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A Liouville type theorem
for steady-state Navier-Stokes equations

Gregory Seregin

Abstract

A Liouville type theorem is proven for the steady-state Navier-Stokes equations. It
follows from the corresponding theorem on the Stokes equations with the drift. The drift is
supposed to belong to a certain Morrey space.

1. The Main Result

The classical Liouville type theorem for the stationary Navier-Stokes equations can be stated as
follows: show that any bounded solution to the system

u · ∇u−∆u = ∇p, div u = 0 (1.1)
is constant. This problem has not been solved yet and even it is not clear if it has a positive answer.

Another popular problem is to show that any solution to system (1.1), satisfying two conditions:∫
R3

|∇u|2dx <∞. (1.2)

and
u(x)→ 0 as |x| → ∞, (1.3)

is identically equal to zero. Unfortunately, it is still unknown whether this statement is true or
not.

However, some attempts have been made to solve the above or related problems. One of the
best results in that direction can be found in [4] where it is shown that the assumption

u ∈ L 9
2
(R3) (1.4)

implies u = 0. Very recently, condition (1.4) has been improved logarithmically in [3].
Another set of admissible functions for solutions to (1.1), in which the Liouville type theorem

is valid, has been described in [9]. To be precise, any solution to (1.1), obeying the inclusion
u ∈ L6(R3) ∩BMO−1(R3), (1.5)

is identically equal to zero.
For more Liouville type results, we refer the reader to interesting papers [6], [7], [2], and [1] and

references there.
Our short note is inspired by paper [8] by Nazarov-Uraltseva about properties of solutions to

elliptic and parabolic linear equations with divergence free drift. Although their approach works
for scalar equations only, similar assumptions on the drift occur in the vectorial case as well. We
formulate our result as a statement of the linear theory, considering the following steady-state
Stokes system with the drift

u · ∇v −∆v = ∇q, div v = 0, div u = 0. (1.6)
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Theorem 1.1. Suppose that smooth functions u and v satisfy (1.6) and two additional conditions:

M := sup
R>0

R1− 3
q ‖u‖Lq,∞(B(R)) <∞ (1.7)

with 3/2 < q ≤ 3 and
N := sup

R>0
R

1
2−

3
s ‖v‖s,B(R) <∞ (1.8)

with 2 ≤ s ≤ 6. Then v ≡ 0 in R3.

Here, Lq,∞(Ω) stands for a weak Lebesgue space, which is a particular Lorentz space Lq,r(Ω) and
Lq,q(Ω) = Lq(Ω) is a usual Lebesgue space. And finally we use the abbreviation: ‖f‖s,ω = ‖f‖Ls(ω).

It is an interesting question to understand difference between above conditions (1.4) and (1.7),
(1.8) for u = v. To this end, assume that there exists a divergence free field u having the following
bound from above:

|u(x)| ≤ 1
|x′|+ 1

1
(|x3|+ 1) 2

9
.

Then condition (1.7) holds if q is not equal to 2 and condition (1.8) holds with s = 6 while condition
(1.4) is violated.

2. Proof of Main Result

2.1. Caccioppoli Type Inequality
Let 0 < R < 2 and let a non-negative cut-off function ϕ ∈ C∞0 (B(R)) satisfy the following
properties: ϕ(x) = 1 in B(r), ϕ(x) = 0 out of B(R), and |∇ϕ(x)| ≤ c/(R−r) for any 1 ≤ r < R ≤ 2.
We let u = v − [v]B(R), where [v]B(R) is the mean value of v over the ball of radius R centred at
the origin.

A given exponent q, satisfying conditions of Theorem 1.1, see (1.7), one can find a constant
c0(q) and a function wR that is smooth in B(2), vanishes outside B(R) and satisfies the identity
divwR = ∇ϕ · v and the inequality

‖∇wR‖L2q′,2(B(R)) ≤ c0‖∇ϕ · v‖L2q′,2(B(R)) ≤
c0

R− r
‖v‖L2q′,2(B(R)). (2.1)

Moreover, by interpolation and Hardy-Littlewood-Sobolev inequality, we also have a bound for the
right hand side of (2.1):

‖v‖L2q′,2(B(R)) < c(q)‖v‖1− 3
2q

2,B(R)‖∇v‖
3

2q

2,B(R). (2.2)

Now, let us test the first equation in (1.6) with the function ϕv − wR, integrate by parts in
B(R), and find the following identity∫
B(R)

ϕ|∇v|2dx = −
∫

B(R)

∇v : (∇ϕ⊗ v)dx+
∫

B(R)

∇wR : ∇vdx

−
∫

B(R)

(u · ∇v) · ϕvdx+
∫

B(R)

(u · ∇v) · wRdx = I1 + I2 + I3 + I4.

I1 can be estimated easily. As a result, the below bound is valid:

|I1| ≤
c

R− r
‖∇v‖2,B(R)‖v‖2,B(R).

As to I2, by Hölder inequality, we have

|I2| ≤ ‖∇v‖2,B(R)‖∇wR‖2,B(R) = ‖∇v‖2,B(R)‖∇wR‖L2,2(B(R))

≤ ‖∇v‖2,B(R)‖∇wR‖L2q′,2(B(R))‖1‖L2q,∞(B(R)) ≤ cR
3

2q ‖∇v‖2,B(R)‖∇wR‖L2q′,2(B(R)).

Now, taking into acount (2.1) and (2.2), one can derive from the latter estimate the following:

|I2| ≤ c‖∇v‖2,B(R)
R

3
2q

R− r
‖v‖1− 3

2q

2,B(R)‖∇v‖
3

2q

2,B(R) ≤ c
R

R− r
‖∇v‖1+ 3

2q

2,B(R)

( 1
R
‖v‖2,B(R)

)1− 3
2q

.
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Let us start evaluation of I3 with integration by parts that gives

I3 = 1
2

∫
B(R)

|v|2u · ∇ϕdx.

Hence,

|I3| ≤
c

R− r
‖u‖Lq,∞(B(R))‖|v|2‖Lq′,1(B(R)) ≤

c

R− r
‖u‖Lq,∞(B(R))‖v‖2

L2q′,2(B(R))

≤ c

R− r
‖u‖Lq,∞(B(R))‖v‖

2(1− 3
2q )

2,B(R) ‖∇v‖
2 3

2q

2,B(R) ≤ c
R

R− r
M0

( 1
R2 ‖v‖

2
2,B(R)

)1− 3
2q ‖∇v‖2 3

2q

2,B(R),

where
M0 = sup

0<R<2
R1− 3

2q ‖u‖Lq,2(B(R)).

The last term can be estimated in a similar way. Indeed, integrating by parts and applying
Hölder inequality,

|I4| =
∣∣∣ ∫
B(R)

(u · ∇wR) · vdx
∣∣∣ ≤ ‖u‖Lq,∞(B(R))‖|∇wR||v|‖Lq′,1(B(R))

≤ ‖u‖Lq,∞(B(R))‖∇wR‖L2q′,2(B(R))‖v‖L2q′,2(B(R))

≤ c

R− r
‖u‖Lq,∞(B(R))‖|v|2‖Lq′,1(B(R)).

The right hand side of the latter inequality has been already estimated. Hence, we find

|I4| ≤ c
R

R− r
M0

( 1
R2 ‖v‖

2
2,B(R)

)1− 3
2q ‖∇v‖2 3

2q

2,B(R).

Summarising four above estimates, we show

f(r) ≤ c R

R− r
f

1
2 (R)

( 1
R2 ‖v‖

2
2,B(R)

) 1
2 + c

R

R− r
(f(R))

1
2 (1+ 3

2q )
( 1
R2 ‖v‖

2
2,B(R)

) 1
2 (1− 3

2q )

+ c
R

R− r
M0

( 1
R2 ‖v‖

2
2,B(R)

)1− 3
2q (f(R))

3
2q ,

where
f(R) = ‖∇v‖2

2,B(R).

For any 1 ≤ R ≤ 2,
1
R2 ‖v‖

2
2,B(R) ≤ ‖v̂‖

2
2,B(2)

with v̂ = v − [v]B(2).
Given ε > 0, applying Young inequality, we find

f(r) ≤ εf(R) + c(M0, q, ε)‖v̂‖2
2,B(2)

( 1
(R− r)2 + 1

(R− r)κ1
+ 1

(R− r)κ2

)
for any 1 ≤ R ≤ 2, where

κ1 = 1
1
2 (1− 3

2q )
, κ2 = 1

1− 3
2q
.

As it has been shown in [5], there exists a positive number ε depending on M0 and q only such
that ∫

B(1)

|∇v|2dx ≤ c(M0, q)
∫

B(2)

|v − [v]B(2)|2dx.

It is known that the Navier-Stokes equations are invariant with respect to the shift and the
scaling of the form

v(x, t)→ λv(λx, λ2t), q(x, t)→ λ2q(λx, λ2t).
This allows us to get the required Caccioppoli type inequality∫

B(x0,R)

|∇v|2dx < c(M, q) 1
R2

∫
B(x0,2R)

|v − [v]B(x0,2R)|2dx (2.3)
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being valid for any R > 0 and x0 ∈ R3.

2.2. Proof of Theorem 1.1
We can put x0 = 0 and use the following simple inequality

1
R2

∫
B(2R)

|v − [v]B(2R)|2dx ≤ c
1
R2

∫
B(2R)

|v|2dx ≤ 1
R2( 3

s−
1
2 ) ‖v‖

2
s,B(2R) ≤ cN

2

for any R > 0. Passing R→∞, we conclude that∫
R3

|∇v|2dx <∞ .

The rest of the proof is the same as in [9].
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