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Numerical resolution of Euler equations
through semi-discrete optimal transport

Jean-Marie Mirebeau

Abstract

Geodesics along the group of volume preserving diffeomorphisms are solutions to Euler
equations of inviscid incompressible fluids, as observed by Arnold [4]. On the other hand,
the projection onto volume preserving maps amounts to an optimal transport problem, as
follows from the generalized polar decomposition of Brenier [14].

We present, in the first section, the framework of semi-discrete optimal transport, initially
developed for the study of generalized solutions to optimal transport [1] and now regarded
as an efficient approach to computational optimal transport. In a second and largely inde-
pendent section, we present numerical approaches for Euler equations seen as a boundary
value problem [16, 7, 33]: knowing the initial and final positions of some fluid particles,
reconstruct intermediate fluid states. Depending on the data, we either recover a classical
solution to Euler equations, or a generalized flow [15] for which the fluid particles motion is
non-deterministic, as predicted by [39].

1. Semi-discrete optimal transport

The optimal transport problem, formulated by Monge in 1781, has been the subject of continued
research ever since. The objective is find a map T pushing a distribution of mass µ onto another
one ν, and which minimizes the average transport cost, see [40] for an overview. We present in
this section the framework of semi-discrete optimal transport, in which one of the measures ν is
discrete, consisting of a finite weighted sum of Dirac masses, and the second measure µ is absolutely
continuous with respect to the Lebesgue measure.

Semi-discrete optimal transport was introduced by Pogorelov and Alexandrov as a theoretical
tool for the study of generalized solutions to optimal transport [1], which are not solutions to the
Monge-Ampere equation in either the classical or the viscosity sense. Its numerical implementation
yields some of the most reliable, fast and scalable methods for computational optimal transport [5,
32, 29].

We give in §1.1 a brief overview of the alternative computational approaches to optimal trans-
port, and proceed in the following subsections §1.2, §1.3, to the description of the semi-discrete
method. A prerequisite is to define the mathematical counterpart of (possibly non-optimal) mass
transport.

Definition 1.1 (Push forward of a measure µ by a map T ). Let X,Y be metric spaces. Let µ be
a Borel measure on X, and T : X → Y be a Borel measurable map. The push-forward of µ by T
is the Borel measure ν = T#µ on Y defined for any Borel subset A ⊂ Y by

ν(A) := µ(T−1(A)).

This work was partly supported by the ANR grant NS-LBR. ANR-13-JS01-0003-01.
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Figure 1.1. A map T sends domain X (blue boundary), equipped with a density
µ = ρLebX (grayscale) onto a finite set Y (red dots). The push-forward ν = T#µ
is defined by ν({y}) = µ(T−1({y})) (mass of the green region), for all y ∈ Y .

Figure 1.2. The three paradigms of numerical optimal transport. I: Fully discrete,
II: Fully continuous, III: Semi-Discrete. All illustrations of this section courtesy
of Q. Mérigot.

Mass transport preserves total mass by construction: ν(Y ) = µ(T−1(Y )) = µ(X) if ν = T#µ, in
particular µ ∈ Prob(X)⇒ T#µ ∈ Prob(Y ) where Prob denotes the collection of Borel probability
measures. Note also that T#µ depends linearly on µ, but non-linearly on T . In the following,
X,Y denote metric spaces which closed balls are compact. This allows to equip Prob(X) with the
weak* topology dual to continuous bounded functions C0

b (X). All subsets, maps and measures are
implicitly assumed to be Borelian in the following.

The optimal transport problem, as originally stated by Monge, involves two probability measures
µ ∈ Prob(X), ν ∈ Prob(Y ), and a lower-semi-continuous transport cost c : X × Y → R+ ∪ {+∞}.
The objective is to find a map T : X → Y pushing µ onto ν and minimizing the average transport
cost:

min
T#µ=ν

∫
X

c(x, T (x))dµ(x). (1.1)

Under this form, the optimal transport problem may have no solution, or several solutions. Ad-
equate problem relaxations, or structural assumptions on the cost and the measures, make the
problem well posed. They also allow for numerical approaches, see the next subsection.

1.1. Computational optimal transport
The main inputs to the optimal transport problem are the measures µ ∈ Prob(X) and ν ∈ Prob(Y ).
We choose to categorize numerical approaches to optimal transport by the structure of this input
data, which always belongs to one of the following two categories:

• Discrete measures, given as a finite sum µ =
∑
x∈X µxδx of Dirac masses.

• Absolutely continuous measures µ = ρLebX with respect to Lebesgue on X ⊂ Rd.

Discrete and absolutely continuous probabilities both form dense affine subspaces of Prob(X), so
there is in principle no loss of generality in assuming either form. Surprisingly enough, this input
form has deep implications on the algorithm structure, the numerical cost, and the generality of
the (weak) solutions to the optimal transport problem that can be extracted. A method is said
fully discrete (resp. fully continuous) if both input probabilties are discrete (resp. continuous), and
semi-discrete otherwise.

I Fully discrete optimal transport, via the linear relaxation.Kantorovich [27] introduced a convex
and linear relaxation of the optimal transport problem (1.1), for which the existence of a
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minimizer is guaranteed under the assumptions of §1 on the spaces X,Y and the cost c. The
relaxed transport cost from µ ∈ Prob(X) to ν ∈ Prob(Y ) is

W (µ, ν) := min
{∫

X×Y
c(x, y)dπ(x, y); π ∈ Prob(X × Y ), PX# π = µ, PY# π = ν

}
, (1.2)

where PX , PY denote projections onto first and second coordinates respectively. Monge’s
original formulation (1.1) corresponds to couplings of the special form π = (Id, T )#µ, where
T is the unknown transport map. Kantorovich’s formulation is especially needed when both
measures µ, ν are discrete, due to the lack of measure preserving1 maps T : (X,µ)→ (Y, ν).

When µ and ν both consist of N weighted Dirac masses, Kantorovich’s formulation (1.2)
amounts to minimizing a linear objective depending on N2 non-negative variables (character-
izing the coupling π), subject to 2N − 1 linear constraints. General purpose linear program
solvers such as the simplex method, or primal dual interior point methods, are directly ap-
plicable. Linear program solvers specialized in this specific instance also exist, such as the
Hungarian algorithm, and Bertseka’s auction’s algorithm.

The performance of these methods is however disappointing on large problem instances N ≥
5000 Dirac masses due to the quadratic number of optimization variables. Since the support
of the optimal π is usually a small subset of X × Y , concentrated along the graph of a
deterministic map T , multiscale strategies have been proposed [36, 38] to eliminate inactive
variables. Another approach [7] consists in adding a small multiple of the entropy of π with
respect to µ⊗ ν to the linear objective in (1.2), which makes the problem smooth and strictly
convex.

II Fully continuous optimal transport, via the Monge-Ampere PDE formulation.

The PDE approach to optimal transport requires some structural assumptions: X,Y are con-
vex and compacts domains of Rd, the cost c(x, y) = 1

2‖x− y‖
2 is quadratic, and the measures

µ = ρLebX , ν = σ LebY have continuous densities bounded above and below. Monge’s prob-
lem (1.1) then admits a unique solution, of the form T = ∇u where u solves the following
Monge-Ampere equation in the sense of viscosity solutions:

u : X → R, convex,
∇u(X) = Y,

det(∇2u(x)) = f(x)/g(∇u(x)), ∀x ∈ Ω.
(1.3)

Each line of this formulation raises challenging discretization problems. First, the constraint
of convexity can be discretized in various ways, none of which is particularly simple or canon-
ical [2, 34, 35]. For the problem of interest, convexity can also be imposed through the dis-
cretization of the Monge-Ampere operator [26, 8]. Second, discretizations of the boundary
condition ∇u(X) = Y have only been proposed recently [10].

Finally, the Monge-Ampere operator det(∇2u) can be discretized through standard finite
differences [30, 9]. However, it is desirable to preserve its monotony at the discrete level, in
the spirit of [28], which requires more complex implementations [26, 8].

Other approaches to optimal transport have been proposed, such as the fluid dynamics formu-
lation of Benamou and Brenier [6]. The next section introduces the semi-discrete approach.

1.2. An economic metaphor
We illustrate semi-discrete optimal transport through an economic metaphor. The source domain
X ⊂ Rd, connected and bounded, is regarded as a large city on which population is distributed
according to a density µ = ρLebX . The target domain Y ⊂ Rd is finite, and is regarded as the
location of bakeries in the city, see Figure 1.3 (left). The function c : X × Y → R+ ∪ {+∞}
represents the cost for agent x ∈ X to walk to bakery y ∈ Y .

1Except in the special case where these measures are equidistributed on an equal number of points.
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Figure 1.3. Left: Domain X (blue boundary), population density ρ (grayscale),
and bakeries Y (red dots). Center: Voronoi regions (red boundaries) attached to
the bakeries. Right: Laguerre diagram, depending on both the bakeries positions
Y and their prices ψ : Y → R.

It is natural for potential customers to walk to the closest bakery. The basin of attraction of
bakery y ∈ Y is called its Voronoi region, see Figure 1.3 (center):

Vor(y) := {x ∈ X; ∀z ∈ Y, c(x, y) ≤ c(x, z)}.

However, if the bakeries are allowed to set different prices ψ : Y → R for their products, then
people x ∈ X will make a compromise and minimize the sum c(x, y) + ψ(y) of transport cost and
purchase price. In this refined model, each bakery y ∈ Y attracts a members of its Laguerre region,
see Figure 1.3 (center)

Lagψ(y) := {x ∈ X; ∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}. (1.4)

When the cost is quadratic c(x, y) := 1
2 |x − y|2, the Voronoi and Laguerre regions are convex

polytopes. Their computation is a non-trivial yet classical problem of discrete geometry, for which
mature software packages are available such as [19].

The destination of each customer x ∈ X is given by the price dependent transport map

Tψ(x) := argmin
y∈Y

c(x, y) + ψ(y). (1.5)

Agents lying in the intersection of two distinct Laguerre regions Lagψ(y) ∩ Lagψ(z) do not have a
well defined destination. We thus assume in the following, including Th 1.3, that these interesections
are Lebesgue-negligible, hence also µ-negligible, for any price function ψ : Y → R and any distinct
y, z ∈ Y . This property holds under mild non-degeneracy assumptions on the cost c, and is satisfied
by the quadratic cost c(x, y) := 1

2 |x− y|
2.

The frequentation of the bakeries is encoded in the push-forward

Tψ#µ =
∑
y∈Y

µ(Lagψ(y))δy.

Customers x ∈ X, by their individual cost minimizations, construct an optimal transport plan.

Lemma 1.2. For any ψ : Y → R, the map Tψ is an optimal transport from µ to Tψ#µ.

Proof. Let T : X → Y such that T#µ = Tψ#µ. The price dependent transport plan Tψ has the
optimality property:

∀x ∈ X, c(x, Tψ(x)) + ψ(Tψ(x)) ≤ c(x, T (x)) + ψ(T (x)).

Integrating with respect to µ yields∫
X

c(x, Tψ(x))dµ(x) +
∫
X

ψ(Tψ(x))dµ(x) ≤
∫
X

c(x, T (x))dµ(x) +
∫
X

ψ(T (x))dµ(x). (1.6)

Denoting by ν ∈ Prob(Y ) the common value of T#µ = Tψ#µ, we obtain∫
X

ψ(Tψ(x))dµ(x) =
∫
Y

ψdν =
∫
X

ψ(T )dµ(x). (1.7)
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Subtracting from both sides of (1.6) the equal terms (1.7), namely the total revenue of the bakeries,
yields as announced ∫

X

c(x, Tψ(x))dµ(x) ≤
∫
X

c(x, T (x))dµ(x). �

1.3. The Kantorovich functional
We continue with the economical metaphor of §1.2, and consider the situation where each bakery
y ∈ Y only has the capacity to cater for proportion νy of the population, and

∑
y∈Y νy = 1. It

turns out that it is possible to fix the prices ψ so that the bakery frequentations Tψ#µ match their
capacities ν. Doing so amounts to an optimal transport problem.

Theorem 1.3 (Aurenhammer, Hoffman, Aranov [5]). Let µ = ρLebX be a probability with density
on the bounded domain X ⊂ Rd, and let ν =

∑
y∈Y νyδy be a probability on the finite set Y . The

following are equivalent:

(a) Finding an optimal transport from µ to ν.

(b) Finding prices ψ on Y such that Tψ#µ = ν.

(c) Maximizing the concave function

Φ(ψ) :=
∑
y∈Y

∫
Lagψ(y)

(c(x, y) + ψ(y))dµ(x)−
∑
y∈Y

ψ(y)νy. (1.8)

Interestingly, Monge’s formulation (1.1) regards mass transport T#µ = ν as a constraint and
then optimizes the cost, whereas point (b) of Theorem 1.3 suggests exploring a family of cost-
optimal mappings Tψ until the image measure matches ν. The principles underlying these formu-
lations of optimal transport seem opposite, and indeed Theorem 1.3 is a by-product of the dual
formulation of the linear relaxation (1.2) of optimal transport, identified by Kantorovich:

W (µ, ν) = sup{
∫
X

ϕdµ−
∫
Y

ψdν; ϕ,ψ obey ∀(x, y) ∈ X × Y, ϕ(x)− ψ(y) ≤ c(x, y)}, (1.9)

where implicitly we also require ϕ ∈ L1(µ) and ψ ∈ L1(ν). If Y is finite, then (1.9) amounts to
maximize over the bakery prices ψ : Y → R the following quantity, actually equal to (1.8)∫

X

ϕψdµ−
∑
y∈Y

ψ(y)νy where ∀x ∈ X, ϕψ(x) := min
y∈Y

c(x, y) + ψ(y). (1.10)

Note that ϕψ is the optimal choice of ϕ in (1.9) for a given ψ.
The semi-discrete approach to numerical optimal transport is nothing else than the maximiza-

tion of the Kantorovich functional (1.8). Coordinate-wise increments were the first introduced
optimization method [37], and have cubic complexity O(N3(lnN)/ε) where N := #(Y ) and ε is
the desired precision. Gradient based methods such as LBFGS are much more efficient in prac-
tice [32, 29], and are themselves outperformed by Newton methods [21]. Their implementation
requires to identify the first and second derivatives of the Kantorovich functional. Differentiation
with respect to the price ψ(y) at bakery y ∈ Y is denoted by ∂y or ∂/∂y.

For any prices ψ : Y → R, and for each point x ∈ X not at the intersection of two Laguerre
cells, one has

∂yϕψ(x) =
{

1 if x ∈ Lagψ(y),
0 otherwise,

hence ∂yΦ(ψ) = µ(Lagψ(y))− νy. (1.11)

Maximizing Φ amounts to solving ∇Φ = 0, which is thus equivalent to the discrete Monge-Ampere
equation ∀y ∈ Y , µ(Lagψ(y)) = νy. The expressions of the second derivatives, first identified
in [21], involve integrating the density ρ over Laguerre cell boundaries. Assuming a quadratic cost
c(x, y) = 1

2 |x− y|
2, the Kantorovich functional is twice differentiable, and for all distinct y, z ∈ Y
∂2Φ
∂y∂z

=
∫

Lagψ(y,z)

ρ(s)
‖y − z‖

ds,
∂2Φ
∂y2 = −

∑
z 6=y

∂2Φ
∂y∂z

, (1.12)
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Figure 1.4. Left: Laguerre cells and their dual graph. Center: Numerical test case
setup. Right: Computation time versus number of Dirac masses.

where Lagψ(y, z) := Lagψ(y) ∩ Lagψ(z) and ds denotes (d − 1)-dimensional Lebesgue measure.
As a result, ∇2Φ is the matrix of a Laplacian, on the graph dual to the Laguerre Diagram: for
v : Y → R

vT(∇2Φ)v = −
∑
y 6=z

(∂2
yzΦ)(v(y)− v(z))2. (1.13)

This matrix is therefore negative semi-definite. In addition, Ker(∇2Φ) is the space of constant
functions on Y , provided µ(Lagψ(y)) > 0 for all y ∈ Y , and one has the continuity of ρ and
connectedness of {x ∈ X; ρ(x) > 0}. Our numerical implementation consists of maximizing the
Kantorovich functional using a damped Newton algorithm. The damping, a reduction in the step
size, is chosen so as to enforce ν(Lagψ(y)) > 0 at each iteration, hence also the invertibility of the
Kantorovich Hessian (1.13) up to constant functions.

The performance of the method is evaluated by computing the optimal transport from the
uniform density on the hollowed square X = [0, 3]2 \ [1, 2]2, to a cartesian grid Y of Diracs
approximating the the uniform density on the square [0, 1]2. Note that the non-convexity of the
domain X would be a source of difficulty for PDE formulations of optimal transport (1.3).

Numerical experiments show that the computation time scales linearly in the cardinality of Y ,
see Figure 1.4, and that instances involving hundreds of thousands of Dirac masses can be solved
in a few minutes on a modest 2.5Ghz Laptop using a single core. The semi-discrete approach
to optimal transport has been extended to transport costs other than quadratic, in particular
those subject to the Ma-Trudinger-Wang property [31], and applied to inverse problems arising in
geometric optics [20].

2. Numerical resolution of Euler equations

Euler discovered in 1755 the equations, which bear his name, governing the motion of incompress-
ible fluid flows without viscosity. His mathematical notation, extremely modern at the time, closely
resembles today’s form: on a domain X ⊂ Rd, and an interval I of time

∂tu+ (u · ∇)u = −∇p, div u = 0, (2.1)

where p : I ×X → R denotes pressure and u : I ×X → Rd is the velocity field, which is subject to
a slipping condition u · n = 0 on the boundary ∂X. Despite their age, the mathematical analysis
of Euler equations is still largely open, see [25] for an overview.

Let us introduce the flow s : I ×X → X of the velocity field u, which describes the motion of
fluid particles in Lagrangian coordinates. It is defined for any time t ≥ 0 by an Ordinary Differential
Equation (ODE), parametrized by the particle initial position x ∈ X

s(0, x) = x, ∂ts(t, x) = u(t, s(t, x)).

Depending on the occurence, we often denote st(x) := s(t, x). A fundamental observation of
Arnold [4] is that the Lagrangian coordinate system (st)t∈I formally obeys the equation of geodesics
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X

v(x)

s0(x)

st(x)

X

t = 0 t = 1

X X

Figure 2.1. The motion of inviscid incompressible fluids admits three formulations,
either (I) Eulerian based on the local speed v : [0, 1] ×X → Rd, (II) Lagrangian
based on diffeomorphisms s(t, ·) which integrate the speed: ∂ts(t, x) = v(t, s(t, x)),
or (III) relaxed as a superposition of individual particles paths ω ∈ Ω, weighted
by a measure µ.

on the infinite dimensional space SDiff of diffeomorphisms of X with unit jacobian, equipped with
the L2(X) metric, see §2.1. This leads to two natural problems for Euler equations:

• The Cauchy problem, forward in time: given the initial position s0 and the initial velocity
ṡ0 of the fluid particles, find their positions (st)t≥0 at all positive times. This amounts to
computing the exponential map on the space SDiff.

• The boundary value problem: given the initial s0 and final s1 positions of the fluid particles,
find their intermediate states (st)0≤t≤1. This amounts to computing a minimizing geodesic
on the space SDiff.

This manuscript is devoted to the boundary value problem. Regarding the Cauchy problem, we
refer for instance to the recent works of Székelyhidi et al [23], on which a course was given at the
Journées EDP 2015. Let us mention that the tools of semi-discrete optimal transport can also be
used for the Cauchy problem [22].

We give in §2.1 more detail on Arnold’s formal interpretation of Euler equations as geodesics.
Then we describe several relaxations in §2.2, 2.3, and the resulting discretizations including the one
§2.4 proposed by Q. Mérigot and the author [33] and involving semi-discrete optimal transport.

2.1. Euler equations as a geodesic equation

In addition to incompressible fluid flows, Euler discovered in 1765 the equations governing the
motion of a rigid body [24]. Two centuries later, Arnold unified these two works [4], identifying
Eulerian motions of a fluid and of a rigid object as the geodesics on the group of its configurations,
equipped with a suitable left-invariant metric. For a rigid object this is the group SO3 of spatial
rotations with respect to some reference position.

The configurations of a fluid on a domainX are on the other hand described by maps s : X → X,
where s(x) ∈ X is the present position of the fluid particle which reference position is x ∈ X.
Smooth configurations are described by diffeomorphisms. Fluid incompressibility implies that the
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Jacobian det(∇s) is unit. In the following X ⊂ Rd is a connected bounded domain of unit area,
and we let

SDiff := {s ∈ C∞(X,X); det(∇S) = 1 on X}.

Arnold [4] embeds SDiff within the Hilbert space M := L2(X,Rd), which norm is denoted ‖ · ‖,
and regards it as a submanifold. The energy and length of a path s ∈ H1([0, 1],M) are respectively

E(s) :=
∫ 1

0
‖ṡt‖2dt, L(s) :=

∫ 1

0
‖ṡt‖dt, where ‖m‖2 :=

∫
X

|m(x)|2dx. (2.2)

Here and below, ṡt denotes the time derivative of st, hence ‖ṡt‖2M =
∫
X
|ṡt(x)|2dx is the kinetic

energy of the fluid particles at time t. The geodesic distance between s∗, s∗ ∈ SDiff is defined as

d(s∗, s∗)2 := inf{E(s); s ∈ H1([0, 1],SDiff), s0 = s∗, s1 = s∗}. (2.3)

By Cauchy-Schwartz’s inequality, E(s) ≥ L(s)2, with equality if and only s is parametrized at
constant speed. The minimal geodesic for (2.3), if it exists, thus also minimizes path length, and
has constant speed, which corresponds to the fluid kinetic energy conservation.

Following Arnold we derive below the equations of geodesics along SDiff, only formally since
SDiff is not closed in L2(X,Rd). The tangent space to SDiff at the identity element Id, consists of
vector fields v ∈ C∞(X,Rd) such that Id +tv has unit jacobian up to second order terms as t→ 0.

det(Id +t∇v) = 1 + tTr(∇v) +O(t2) = 1 + tdiv v +O(t2).

Hence TIdSDiff = {v ∈ C∞(X,Rd); div v = 0}. From the group law we obtain for any s ∈ SDiff

TsSDiff = s · TIdSDiff = {v ◦ s; v ∈ C∞(X,Rd), div v = 0}.

Recall that a smooth path on an submanifold of a Riemannian manifold is a geodesic iff its
acceleration is at each time normal to the submanifold tangent space. A geodesic path (st)0≤t≤1
in SDiff thus satisfies for any divergence free vector field v and any t ∈ [0, 1]

0 = 〈s̈t, v ◦ st〉 = 〈s̈t ◦ s−1
t , v〉,

where 〈·, ·〉 denotes the L2 scalar product For the second identity, we used the fact that st preserves
the Lebesgue measure onX, hence that right composition with st is an isometry ofM := L2(X,Rd).
On a simply connected domain such as X, a vector field is orthogonal to all divergence free vector
fields if and only it is a gradient field. Hence there exists a pressure field pt ∈ C∞(X,R), for all
t ∈ [0, 1], such that

s̈t = −∇pt ◦ st, i.e. ∂2
t s(t, x) = −∇p(t, s(t, x)) (2.4)

Introducing the Eulerian velocity field, defined by u(t, s(t, x)) = ∂ts(t, x), we obtain

∂2
t s(t, x) = d

dt
u(t, s(t, x)) = ∂tu(t, s(t, x)) + ∂ts(t, x)∇u(t, s(t, x))

= ∂tu(t, s(t, x)) + ∂tu(t, s(t, x))∇u(t, s(t, x)).

Identifying these two expressions of the fluid particles acceleration ∂2
t s(t, x), and composing with

s−1
t , we obtain Euler equations (1.12) as announced.
The main defect of this approach is that SDiff is not a submanifold of M := L2(X,Rd), in

particular because it is not closed, hence geodesics need not exist. A possible remedy is to consider
instead groups of diffeomorphisms with Sobolev regularity of index s > d/2 + 1, equipped with the
associated Sobolev metric. The exponential map is then well defined and surjective, and minimizing
geodesics exist between any pair of points [18, 17]. Of course, geodesic equations with respect to
these stronger metrics differ from Euler’s equations, and from any known physical model. We
present in the next section an opposite approach, which relaxes the set of solutions, rather than
strenghtening the metric.
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2.2. The L2-relaxation, and flows as permutations
Diffeomorphisms of unit jacobian admit, as a superset, the collection S of maps preserving the
Lebesgue measure on X

S := {s ∈ L2(X,Rd); s# LebX = LebX},
where LebX denotes the Lebesgue measure on the domain X. See Definition 1.1 for the push-
forward of a measure by a map. The set S is closed in L2(X,Rd), and is the completion of SDiff in
dimension d ≥ 3. In dimension d ≤ 2 however, rigidity phenomena prevent the density of SDiff in S.
For instance SDiff = {Id} if X = [0, 1], whereas S contains the symmetric group of {1, · · · , N} for
all N , see below. In dimension d ∈ {1, 2} the use of measure preserving maps can nevertheless be
defended by arguing [16] that fluid flows on d-dimensional domains X generally arise by neglecting
small dimensions in a three dimensional physical domain X × [0, ε]3−d.

Permutations as measure preserving maps. Assume that the domain X can, for all N ≥ 1,
be partitioned into N cubes, identical up to translation. For instance [0, 1] = ∪N−1

k=0 [k/N, (k+1)/N ].
Denote by XN the collection of their centers, equipped with the uniform probability measure. Then
the collection ΣN of permutations ofXN isometrically embeds into S, by permuting the partitioning
cubes with their centers, and as N →∞ it becomes dense in S.

A discretization of Euler’s boundary value problem (2.3) based these permutations is proposed
in [12]. Given a number T of time steps, and s0, sT ∈ ΣN approximating some boundary data
s∗, s

∗ ∈ S, minimize over (st)T−1
t=1 the path energy (2.2) counterpart:

T

N

∑
0≤t<T

∑
x∈XN

|st+1(x)− st(x)|2. (2.5)

Figure 2.2 reproduces numerical experiments of [16] for the one dimensional case X = [0, 1],
with boundary conditions s∗ = Id, s∗ = 1 − Id. The permutations st associated to intermediate
times 0 < t < T turn out to oscillate rapidly. They do not converge in S, but do so in an even more
relaxed setting allowing particles to split and be distributed over the domain X at intermediate
times, see the next subsection.

2.3. The linear relaxation, and the pressure field
Brenier [13], introduced a second relaxation of Euler equations, which is linear, and for which the
existence of a minimizer is guaranteed. It involves the space of all possible particles paths

Ω := X [0,1],

which is compact when equipped with Tychonoff’s product topology. Probability measures µ ∈
Prob(Ω) are called generalized flows. They are said incompressible if the particle positions equidis-
tribute at all times on the domain: ∀t ∈ [0, 1]

et#µ = LebX , (2.6)
where et : Ω→ X : ω 7→ ω(t) denotes the evaluation map at time t. The boundary conditions are
also modeled by a marginal constraint, coupling the the initial and end time:

(e0, e1)#µ = (s∗, s∗)# LebX . (2.7)
Finally, the action is the mean with respect to µ of the kinetic energy of the paths

E(µ) :=
∫

Ω

∫ 1

0
|ω̇(t)|2dtdµ(ω). (2.8)

In this form, Euler’s boundary value problem becomes the optimization of a lower-semi-continuous2

linear functional E(µ), subject to infinitely many marginal constraints(2.6), (2.7), which are linear
and continuous. This optimization problem may have several solutions. Strikingly however, the dual
linear problem has a unique3 solution, called the pressure field p : [0, 1]×X → R, which accounts

2Because path energy ω 7→
∫ 1

0 ‖ω̇(t)‖2dt is lower-semi continuous on Ω
3Unique up to the trivial invariance by addition of a function depending only on time.
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Figure 2.2. Relaxed Euler boundary value problem on X = [0, 1] with boundary
conditions s∗ = Id, s∗ = − Id. The solution for this particular instance is unique
and known [11], it involves non-deterministic generalized flows see §2.3. Horizontal
axis: initial particle position x ∈ [0, 1]. Vertical axis: particle position in [0, 1] at
some specified time t. Left: discretization based on permutations [16] see (2.5).
Right: convex relaxation as multi-marginal problem [7], regularized via entropy
penalization, see (2.10).

for the incompressibility constraint. For any minimizer µ ∈ Prob(Ω) of the primal problem, µ-
almost every trajectory obeys ω̈(t) = −∇p(t, ω(t)), an equation which makes sense thanks to the
regularity p ∈ L2

loc(]0, 1[,BV(X)) see [3].

Discretization as a multi-marginal, entropy penalized problem. Let N,T be positive
integers, let XN be a sampling of N points equidistributed on the domain X, and let s : XN → XN

be a permutation representing an incompressible map of interest. Benamou et al [7] discretize the
linear relaxation of Euler equations through the following multi-marginal optimization problem,
which is strictly convex thanks to the added ε-entropy penalization: minimize over all generalized
flows γ ∈ Prob(XT

N )∑
x1,··· ,xT∈XN

γ(x1, · · · , xT ) c(x1, · · · , xT ) + εγ(x1, · · · , xT )(ln γ(x1, · · · , xT )− 1),

where c(x1, · · · , xT ) := n(|x1 − x2|2 + · · ·+ |xT−1 − xT |2 + |xT − s(x1)|2), (2.9)
subject to the marginal constraints

∑
x1,··· ,xT γ(x1, · · · , x̂i, · · · , xT ) = 1 for any 1 ≤ i ≤ N , and

any fixed x̂i ∈ XN , discretizing (2.7). The large number of variables #(XT
N ) = NT makes a

direct approach hopeless. However, the dual problem only involves NT variables, instead of NT ,
associated to the incompressibility constraints and thus representing the pressure field: maximize
over all p1, · · · , pT : XN → R∑

x∈XN

∑
1≤t≤T

pt(x)−
∑

x1,··· ,xT

ε exp((p1(x1) + · · ·+ pT (xT )− c(x1, · · · , xT )) /ε). (2.10)

This functional, which involves a sum over NT terms, can be evaluated using only T products
of N × N matrices, thanks to the additive structure of the cost (2.9) and the multiplicative
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X

Pj

m0 mT−1

s∗

. . .

πS(mT−1). . .

m1 mT

s∗

πS(m1)

S

MN

Figure 2.3. Left: partition PN of the domain X into N regions. Right: illustration
of the discretization (2.15). The maps (mt)Tt=0 belong to a linear subspace MN

(black) of L2(X), whereas πS(mt) denotes their projection onto the manifold S
(blue).

properties of the exponential. Figure 2.2 reproduces numerical experiments of [7]. The drawbacks
of this approach are its numerical cost, as well as the blurring induced by the entropy penalization,
which limits the visibility of the transition from classical solutions of (2.1) to non-deterministic
generalized flows minimizing (2.8).

2.4. Polar factorization, and the distance to incompressible maps
We describe a discretization of Euler’s boundary value problem, introduced by Merigot and the
author in [33], which implements flow incompressibility by penalizing the distance to incompressible
maps: for any m ∈M := L2(X,Rd)

d2(m,S) := inf
s∈S
‖m− s‖2. (2.11)

The distance from m to S turns out to be the Wasserstein distance from the image measure of m
to the Lebesgue measure. This surprisingly links Euler equations of incompressible fluid flows, to
optimal transport which describes a pressure-less gaz [6].

Theorem 2.1 (Brenier’s polar factorization [14]). For any m ∈ L2(X,Rd), one has

d(m,S) = W2(s# LebX ,LebX), (2.12)

where W2 is the Wasserstein distance4 for the quadratic cost c(x, y) := |x − y|2. Furthermore, if
m# LebX is absolutely continuous with respect to the Lebesgue measure, then there exists a unique
convex function ϕ : X → R, and a unique measure preserving map s ∈ S, such that

m = ∇ϕ ◦ s. (2.13)

Brenier’s polar factorization takes it name from the special instance where X is the euclidean
unit ball and m : x 7→ Mx is a linear function. Let M = ΦS be the polar decomposition of M ∈
GLd R, into the product of a a positive definite matrix Φ ∈ S+

d , and an orthogonal transformation
S ∈ On(R). Then ϕ : x 7→ 1

2 〈x,Φx〉 is convex, s : x 7→ Sx preserves the Lebesgue measure on the
ball, and one indeed has (2.13).

Let PN be a partition of X into N regions of area 1/N and diameter ≈ N−1/d, and let MN ⊂
L2(X,Rd) be the subset of maps which are piecewise constant on the partition PN . The push-
forward of the Lebesgue measure by somem ∈MN is a discrete probability measure equidistributed
(if m is injective) on the image of m

m# LebX = 1
N

∑
x∈Im(m)

δx. (2.14)

Evaluating the distance (2.12), from m ∈ MN to incompressible maps S, thus amounts to a
semi-discrete optimal transport problem. We regard this as a numerical commodity in view of
recent progress in the scalability, speed and reliability of this method, see §1.3.

4The square root of the optimal transport cost.
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Euler’s boundary value problem via semi-discrete optimal transport. Let T and N be
positive integers, accounting respectively for the number of time steps and the number of regions
in the partition PN of X, and let λ ≥ 0 be a penalization parameter. For all m ∈MT+1

N we define

ET,N,λ(m) := T
∑

0≤i<T
‖mi −mi+1‖2 + λ

 ∑
1≤i<T

d2(mi,S) + ‖m0 − s∗‖2 + ‖mT − s∗‖2
 . (2.15)

This functional depends on N(T + 1) variables. It implements the constraints of incompressibil-
ity, and the boundary values, by penalization as λ � 1. We show in [33], that minimizers of
E(T,NT , λT ) converge in a weak sense to minimizers of the linear relaxation of Euler’s equations
§2.3, for suitable sequences T,NT , λT →∞. The set S of measure preserving maps is non-convex,
thus the distance m ∈ L2(X,Rd) 7→ d2(m,S) is non convex, hence the optimized functional (2.15)
is not convex either. Nevertheless a minimization using the LBFGS algorithm, and a multiscale
(in time) initialization strategy, produced sensible results.

Figures 2.4 and 2.5 from [33] illustrate, for the first time, a sharp result of Brenier [13]: consider
the linear relaxation of Euler equations on the time interval [0, tmax], and the unique associated
pressure field p, see §2.3. If t2max∇2p < π Id, then the relaxation admits a unique minimizer, which
is a classical solution to Euler equations. If this threshold is exceeded, then several minimizers may
exist, and some or all of them may be non-classical generalized flows µ ∈ Prob(Ω). In that case
the support of the flow µ has dimension > d, so that fluid particles follow non-deterministic paths,
forming complex and turbulent structures.
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(a) t = 0.0 (b) t = 0.95 (c) t = 1.1 (d) t = 1.3 (e) t = 1.5

(f) t = 0.0 (g) t = 0.25 ∗ tmax (h) t = 0.5 ∗ tmax (i) t = 0.75 ∗ tmax (j) t = tmax = 0.9

(k) t = 0.0 (l) t = 0.25 ∗ tmax (m) t = 0.5 ∗ tmax (n) t = 0.75 ∗ tmax (o) t = tmax = 1.1

(p) t = 0.0 (q) t = 0.25 ∗ tmax (r) t = 0.5 ∗ tmax (s) t = 0.75 ∗ tmax (t) t = tmax = 1.3

(u) t = 0.0 (v) t = 0.25 ∗ tmax (w) t = 0.5 ∗ tmax (x) t = 0.75 ∗ tmax (y) t = tmax = 1.5

Figure 2.4. (First row) The beltrami flow in the unit square, shown at various
timesteps, is a classical solution to Euler equations. The particles color depends
on their initial position. (Second to fifth row) Generalized fluid flows reconstructed
by our algorithm, using the boundary conditions displayed in the first and last
column. When tmax < 1 we recover the classical flow, while for tmax ≥ 1 the
solution is not classical anymore and includes some mixing.

Figure 2.5. Particles trajectories in the case tmax = 1.5, see Figure 2.4. Left:
trajectories originating from inside this red circle seem strongly non-deterministic.
Center: trajectories originating from this circle remain grouped. Right: particles
around the domain center move little.
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