorial case

In contrast, in the vectorial case, the integration of the equation (ODE) is far from being straighfor-
ward. As a matter of fact, the problem of finding profiles is a very active field of research: Several
approaches have been proposed and results have been obtained recently see e.g. [2, 13, 14, 18],
among many others). However, there is no general result, both for existence and uniqueness. The
potential whose graph is given in Figure 2.1 possesses a symmetry according to one of the axis,
and has therefore two minimizing connections between the two minimizers (and most perhaps a
third one using moutain pass).

2.4. The limit ε → 0
We recover uε from w scaling back, that is setting uε(x) = w(x/ε), x ∈ R, so that uε solves
equation (VACε). We have the scaling law

Eε(wε) = E(w), for any ε > 0.

This motivates condition (1.2).
As seen on Figure 2.2 for the Allen–Cahn equation, the solution uε has now a steep slope at the

origin, of order C/ε. On the left of the origin, uε takes values close to −1, whereas on the right of
the origin, it takes values close to +1. The transition from one minimizer of V to another occurs
on a region of caracteristic size ε near the origin.

In the limit ε → 1, the sequence (uε)ε>0 converges to the function u⋆(x) = sgn(x).
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Graph	of	V w1

w2

Figure 2.1: Two symmetric minimizing heteroclinic connections joining the same minimizers.
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Figure 2.2: Graph of uε and phase segregation

3. Higher dimensional problems

In dimension N > 1, one expect similar phase segregation results, the interfaces being now codimen-
sion 1 hypersurfaces with area minimizing properties. These type of results have been establishes
in the scalar case k = 1.

3.1. An overview of the results for the scalar case

In the scalar case, the limit ε → 0 of solutions to (VACε) or (PVACε) is well understood. The
result can roughly be stated as follows: The domain Ω decomposes into regions where the solution
takes values either close to +1 or close to −1(for the Allen–Cahn potential). These two regions are
separated by interfaces of width ≃ ε. In the limit ε → 0, these interfaces converge to codimension 1
generalized minimal surfaces. Figure 3.1 shows a typical example in dimension two, where the
interface is a (slightly fatened) line. In the parabolic case (PVACε), the interfaces are moved by
mean curvature. In a simplest cases, near a core point x0 on the interface, one has (see e.g. [9])

uε(x1, x2, . . . , xN ) ≃
x1→x0,N

tanh
(

xN − x0,N√
2ε

)
,
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+1
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Figure 3.1: Interface near a regular point x0 in the scalar case, with an Allen–
Cahn type potential.

where the unit vector e1, e3, . . . , eN−1 are chosen to be tangent to the interface, and where the
unit vector eN is orthonormal to the interface. In the general case, there are also solutions which
correspond to gluing several such one-dimensional solutions, but we will not discuss this here.
Ultimately, the results in [9, 10] provide a rather simple picture of the solutions. They involve a
minimal surface, the solution may be represented as one-dimensional profiles glued on the surface
in the transversal direction, so that one is tempted to write the correspondance

solutions to (VACε) ∼ minimal surface + glued profiles. (3.1)
The general structure of solution is hence fairly well understood. As a matter of fact, the corre-
spondance goes to some extent in either way, since, conversely, given a minimal surface, one may
construct solutions to the scalar Allen–Cahn equation having the previous behavior (see e.g. [15]).

1 2

Transition	line	
+1

-1

Figure 3.2: Graph of uε at the interface near a regular point x0.

3.2. The vectorial case for N ≥ 2
One may wonder if similar results hold in the vectorial case. More precisely, given a family (uε)ε>0
of solutions to (VACε), with Eε(uε) ≤ M0, do we have:

(Q1) Is there concentration near a codimension 1 hypersurface (or rectifiable set) S⋆?

(Q2) It is the set S⋆ minimal in some suitable weak sense?

(Q3) Do we have, near a point x0 on this interface S⋆

uε(x1, x2, . . . , xN ) ≃
x1→x0,1

w

(
x1 − x0,1

ε

)
, (Profile)

where w : R → Rk is a one-dimensional profil? Uniqueness of w?

It turns out that the three questions are linked.
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3.3. (Q3): new profiles or pseudo-profiles
3.3.1. The Alama–Bronsard–Gui result

In [1], the authors construct a solution to the vectorial (VACε) equation on R2 does not rely on
a single profile, as for instance in (3.1). The assumption on the potential V involves a situation
similar to the one described in Figure 2.1:

There exists two minimizers σ+ and σ− of V , and two distinct minimizing solutions
w1 and w2 of the differential equation

−w′ = ∇wV (w) on R, w(x) −→
x→±∞

σ±.
(H4)

Alama, Bronsard and Gui provided a solution connecting the two profiles:

Theorem 1 ([1]). Under the above assumptions (H4), there exists a (locally minimizing) solution
u : R2 → Rk of (VACε) such that{

u(x1, x2) → w1(x2) as x1 → −∞
u(x1, x2) → w2(x2) as x1 → +∞

For ε > 0, consider the scaled map uε defined by uε(x) = u
(x

ε

)
, x ∈ R2 has then the following

properties:

• uε is locally minimizing for Eε

• concentrates on the line S⋆ = {(x1, 0), x1 ∈ R}, and{
uε(x1, x2) ≃ w1( x2

ε ) for x1 < 0.

uε(x1, x2) ≃ w2( x2
ε ) as x1 > 0.

The asymptotics (Profile) are verified on the half-lines, but not on the whole line.

3.3.2. Periodic Pseudo-profiles

With R. Oliver-Bonafoux, we construct solutions to (VACε) on the cylinder
ΛL = [−L, L] × R, where L > 0,

with periodic boundary conditions in the x1 direction, namely such that

u(−L, x2) = u(L, x2) and ∂u

∂x1
(−L, x2) = ∂u

∂x1
(L, x2), for any x2 ∈ R. (Periodic)

Theorem 2 ([6]). Under assumption (H4), there exists a constant L0 > 0, such that, if L > L0,
then there exists a (smooth) solution to −∆u = ∇uV (u) on ΛL such that (Periodic) holds and such
that

∂u

∂x1
̸= 0. (Transverse)

In view of condition (Transverse), the obtained solution is not derived from a 1D profile. The
proof is variational, and relies on a mountain-pass argument. Consider the set W = {u : ΛL → Rk,
E(u) < +∞, u(−L, x2) = u(L, x2)} and the number

cL = inf
p∈P

(
sup

s∈[0,1]
E(p(s))

)
,

where P denotes the set of all paths joining the maps u1 and u2 defined by
ui(x1, x2) = wi(x2), ∀ x1 ∈ [−L, L], x2 ∈ R.

w1 and w2 being the two minimizing heteroclinic connections. It turns out that, thanks to the
mountain-pass Lemma, cL is a critical value, if L is large enough. □

The scaled map on R2 defined for x = (x1, x2) by

uε(x) = u

(
x − (L(2N − 1)εe1

ε

)
, if x1 ∈ [2LNε, 2L(N + 1)ε] (3.2)
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solves (VACε) on R2. Notice that, for the transversal derivative

ε

∣∣∣∣∂uε

∂x1

∣∣∣∣2 ⇀ µ⋆,1,1 ̸= 0,

where µ⋆,1,1 = cH1(D), D = {(x1, 0), x1 ∈ R}, for some constant c > 0.

Figure 3.3: Graph of uε given in (3.2). The map does not involve a 1D-profile, but
rather a periodic structure of size 2Lε.

3.4. Q1: Concentration on lower dimensional sets
The case of minimizing solutions concentration on minimal surfaces has been established in [4,
8, 12]. Concentration for arbitrary stationary solutions is still a widely open subject. Only results
available for N = 2, i.e. Ω ⊂ R2. Recall that we consider a family (uε)0<ε≤1 of solutions of the
equation (VACε) satisfying the natural energy bound Eε(vε) ≤ M0, where M0 > 0 is given.

Theorem 3 ([5]). There exists a subset S⋆ of Ω, and a subsequence (εn)n∈N tending to 0 such
that the following holds:

(i) S⋆ is closed, rectifiable of dimension 1, with locally a finite number of connected compo-
nents and such that H1(S⋆) ≤ CH M0.

(ii) Let U⋆ = Ω \ S⋆, and (Ui
⋆)i∈I be the connected components U⋆. For i ∈ I, there exists

σi ∈ Σ such that
uε → σi uniformly on every compact subset of Ui

⋆.

=	interface

=	Minimizer

of	V

=
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The interface have a very simple structure, since they are merely an union of segments, hence
locally minimizing.

Theorem 4 ([5]). There exists a set E⋆ ⊂ S⋆ such that H1(E⋆) = 0 and such that, for x0 ∈ S⋆\E⋆,
the set S⋆ is, locally near x0, a segment. More precisely, there exists a unit vector e⃗x0 and a radius
r0 > 0, depending on x0, such that

S⋆ ∩ D2(x0, r0) = (x0 − r0e⃗x0 , x0 + r0e⃗x0) . (3.3)

The set E⋆ is the set of singular points, which is nonempty in general. The proof of Theorem 4 is
related is related to the presence of measures concentrating on S⋆ and their stationarity properties.
Consider the positive measure ζε defined on Ω by

ζε ≡ V (uε)
ε

dx, so that ζε(Ω) ≤ M0. (3.4)

so that the family of measures (ζε)ε>0 is bounded. Passing possibly to a further subsequence, we
have

ζεn ≡ V (uεn
)

εn
dx ⇀ ζ⋆, in the sense of measures on Ω, as n → +∞, (3.5)

It turns out that the measure ζ⋆ concentrates on S⋆, and that it is absolutely continuous with
respect to the H1-measure on S⋆. This property implies that the measure ζ⋆ is determined by the
set S⋆ and the density Θ⋆, and we have

ζ⋆ = Θ⋆(H1 S⋆) = Θ⋆dλ, where dλ = H1 S⋆. (3.6)

Theorem 5 ([5]). The rectifiable one-varifold V(S⋆,Θ⋆) corresponding to the measure ζ⋆ is sta-
tionary.

The statement is equivalent to the following : Given any smooth vector field X⃗ ∈ C∞
c (Ω,R2) on

Ω with compact support, the following identity holds∫
Ω

div
TxS⋆

X⃗dζ⋆ = 0. (3.7)

For x ∈ S⋆ \ E⋆, the number div
TxS⋆

X⃗(x) is well-defined by

div
TxS⋆

X⃗(x) =
(

e⃗x · ∇⃗X⃗(x)
)

· e⃗x, for x ∈ S⋆. (3.8)

Identity (3.7) expresses a local stationarity property of the integral of ζ⋆ with respect to local
deformation, and for smooth sets S⋆, is equivalent, in dimension one, to the fact that the curvature
vanishes. Allard and Almgren showed in [3] that such one-dimensional varifolds have a network
structure and are the sum of segments with constant densities, so that Theorem 4 follows from
Theorem 5. A typical example of a stationary one-varifold with a singularity at 0 is given by
the union of d half-lines, intersecting at the origin, with constant densities. Let e⃗1, e⃗2, . . . , e⃗d be
d-distinct unit vectors in R2. Set

S⋆ =
d⋃

i=1
Hi, where for i = 1, . . . , d, we set Hi = {te⃗i, t ≥ 0} , (3.9)

and let θ1, . . . , θd be d positive numbers. If θi represents the density on Hi (which is hence constant
there), then V(S⋆, Θ) is a stationary one-dimensional rectifiable varifold if and only

d∑
i=1

θie⃗i = 0. (3.10)
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Such singularities may actually occur as limits of (VACε) solutions as constructed in [7, 17].

We next present the ideas of the proofs in the scalar case, and then turn to the vectorial case
in dimension two.

4. About the proofs in the scalar case

4.1. The discrepancy function
The discrepancy function ξε defined in (2.1) may be generalized in higher dimensions as

ξε(uε) = 1
ε

V (uε) − ε
|∇u|2

2 . (4.1)

Recall that for N = 1 we have, for finite energy solutions ξε = 0. We cannot expect a similar result
in higher dimension. However, following earlier results by Sperb, Payne, Stackgold, and Serrin, L.
Modica proved the following groundbreaking result:

Theorem 6 ([11]). Let V ∈ C2(R) be non-negative, f = V ′, and v ∈ C3(RN ) be a bounded
solution to ∆u = f(u)(= V ′(u)). Then

ξ(x) ≡ V (u(x)) − |∇u(x)|2 ≥ 0, ∀ x ∈ RN .

The idea of the proof relies on the inequality

−|∇u|2∆ξ ≥ 1
2 |∇ξ|2 − 2f(u)∇u.∇ξ (4.2)

and the use of a suitable maximum principle. For general domains and general solutions, one might
still obtain a slightly weaker version: ξ ≿ 0 (in some suitable sense).

4.2. Monotonicity formulas
Let uε be a solution to (VACε). For r > 0, x0 ∈ Ω such that B(x0, r) ⊂ Ω, we set Eε(uε,B(x0, r)) =∫
B(x,r) e(uε(x))dx and Vε(u,B(x, r)) =

∫
B(x,r) ε−1V (uε(x))dx. We have the identity

d
dr

(
1

rN−2 Eε(uε,B(x0, r))
)

= 2Vε(u,B(r))
rN−1 + ε

rN−2

∫
∂B(r)

∣∣∣∣∂u

∂r

∣∣∣∣2 ≥ 0, (4.3)

which holds for any potential, even in the vectorial case. It implies in particular that the local
energy density is smaller then CrN−2, i.e.

Eε (uε,B(x0, r)) ≤ Crn−2, for r ≤ r0, C = Eε(u,B(x0r0)), for any r0 s. t B(x0, r0) ⊂ Ω.

As we will see, together with the clearing-out property which we will introduce later, it allows
concentration on sets of dimension not smaller then N − 2 (see Figure 4.1).

For concentration on N − 1 dimensional sets, the stronger monotonicity formula
d
dr

(
1

rN−1 Eε

(
uε,BN (x0, r)

))
≿ 0, for any x0 ∈ Ω, (4.4)
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R

Figure 4.1: N − 1 concentration on a surface in R3.

is more appropriate. Starting from (4.3), we derive
d
dr

(
1

rN−1 Eε(u,B(r))
)

= 1
rN−1

d
dr

(Eε(u,B(r))) − N − 1
rN

(Eε(u,B(r))

= 1
rN

(2Vε(u, B(r)) − Eε(u,B(r)) + 1
rN−1

∫
∂B(r)

|∂u

∂r
|2

= 1
rN

∫
B(r)

ξε(u) + 1
rN−1

∫
∂B(r)

|∂u

∂r
|2 ≿ 0

(4.5)

Formula (4.4) has been established in [9, 10] in the scalar case.

u(x)

Figure 4.2: The map uε takes values near σ on B
(
x0, 3r

4
)
. Hence, we are in a

situation similar to a convex potential, yielding improved estimates.

4.3. The Clearing-out property in the scalar case
As a direct consequence of the monotonicity formula, we have the following:

Lemma 1. Given any µ0 > 0, ∃ η0 > 0 such that, if for r ≥ ε, we have
1

rN−1 Eε

(
uε,BN (x0, r)

)
≤ η0 =⇒ ∃ σ ∈ Σ, s.t |uε(x) − σ| ≤ µ0, x ∈ B

(
x0,

3r

4

)
.

Proof. Assume by contradiction that there exists x1 ∈ B(x0, 3r
4 ) such that

|u(x1) − σ| > µ0, ∀ σ ∈ Σ. (4.6)

Set Eε(r) = Eε(u,B(x1, r)). In view of monotonicity, we have, for any ε ≤ r1 ≤ r
4

r
−(N−1)
1 Eε(r1) ≤

(r

4

)−(N−1)
Eε

(r

4

)
≤ r−(N−1)4N−1Eε(r) ≤ 4N−1η0.

Take r1 = ε. This yields

ε−N

∫
B(x1,ε)

V (u(x)) dx ≤ 4N−1η0. (4.7)
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It follows from (4.6) that V (u(x1)) ≥ β0 > 0, where β0 is some constant. Invoking the bound
|∇u| ≤ K/ε, we obtain |V (u(x)) − V (u(x1))| ≤ CγK, for x ∈ B(x1,γε). If 0 < γ < 1 is sufficiently
small, then V (u(x)) ≥ β0

2 , for x ∈ B(x1,γε). Integrating, we are led to∫
B(x1,γε)

V (u(x))dx ≤ C
β0

2 γN εN ,

Combining with(4.7), we are led to C β0
2 γN ≤ 4N−1η0, a contradiction if η0 is chosen sufficiently

small. □

By elliptic estimates, we are finally led to a clearing out result for the energy:

Lemma 2 ([10]). ∃ η0 > 0 such that, if for r ≥ ε, then
1

rN−1 Eε

(
uε,BN (x0, r)

)
≤ η0 =⇒ Eε(uε,B(x0,

r

2)) ≤ C exp
(

−
√

λ1r

32ε

)
−→
ε→0

0.

4.4. Limiting measures
For ε > 0, we define the associated energy measure νε = eε(uε)dx so that νε(Ω) ≤ M0. By
compactness, we have, up to a subsequence εn → 0, in the sense of measures

νεn
⇀ ν⋆ on Ω as n → +∞,

εnuεn xi
· uεn xj

⇀ µ⋆,i,j as n → +∞,

ζεn ⇀ ζ⋆, as n → +∞, where ζε = ε−1V (uε)dx.

(4.8)

We will see next how our previous results translate to the limiting measure ν⋆. Passing to the limit
in the integrated form of the monotonicity formula, we obtain

Proposition 1 (monotonicity for the measure). Assume k = 1 and let 0 < r1 < r2. We have the
(n − 1) monotonicty for ν⋆

r−N+1
1 ν⋆

(
B(r1)

)
≤ r−N+1

2 ν⋆

(
B(r2)

)
. (4.9)

This property implies that the measure concentrates on sets of dimension at least (N − 1).
Similarily, passing to the limit ε → 0 in Lemma 2, we deduce that the measure ν⋆ verifies the
following (N − 1) clearing-out property

Proposition 2. Let x0 ∈ Ω and r > 0 be given such that B(x0, r) ⊂ Ω. There exists a constant
η0 > 0 such that, if we have

ν⋆

(
B(x0, r)

)
rN−1 < η0, then it holds ν⋆

(
B
(

x0,
r

2

))
= 0. (4.10)

This property implies concentration on sets of dimension ≤ N − 1. We are hence led to consider
the (N − 1) -dimensional lower density of the measure ν⋆ defined, for x0 ∈ Ω, by

e⋆(x0) = lim inf
r→0

ν⋆

(
B(x0, r)

)
rN−1 and e⋆(x0) = lim sup

r→0

ν⋆

(
B(x0, r)

)
rN−1 . (4.11)

It follows from the monotonicity formula (4.9) that

0 ≤ e⋆(x0) = e
⋆(x0) ≤ r−N+1

0 ν⋆

(
B(x0, r0)

)
, where r0 = dist(x0, ∂Ω). (4.12)

We define the set S⋆ as the concentration set for the measure ν⋆. More precisely, we set
S⋆ = {x ∈ Ω, e⋆(x0) ≥ η0}, (4.13)

where η0 > 0 is the constant of the clearing-out. From its definition, the set S⋆ is closed, and by
a standard covering argument, we obtain thanks to Proposition 2 that, for some constant CH > 0,

HN−1(S⋆) ≤ CHM0.

Relations (4.12) together with the clearing-out lemma combined with a deep result by D. Preiss [16],
allows to show that S⋆ is rectifiable. Recall that rectifiability implies that S⋆ there exists an ap-
proximate tangent hypersurface TxS⋆ for HN−1 almost every x ∈ S⋆. The measure ν⋆ is absolutely
continuous with respect to dλ, the HN−1 measure on S⋆, so that one may write ν⋆ = e⋆ dλ, where
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e⋆ is locally bounded in view of (4.12), hence an integrable function on S⋆. Going to the limit in
the discrepancy, one may also prove a limiting discrepancy relation, quite analogous to the 1D case

2ζ⋆ ≥
k∑

i=0
µ⋆,i,i. (4.14)

4.5. S⋆ is a weak-minimal surface
Recall that a submanifold M of dimension m is said to be minimal if its a critical point of the
area functional A(m) =

∫
M

dHm. The related Euler Lagrange equation writes H⃗M (x) = 0, for any
x ∈ M, where H⃗M (x) denotes the mean-curvature vector. This can be recast in an integral form as∫

M

div
TxM

X⃗dHm = 0, ∀ X⃗ ∈ C∞
c (RN ,RN ). (4.15)

an identity which makes sense for rectifiable sets. A related relation for S⋆ is derived using the
stress-energy tensor αij,ε = eε(uε)δi,j − ∂uε

∂xi
· ∂uε

∂xj
which satisfies, thanks to (VACε)∫

Ω
αij,ε

∂Xj

∂xi
= 0, ∀ X⃗ ∈ C∞

c (Ω,Rn),

and which expresses the fact that the energy of the solution uε is stationary with respect to
variations of the domain. Setting Aε =

(
Id − ∇uε⊗∇uε

eε(uε)

)
, and passing to the limit εn → 0, we define

a limiting matrix-valued measure A⋆ satisfying the relation∫
Ω

Ai,j,⋆
∂Xj

∂xi
dν⋆ = 0, ∀ X⃗ ∈ C∞

c (Ω,RN ) (4.16)

Notice that A⋆ symmetric, A⋆ ≤ Id and Tr(A⋆) = N − 1. Using these facts, one may show that∫
S⋆

div
TxS⋆

X⃗e⋆dHN−1 = 0, (4.17)

which is, up to the presence of the density e⋆, similar to (4.15). A couple (S⋆, e⋆) verifiying
relation (4.17) is called a stationary varifold.

4.6. Summary of methods in the scalar Allen–Cahn case
Thanks to the sign of the discrepancy, the chain of arguments in the scalar case goes as follows:
sign of discrepancy =⇒ monotonicity =⇒ clearing-out, whereas{clearing out + monotonicity =⇒ concentration on N − 1 dimensional sets

monotonicity =⇒ (Preiss) rectifiability of concentration set

and sign of discrepancy + stress-energy tensor
⇓

stationary sets or motion by mean-curvature

Conclusion: Sign of discrepancy is crucial!

Turning to the vectorial Allen–Cahn equation, the main difficulty is that the discrepancy function
has no sign, in general, as the existence of periodic pseudo-profiles shows. Hence, the chain of
argument used in the scalar case is broken, in particular there is no monotonicity formula for
solutions to (VACε). New ideas are therefore required!

5. On the proofs in the vectorial case

5.1. Clearing-out
A central part of the argument and the starting point is to establish the “clearing-out” statement
remains true.
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Theorem 7. The statement of Proposition 2 remains true for N = 2 and k ≥ 2. Consequently,
the set S⋆ defined in (4.13) is closed and such that H1(S⋆) ≤ CH M0.

As already mentioned, whereas the clearing-out result is a rather direct consequence, in the
scalar case, of the monotonicity formula, the proof of Theorem 7 has to circumvent the absence of
monotonicity formula at the level of the PDE. It relies merely on elliptic PDE methods, some of
which are quite specific to dimension two.

5.2. Rectifiability
Proposition 3. The set S⋆ is rectifiable.

The argument for establishing the rectifiability of S⋆ in Proposition 3 is specific to 1-dimensional
sets, and relies on the following property: a compact connected set of dimension 1 is rectifiable.

5.3. Stationarity and the Hopf Differential
In dimension two, we may recast the stress-energy tensor as the complex-valued measure referred
to as the limiting Hopf differential

ω⋆ = (µ⋆,1,1 − µ⋆,2,2) − 2iµ⋆,1,2, (5.1)

where the measures µ⋆,i,j have been defined in (4.8). Notice that, since the measures µ⋆,i,j depend
on the choice of orthonormal basis, the expression of the Hopf differential also strongly depends
on this choice. The measures ζ⋆ and ω⋆ are related in view as follows.

Lemma 3. We have, in the sense of distributions,
∂ω⋆

∂z̄
= 2∂ζ⋆

∂z
in D′(Ω). (5.2)

Relation (5.2) is equivalent to the stress-energy tensor identity (4.16), and the two-dimensional
analog of the conservation law (2.2) for the ordinary differential equation.

At this stage, we only know that the measures are supported by S⋆, but we do not know that
they are absolutely with respect to H1 measure. Hence we need to decompose the measures into
absolutely continuous parts with respect to dλ = H1 S⋆ and singular parts

µ⋆,i,j = µs
⋆,i,j + µac

⋆,i,j with µs
⋆,i,j ⊥ µac

⋆,i,j and ζ⋆ = ζs
⋆ + ζac

⋆ , with ζs
⋆ ⊥ ζac

⋆ , (5.3)

where the measures µac
⋆,i,j and ζac

⋆ are absolutely continuous with respect to the measure dλ =
H1 S⋆. Relations (5.3) imply that there exists a set B⋆ ⊂ S⋆ such that H1 S⋆(B⋆) = 0 and

νs
⋆(S⋆ \ B⋆) = 0, ζs

⋆(S⋆ \ B⋆) = 0, and µs
⋆,i,j(S⋆ \ B⋆) = 0, for i, j = 1, 2. (5.4)

Since, by construction, the measures ζac
⋆ , νac

⋆ and µac
⋆,i,j are absolutely continuous with respect to

dλ, there exist functions Θ⋆, e⋆ and m⋆,i,j defined on S⋆, such that we have

ζac
⋆ = Θ⋆ dλ,νac

⋆ = e⋆ dλ, and µac
⋆,i,j = m⋆,i,jdλ, (5.5)

Let A⋆ denote the set of points of S⋆ having no approximate tangent line. We introduce a third
class of exceptional points, the set C⋆, defined as the complementary of the set of Lebesgue points
for the densities of the measures µac

⋆ , ζac
⋆ ,µac

⋆,i,j with respect to dλ = H1 S⋆. The set S⋆ \ C⋆,
then corresponds to the intersection of the set of Lebesgue’s points of the functions Θ⋆, e⋆ and
m⋆,i,j . We consider the union of all exceptional points

E⋆ = A⋆ ∪ B⋆ ∪ C⋆, (5.6)

which is precisely the set appearing in Theorem 4. We first describe properties of the absolutely
continuous part.

Proposition 4. Let x0 ∈ S⋆ \ E⋆. Assume that the orthonormal frame (e1, e2) is chosen so that
e1 = e⃗x0 . We have the identities, for the functions Θ⋆, m⋆,i,j defined in (5.5),{

2Θ⋆(x0) = m⋆,2,2(x0) −m⋆,1,1(x0) and
m⋆,1,2(x0) = 0.

(5.7)
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Remark 3. Let ωac
⋆ =

(
µac

⋆,1,1 − µac
⋆,2,2

)
−2iµac

⋆,1,2 denote the absolutely continuous part of ω⋆ with
respect to dλ. As mentioned, the expression of ωac

⋆ depends on the basis. For a given orthonormal
basis (e1, e2), we have the identity

ωac
⋆ = −2 exp(−2iγ⋆)ζac

⋆ = −2(cos 2γ⋆ − i sin 2γ⋆)ζac
⋆ , (5.8)

where γ⋆(x) ∈ [− π
2 , π

2 ] denotes, for x ∈ S⋆ \ E⋆, the angle between e1 and e⃗x0 .

5.4. Monotonicity for ζ⋆ and its consequences

The next important step in the proof of the theorems is to show that the singular part of all
measures introduced so far vanish. We first establish this statement for the measure ζ⋆. Our
argument involves a new ingredient, the monotonicity formula for ζ⋆, which actually directly yields
the absolute continuity of ζ⋆ with respect to H1 S⋆.

Proposition 5. Let x0 ∈ Ω, let ρ > 0 be such that D2(x0, ρ) ⊂ Ω. If 0 < r0 ≤ r1 ≤ ρ, then we
have the inequality

ζ⋆(D2(x0, r1))
r1

≥ ζ⋆(D2(x0, r0))
r0

. (5.9)

For every x0 ∈ Ω the quantity ζ⋆(D2(x0,r))
r has a limit when r → 0 and we have the estimate

Θ⋆(x0) = lim
r→0

ζ⋆(D2(x0, r))
r

≤ ζ⋆(D2(x0, ρ))
ρ

≤ M0

d(x0, ∂Ω) . (5.10)

The measure ζ⋆ is hence absolutely continuous with respect to the H1-measure on S⋆.

The starting point of the proof of Proposition 5 is a monotonicity formula for solutions uε to
(VACε) involving the potential V (uε), for 0 < r0 < r1 ≤ ρ such that D2(x0, ρ) ⊂ Ω

ζε(D2(x0, r1))
r1

− ζε(D2(x0, r0))
r0

=
∫
D2(x0,r1)\D2(x0,r0)

1
4r

dNx0,ε, (5.11)

with r = |x − x0|, and where we have set

Nx0,ε =
(

2
ε

V (uε) − εr−2
∣∣∣∣∂uε

∂θ

∣∣∣∣2 + ε

∣∣∣∣∂uε

∂r

∣∣∣∣2
)

dx.

Here (r, θ) denote radial coordinates, so that x1 − x0,1 = r cos θ and x2 − x0,2 = r sin θ. Passing to
the limit ε → 0 in identity (5.11), we obtain:

Lemma 4. Let x0 ∈ Ω, let ρ > 0 and assume that D2(x0, ρ) ⊂ Ω. For almost every radii 0 < r0 <
r1 ≤ ρ, we have the identity

ζ⋆(D2(x0, r1))
r1

− ζ⋆(D2(x0, r0))
r0

=
∫
D2(x0,r1)\D2(x0,r0)

1
4r

dN
x0,⋆

(5.12)

where N
x0,⋆

= 2ζ⋆ − r−2µ⋆,θ,θ + µ⋆,r,r, with{
µ⋆,r,r = cos2 θµ⋆,1,1 + sin2 θµ⋆,2,2 + 2 sin θ cos θµ⋆,1,2 and

r−2µ⋆,θ,θ = sin2 θµ⋆,1,1 + cos2 θµ⋆,2,2 − 2 sin θ cos θµ⋆,1,2.
(5.13)

The next step in the proof of Proposition 5 is the fact that, as a consequence of Proposition 4,
the absolutely continuous part of N⋆ is non-negative. We then perform a few manipulations which
allow to get rid of the singular part in (5.9), and lead to the completion of the proof of Proposition 5.

In order to prove that ν⋆ is also absolutely continuous with respect to dλ, we will invoke the
fact that ν⋆ is “dominated” by the measure ζ⋆. Whereas the reverse statement is straightforward,
since we have the inequality ζ⋆ ≤ ν⋆, the fact that ν⋆ is “dominated” by the measure ζ⋆ is a
consequence of several estimates at the ε-level, requiring some PDE analysis.
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5.5. A new discrepancy relation
In view of the previous results, we may now write Proposition 4 as:

Proposition 6. Let x0 be a regular point of ∈ S⋆. Assume that the orthonormal frame (⃗e1, e⃗2) is
choosen so that e⃗1 = e⃗x0 . We have locally near x0 the identity

2ζ⋆ = µ⋆,2,2 − µ⋆,1,1 and µ⋆,1,2(x0) = 0.

2

1

x0

Remark 4. In the scalar case, one obtains µ⋆,1,1 = µ⋆,1,2 = 0 so that ω⋆ = µ⋆,2,2 = 2ζ⋆.
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