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Journées Équations aux dérivées partielles
Roscoff, 1–5 juin 2015
GDR 2434 (CNRS)

On the size of the regular set of suitable weak solutions of the
Navier–Stokes equation

Renato Lucà

Abstract

We investigate the size of the regular set of weak solutions of the Navier–Stokes equation
which are close, in an appropriate sense, to strong solutions. More precisely, if w is a strong
solution with initial datum w0, we focus on weak solutions evolving by initial data u0 such
that the difference u0 −w0 is small in the weighted [L2(R3)]3 space with weight |x|−1. This
is different by any smallness assumption in translation invariant critical Banach spaces. We
also prove similar results in the small data setting.

1. Introduction and main results

We consider the Navier–Stokes problem ∂tu+ (u · ∇)u−∆u = −∇P
∇ · u = 0

u(0, x) = u0(x) (∇ · u0 = 0).
(1.1)

in (0,∞) × R3. This describes the motion a viscous incompressible fluid without external forces.
The velocity field has been denoted by u and the pressure by P .

For simplicity we use similar notations for the norm of scalar, vector or tensor quantities. For
instance we write:

‖P‖L2 := (
∫
P 2dx) 1

2 , ‖u‖2L2 :=
∑
j

‖uj‖2L2 , ‖∇u‖2L2 :=
∑
j,k

‖∂kuj‖2L2 .

We also write L2(R3) instead of [L2(R3)]3, or C∞(R3) instead of [C∞(R3)]3 etc.
In the small data framework, the equation (1.1) can be viewed as a perturbation of the heat

equation. This is more clear when we consider its integral formulation, namely

u = et∆u0 −
∫ t

0
e(t−s)∆P∇ · (u⊗ u)(s) ds in (0,∞)× R3 (1.2)

where P is the Leray projection
Pf := f −∇∆−1(∇ · f),

that project the vector field f onto the divergence free subspace.
The Picard iteration scheme for Problem (1.2) is

u1 := et∆u0, un := et∆u0 −
∫ t

0
e(t−s)∆P∇ · (un−1 ⊗ un−1)(s) ds.

Once the velocity is known, the pressure can be calculated by
P = −∆−1∇⊗∇ · (u⊗ u).

The author is supported by the ERC grant 277778 and MINECO grant SEV-2011-0087 (Spain).
MSC 2000: 35Q30,35K55.
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An abstract fixed point theorem for (1.2) is the following one.

Proposition 1.1 ([26]). Let X ⊂
⋂
s<∞ L2

tL
2
uloc,x((0, s) × R3)1 be a Banach space such that the

bilinear form

B(u, v) :=
∫ t

0
e(t−s)∆P∇ · (u⊗ v)(s) ds (1.3)

is bounded from X ×X to X:

‖B(u, v)‖X ≤ CX‖u‖X‖v‖X .

Moreover, let X0 ⊂ S ′(R3) be a normed space such that et∆ : X0 → X is bounded:

‖et∆f‖X ≤ AX0,X‖f‖X0 .

Then for every data u0 such that ‖u0‖X0 < 1/4CXAX0,X the sequence un is Cauchy in X and
converges to a solution u of the integral equation (1.2). The solution satisfies

‖u‖X ≤ 2AX0,X‖u0‖X0 .

Following [26] we say that X is an admissible (path) space, while X0 is an adapted space. Many
adapted spaces have been studied: Ḣ1/2 [12], L3 [19], the Morrey space Ṁ3

2 [17, 36, 20, 10, 23], the
Besov spaces Ḃ−1+3/q

q,∞ [4, 30], etc. This approach culminated in the work of Koch and Tataru [22]
in which the authors consider small initial data in BMO−1. This is the most general result in
literature.

Regarding large data, global weak solutions of (1.1) have been proved to exist by Leray [27]
for any u0 ∈ L2 (namely for finite kinetic energy). The Leray’s proof is based on a compactness
argument and the uniqueness and persistence of regularity of the Leray’s weak solutions is a long
standing open problem.

Stronger results are available once we restrict to u0 with some specific geometric properties.
For instance u0 axisymmetric [38, 25, 5, 15, 14], helical [29] or two dimensional. The last case, in
particular, is (essentially) completely understood.

Other interesting classes of large initial data, without symmetry, have been studied in [11, 13,
18, 7, 6].

Once these special solutions are known, it is natural considering their small perturbation. For
instance if we take a large axisymmetric w0 without swirl, for which the problem is known to be
well-posed [38], do we still have well-posedness for u0 such that u0−w0 is small in an appropriate
functional space ?

This ‘perturbative’ approach has been introduced by Ponce, Racke, Sideris and Titi in [31]. They
worked with small H1 perturbations. Like in the small data case, the class of functional spaces in
which perturbative solutions have been constructed has been extended to several functional spaces.
For instance L3 [21], Besov spaces [16] and BMO−1 [1].

A key feature of both small data and perturbative setting is to consider functional spaces that
are scaling and translation invariant. More precisely, since problem 1.1 is invariant under the family
of symmetries

u 7→ λu(λ2t, λ(x− x̄)), λ ∈ (0,∞), x̄ ∈ R3, (1.4)
it is natural to look at initial data belonging to Banach spaces invariant under

u0(x) 7→ λu0(λ(x− x̄)), λ ∈ (0,∞), x̄ ∈ R3.

It is interesting that partial results have been obtained by working with norms which are only
scaling, but not translation, invariant. Namely invariant under

u0(x− x̄) 7→ λu0(λ(x− x̄)), λ ∈ (0,∞),

where now x̄ ∈ R3 is a fixed vector. To our knowledge this point of view has been first exploited
in [3] in which, among the other things, the authors prove a very general class of weak solutions

1The space L2
uloc consists of the functions that are uniformly locally square-integrable (see [26] Definition 11.3).

The operator (1.3) is well-defined on
⋂

s<∞ L2
tL

2
uloc,x((0, s)×R3)×

⋂
s<∞ L2

tL
2
uloc,x((0, s)×R3). We refer to [26],

Chapter 11, for more details.
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exhibiting a nice behavior around the point x̄ ∈ R3, for all times, provided that the weighted L2

norm ( ∫
R3
|x− x̄|−1|u0(x)|2dx

) 1
2 = ‖|x− x̄|−1/2u0‖L2(R3), (1.5)

of the initial data u0 is small enough. The precise statement is given below.
The aim of this note is to give various extensions and improvements of this result, in both the

small data and perturbative setting.
Let recall a classical notion of regularity for Problem 1.1.

Definition 1.2. A point (t0, x0) ∈ (0,∞) × R3 is regular for a solution u(t, x) of (1.1) if u is
essentially bounded on a neighborhood of (t0, x0). In particular this implies [34] that u(t, x) is
smooth (in space) in a neighborhood of (t0, x0). A subset of (0,∞)×R3 is regular if all its points
are regular.

We use the notation

Πα,x̄ :=
{

(t, x) ∈ (0,∞)× R3 : t >
|x− x̄|2

α

}
for the interior of the paraboloid of aperture α in the upper half space (0,∞)×R3, with vertex at
(0, x̄). If x̄ = 0 we simply write Πα in place of Πα,0. Note that Πα,x̄ ⊃ Πβ,x̄ if α > β.

The following result (Theorem D in [3]) holds for suitable weak solutions, which we are going to
define in Section 2. Let mention that the weak solutions constructed by the Leray’s approximation
procedure are, for instance, suitable (Theorem 2.3 in [33]).

Theorem 1.3 (Caffarelli–Kohn–Nirenberg, [3]). There exists a constant ε0 > 0 such that the
following holds. If

‖|x− x̄|−1/2u0‖2L2(R3) =: ε < ε0 (1.6)
then the set

Πε0−ε,x̄ =
{

(t, x) : t >
|x− x̄|2

ε0 − ε

}
is regular for any suitable weak solution u of problem (1.1) with divergence free initial datum
u0 ∈ L2(R3).

Thus, if the weighted L2 norm of the datum is small enough, then the solution is smooth in the
interior of a paraboloid above the point (0, x̄), where x̄ is the center of the weight.

The interest of this result is that the condition (1.6) does not force u0 to be small at the
points x far enough from x̄. This makes it different by any possible translation invariant smallness
assumption on u0. We clarify this fact in the following remark.

Remark 1.1. There exist initial data such that the norms ‖|x − x̄|−1/2u0‖L2(R3) are arbitrarily
small while the norms ‖u0‖BMO−1(R3) are arbitrarily large. Assume indeed, for simplicity, x̄ = 0
and let φ ∈ C∞c (R3) be a divergence free vector field. Write φK(x) := φ(x−Kξ) for the translate
of φ by the vector ξK, with ξ ∈ R3, |ξ| = 1 and K > 1. It is immediate to check that2

‖|x|−1/2φK‖L2(R3) ' K−1/2.

Thus, by the translation invariance of BMO−1, as K → +∞
‖|x|−1/2φK‖L2(R3) → 0 while ‖φK‖BMO−1(R3) = const. (1.7)

The size of the regular set clearly depends on the size of u0. Let notice, in particular, that
Πε0−ε,x̄ converges to a maximal regular set Πε0,x̄ as ‖|x − x̄|−1/2u0‖L2(R3) =: ε → 0; namely as
the initial data converge to the zero solution. This behavior can be improved by showing that the
regular set actually invades the whole half space {t > 0} in the limit ε→ 0.

Theorem 1.4. [8] There exists a constant δ0 > 0 such that the following holds. If M ≥ 1, the set

ΠMδ0,x̄ =
{

(t, x) : t >
|x− x̄|2

Mδ0

}
2As usual we write A . B if A ≤ CB for a certain constant C > 0 and A ' B if A . B and B . A.
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is regular for any suitable weak solution u of problem 1.1 with divergence free initial datum u0 ∈
L2(R3), provided that

‖|x− x̄|−1/2u0‖L2(R3) ≤ δ0e−M
2/δ0 .

Thus, taking M → +∞, we see that as weighted L2 norm of the data goes to zero, the regular
set invades the whole half space {t > 0}, as claimed above.

Definition 1.5. A couple (r, q) is admissible if 2 ≤ r <∞ and 2/r + 3/q = 1.

Definition 1.6. A weak solution w ∈ L∞t L2
x ∩ L2

t Ḣ
1
x of problem 1.1 with divergence free initial

datum w0 ∈ L2(R3) is a K-reference solution if∫ ∞
0

(∫
R3
|w(t, x)|qdx

) r
q

dt =: ‖w‖rLrtLqx =: K <∞ (1.8)

for an admissible couple (r, q) and

lim sup
r→0

1
r

∫ ∫
Q∗
r(t,x)

|∇w|2 < ε∗ (1.9)

for all (t, x) ∈ (0,∞)×R3, where ε∗ is the absolute constant in (2.9) and Q∗r(t, x) is the parabolic
cylinder defined in (2.8).

We also say that u is a strong solution if it is a K-reference solution for some K > 0. Thus K
can be considered as a measure of the size of a strong solution.

Regarding the notations, we write Lqx when the norm is taken over all the space variables x ∈ R3

and Lrt when the time integration is over t > 0. We write ‖f‖XY :=
∥∥‖f‖Y ∥∥X for nested norms

and denote XY the completion of the Schwartz class with respect to these norms.
We can now state the main result of this note.

Theorem 1.7. [9] Let x̄ ∈ R3 and let w be a K-reference solution of problem 1.1 with (divergence
free) initial datum w0 ∈ L2(R3). There exists a constant δ1 > 0 such that the following holds. The
set

Πδ1,x̄ :=
{

(t, x) : t >
|x− x̄|2

δ1

}
(1.10)

is regular for every suitable weak solution u ∈ L∞t L2
x ∩ L2

t Ḣ
1
x of 1.1 with (divergence free) initial

datum u0 ∈ L2(R3) satisfying

‖|x− x̄|−1/2(u0 − w0)‖L2
x
≤ δ1e−K/δ1 . (1.11)

As already pointed out, the existence of suitable weak solutions u ∈ L∞t L2
x ∩ L2

t Ḣ
1
x has been

proved in [33, Theorem 2.3] for any u0 ∈ L2(R3).
Interesting examples of K-reference solutions with large w0 can be found in [38, 6]. The author

would like to thank Jean-Yves Chemin for the second reference.
Thus, weak solutions evolving by small weighted L2 perturbations of the initial data of strong

solutions are still regular around the center of the weight.
As observed in Remark 1.1 there exists perturbations which are (at t = 0) small in the sense

of (1.11) but such that the norms ‖u0 − w0‖BMO−1(R3) are arbitrarily large.
We use the stability Theorem 1.7 to construct weak solutions which are smooth around x̄.
We focus on perturbations of (possibly large) axisymmetric vector fields with zero swirl. Let

Θ ∈ T, r ∈ (0,+∞) be polar coordinates in R2:
x1 =: r cos Θ, x2 =: r sin Θ. (1.12)

We say that a vector field f is axisymmetric (with respect to the x3-axis)3 if its expression in
cylindrical polar coordinates (Θ, r, x3) is independent on the variable Θ, namely

f = fer(r, x3)er + feΘ(r, x3)eΘ + fex3
(r, x3)ex3 .

The swirl of f is feΘ .

3For simplicity we consider x3 as symmetry axis. Since problem 1.1 is invariant under rotations, we can of course
choose any other direction.
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Proposition 1.8. [9] Let x̄ ∈ R3 and let w0 ∈ H4(R3)∩L2(|x−x̄|−1dx) be a zero swirl axisymmet-
ric divergence free vector field. There exists a constant δ2 = δ2(w0) such that the following holds.
Any suitable weak solution u of problem (1.1) with (divergence free) initial datum u0 ∈ L2(R3)
satisfying

‖|x− x̄|−1/2(u0 − w0)‖L2(R3) ≤ δ3, (1.13)
is regular in the interior of a paraboloid with vertex at (0, x̄).

Regarding the small data setting, we give a result which covers the gap between Theorem 1.3
and the L3 Kato’s theorem.

We consider initial data such that the critical weighted Lp norm

‖|x− x̄|αu0‖Lp(R3), 2 < p < 3, α = 1− 3
p

(1.14)

is very small, and we prove a local regularity result which improves as p increases. We recover full
regularity in the limit p→ 3− (namely α→ 0+).

Let introduce

θ1(p) :=
(
p− 2
3− p

)1−p/3
, θ2(p) :=

(
p− 2
3− p

)1−p/2
. (1.15)

It is straightforward to check that
lim
p→2+

θ1(p) = 0, lim
p→3−

θ1(p) = 1, (1.16)

while θ2 behaves in the opposite way
lim
p→2+

θ2(p) = 1, lim
p→3−

θ2(p) = 0. (1.17)

Theorem 1.9. [9] Let x̄ ∈ R3, 2 < p < 3, α = 1 − 3/p. Let u0 ∈ L2(R3) be a divergence free
vector field and let u be a suitable weak solution of problem 1.1 with initial datum u0. There exists
a constant δ4 > 0 such that the following holds. For every M ≥ 1, if

θ1‖|x− x̄|αu0‖p/3Lp(R3) ≤ δ4, θ2‖|x− x̄|αu0‖p/2Lp(R3) ≤ δ4e
−M2/δ4 , (1.18)

then the set ΠMδ,x̄ is regular for u.

We again remark that there exist data u0 which are arbitrarily large in BMO−1(R3) but such
that the (1.18) is satisfied.

The result can be interpreted in the following way. We have observed that θ2(p)→ 0 as p→ 3−,
so we can choose p = pM as a function of M in such a way that

eM
2/δ4 · θ2(pM )→ 0 as M →∞.

Since we are taking pM → 3−, we also have θ1(pM ) → 1, so that the theorem implies, for all
sufficiently large M :

‖|x− x̄|−1/2u0‖LpMx ≤ δ4/2, ⇒ ΠMδ4,x̄ is a regular set for u.

In other words, if we take M →∞ and the norm ‖|x− x̄|−1/2u0‖LpM is less than δ4/2, the regular
set invades the whole half space {t > 0}. We also refer to Theorem 1.5 in [8] for a similar result.

Here we only give the proof of Theorem 1.4. The proof of Theorem 1.9 is somewhat similar,
while different ideas are necessary to treat the perturbative case, namely Theorem 1.7. For this we
refer to a forthcoming paper [9] written in collaboration with Piero D’Ancona. Let remark that
Proposition 1.8 is a simple consequence of Theorem 1.7.

2. Preliminaries

Definition 2.1. Let u0 ∈ L2(R3). Following [3, 26, 28] we say that u is a suitable weak solution
of problem 1.1 if:

1. there exists P ∈ L3/2
loc ((0,∞)×R3) such that (u, P ) satisfies (1.1) in the sense of distributions;

2. u(t)→ u0 weakly in L2 as t→ 0;
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3. for some constants E0, E1 ∫
R3
|u(t, x)|2 dx ≤ E0,

for all t > 0 and ∫ ∞
0

∫
R3
|∇u(t, x)|2 dtdx ≤ E1;

4. for all non negative φ ∈ C∞c (R× R3) and for all t > 0∫
R3
|u|2φ(t) + 2

∫ t

0

∫
R3
|∇u|2φ

≤
∫
R3
|u0|2φ(0) +

∫ t

0

∫
R3
|u|2(φt + ∆φ) +

∫ t

0

∫
R3

(|u|2 + 2P )u · ∇φ. (2.1)

Suitable weak solutions are known to exist for all L2 initial data (see Theorem 2.3 in [33] or
the Appendix in [3]) and are L2-weakly continuous as functions of time (see [37], pp. 281–282),
namely ∫

R3
u(t, x)w(x) dx→

∫
R3
u(t′, x)w(x) dx

for all w ∈ L2(R3) as t→ t′ (t, t′ ∈ [0,+∞)); thus it makes sense to impose the initial condition (2).
Actually, by taking advance of the energy inequality, also strong convergence to the initial data
can be proved: limt→0+ ‖u(t)− u0‖L2(R3).

Since we are only considering the whole R3 case, we have the well known representation formula
for the pressure

P = ∆−1∇⊗∇(u⊗ u) = R⊗R · (u⊗ u),
where R := (R1, R2, R3) and Rj is the Riesz transform oriented in the direction of the j-th
coordinate. By this and by (3) easily follows that P belongs to L5/3((0,∞) × R3) (see [3] for
details).

We also need a stronger version of inequality (2.1), namely for almost every t0 ∈ (0,∞) and for
any t > t0∫

R3
|u|2φ(t) + 2

∫ t

t0

∫
R3
|∇u|2φ

≤
∫
R3
|u(t0)|2φ(t0) +

∫ t

t0

∫
R3
|u|2(φt + ∆φ) +

∫ t

t0

∫
R3

(|u|2 + 2P )u · ∇φ, (2.2)

provided that φ ∈ C∞c ([t0,∞)×R3) is non negative. This property is actually satisfied by suitable
weak solutions as defined above.

Lemma 2.2 (strong generalized energy inequality). Let u be a suitable weak solution of prob-
lem 1.1. The inequality (2.2) holds for for almost every t0 ∈ (0,+∞), for all t > t0 and for any
non negative test function φ ∈ C∞c (R× R3)

Proof. Let ε > 0, t0 > 0 and φ a non negative test function. We consider the auxiliary test functions
φε(t, x) := ηε(t)φ(t, x) where ηε(t) is an ε-mollification of the step function with jump in t0; namely
ηε(t) := χ[t0,+∞] ∗ ρε, being χ[t0,+∞] the indicator function of [0,+∞] and ρε := ε−1ρ(ε−1t) with
ρ a smooth non negative function supported in [−ε,+ε] and such that

∫
R ρ = 1. We have clearly

∂tφε(t, x) = ρε(t− t0)φ(t, x) + ηε∂tφ(t, x) (2.3)

and, as ε→ 0

ηε → χ[t0,+∞], φε → χ[t0,+∞]φ, ∇φε → χ[t0,+∞]∇φ, ∆φε → χ[t0,+∞]∆φ. (2.4)

Let now t > t0, our aim is to apply the inequality (2.1) with φε and passing to the limit ε →
0. In order to do this we recall that P ∈ L

5/3
t L

5/3
x , u ∈ L∞t L

2
x and ∇u ∈ L2

tL
2
x, so that by
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Sobolev embedding and interpolation we aslo have u ∈ L4
tL

3
x∩L

20/3
t L

5/2
x . This allows to apply the

dominated convergence theorem, so that by (2.3, 2.4) we obtain∫
R3
|u|2φ(t) + 2

∫ t

t0

∫
R3
|∇u|2φ ≤ lim

ε→0

∫ t

0
ρε(s− t0)

(∫
R3
|u|2φ

)
(s)ds

+
∫ t

t0

∫
R3
|u|2(φt + ∆φ) +

∫ t

t0

∫
R3

(|u|2 + 2P )u · ∇φ. (2.5)

Thus the lemma is proved once we show that for almost every t0 ∈ (0,+∞)

lim
ε→0

∫ t

0
ρε(s− t0)

(∫
R3
|u|2φ

)
(s)ds =

∫
R3
|u(t0)|2φ(t0), (2.6)

which is actually true for any Lebesgue point of the function t →
∫
R3 |u|2φ(t) and so almost

everywhere, being this function bounded by the third assumption in Definition 2.1. �

A more direct approach, also sufficient for our purposes, would be to assume the property (2.2)
in Definition 2.1 and then to show directly that the weak solutions constructed in [33] satisfies this
property, which is indeed the case.

Corollary 2.3. Let u be a suitable weak solution of Problem 1.1 and φn with n ∈ N be a sequence
of non negative test functions. Then there is a measurable subset A ⊂ (0,∞) with4 (0,∞)/A| = 0
such that∫

R3
|u|2φn(t) + 2

∫ t

t0

∫
R3
|∇u|2φn

≤
∫
R3
|u(t0)|2φn(t0) +

∫ t

t0

∫
R3
|u|2(∂tφn + ∆φn) +

∫ t

t0

∫
R3

(|u|2 + 2P )u · ∇φn, (2.7)

holds for any φn and for any t0 ∈ A and t > t0.

Next we define the parabolic cylinder of radius r and top point (t, x) as
Qr(t, x) :=

{
(s, y) : |x− y| < r, t− r2 < s < t

}
while the shifted parabolic cylinder is

Q∗r(t, x) := Qr(t+ r2/8, x) ≡
{

(s, y) : |x− y| < r, t− 7r2/8 < s < t+ r2/8
}

(2.8)
The crucial regularity result in [3] ensures that:

Lemma 2.4 (Caffarelli–Kohn–Nirenberg). There exists an absolute constant ε∗ such that if u is
a suitable weak solution of (1.1) and

lim sup
r→0

1
r

∫ ∫
Q∗
r(t,x)

|∇u|2 ≤ ε∗, (2.9)

then (t, x) is a regular point.

We shall make frequent use of the following interpolation inequality from [2].

Lemma 2.5. Assume that

1. r ≥ 0, 0 < a ≤ 1, γ < 3/r, α < 3/2, β < 3/2;

2. −γ + 3/r = a(−α+ 1/2) + (1− a)(−β + 3/2);

3. aα+ (1− a)β ≤ γ;

4. when −γ + 3/r = −α+ 1/2, assume also that γ ≤ a(α+ 1) + (1− a)β.

Then
‖σγνu‖Lr(R3) ≤ C‖σαν∇u‖aL2(R3)‖σ

β
ν u‖1−aL2(R3), (2.10)

where σν := (ν + |x|2)−1/2, ν ≥ 0, with a constant C independent of ν.

4| · | denotes the Lebesgue measure.
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3. Proof of Theorem 1.4

Let ξ ∈ R3 \ {0}, T ≥ 1 and consider the segment
L(T, ξ) := {(s, ξs) : s ∈ (0, T )}.

We will investigate for which (T, ξ) the set L(T, ξ) is a regular. To this purpose we introduce the
change of variables

(t, y) = (t, x− ξt), uξ(t, y) = u(t, x), (3.1)
which takes (1.1) into the system

∂tuξ + ((uξ − ξ) · ∇)uξ +∇Pξ −∆uξ = 0
∇ · vξ = 0
uξ(0) = u0
Pξ = R⊗R (uξ ⊗ uξ)

(3.2)

and maps the segment L(T, ξ) in (0, T )×{0} (a vertical segment above the origin of the space-time).
We fix an arbitrary M ≥ 1 and define the set

S(M,T, ξ) :=
{
s ∈ (0, T ] :

∫ s+T/M

s

∫
R3
|y|−1|∇uξ(τ, y)|2 dτdy > M

}
(3.3)

and the number s̄ ≥ 0

s̄ :=
{

inf {s ∈ S(M,T, ξ)} if S(M,T, ξ) 6= ∅
T otherwise.

(3.4)

From the definition of s̄ one has immediately∫ s̄

0

∫
R3
|y|−1|∇uξ(τ, y)|2 dτdy ≤M(M + 1) ≤ 2M2. (3.5)

We next distinguish two cases.

3.1. First case: s̄ = T

In this case the entire segment L(T, ξ) is a regular set. To prove this, we first note that by (3.5),
once we come back to the old variables, we get∫ T

0

∫
R3

|∇u(τ, x)|2

|u− ξτ |
dτdx < +∞. (3.6)

Let 0 < s < T and let r > 0 be so small that 0 < s− 7r2/8 < s+ r2/8 < T and |ξ|r ≤ 1. For each
(τ, x) ∈ Q∗r(s, ξs) we have

|x− ξτ | ≤ |x− ξs|+ |ξ||s− τ | ≤ r + r2|ξ| ≤ 2r
which implies

1
r

∫ ∫
Q∗
r(s,ξs)

|∇u(τ, x)|2 dτdx ≤ 2
∫ s+ 1

8 r
2

s− 7
8 r

2

∫
R3

|∇u(τ, x)|2

|x− ξτ |
dτdx.

Because of this and the (3.6) we immediately see that the regularity condition (2.9) is satisfied at
all (s, ξs) ∈ L(T, ξ), i.e. L(T, ξ) is a regular set as claimed.

3.2. Second case: 0 ≤ s̄ < T

Since uξ is a suitable weak solution of problem 3.2, the following generalized energy inequality is
valid: for all t ≥ 0 and φ ∈ C∞c (R× R3):∫

R3
φ(t, x)|uξ|2dx+ 2

∫ t

0

∫
R3
φ|∇uξ|2

≤
∫
R3
φ(0, x)|u0|2dx+

∫ t

0

∫
R3
|uξ|2(φt − ξ · ∇φ+ ∆φ) +

∫ t

0

∫
R3

(|uξ|2 + 2Pξ)uξ · ∇φ. (3.7)
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This is indeed the inequality (2.1) after the change of variables (3.1). By a standard approximation
procedure (see the proof of Lemma 8.3 in [3]) the estimate is valid for any test function of the form

φ(t, y) := ψ(t)φ1(y)

with φ1 ∈ C∞c (R3), φ1 ≥ 0, and

ψ : (0,∞)→ R absolutely continuous with ψ̇ ∈ L1(0,∞).

We shall choose here
ψ(t) ≡ 1, φ1 = σν(y)χ(δ|y|),

where ν, δ > 0,
σν(y) = (ν + |y|2)− 1

2 ,

and χ : [0,+∞)→ [0,+∞) is a smooth nonincreasing function such that

χ = 1 on [0, 1], χ = 0 on [2,+∞].

Passing to the limit δ → 0 we obtain[∫
R3
σν |uξ|2

]t
0

+ 2
∫ t

0

∫
R3
σν |∇uξ|2

≤
∫ t

0

∫
R3
|uξ|2(−ξ · ∇σν + ∆σν) +

∫ t

0

∫
R3

(|uξ|2 + 2Pξ)uξ · ∇σν . (3.8)

Notice that this is allowed by the integrability properties of the functions involved via dominated
convergence; see Section 2. Since

|∇σν | ≤ (ν + |y|2)−1 = σ2
ν , ∆σν < 0, (3.9)

we deduce the estimate[∫
R3
σν |uξ|2

]t
0

+ 2
∫ t

0

∫
R3
σν |∇uξ|2 ≤ |ξ|

∫ t

0

∫
R3
σ2
ν |uξ|2 +

∫ t

0

∫
R3
σ2
ν(|uξ|3 + 2|Pξ||uξ|). (3.10)

We now use the (3.10) to obtain a Gronwall-type inequality for the quantities

aν(t) = ‖σ1/2
ν uξ(t, x)‖2L2

x
, Bν(t) =

∫ t

0
‖σ1/2

ν ∇uξ(s, x)‖2L2
x
ds.

We first estimate the term which contains Pξ. Let write

I := 2
∫
R3
σ2
ν |uξ||Pξ| = 2

∫
R3
σ2
ν |uξ||R⊗R (uξ ⊗ uξ)|. (3.11)

We use the the weighted Lp inequality for the Riesz transform (see [35]), uniform in ν ≥ 0

‖σmν Rφ‖Ls ≤ Z‖σmν φ‖Ls , 1 < s <∞, m ∈
(
−3(s− 1)

s
,

3
s

)
. (3.12)

Here and in the following, as usual, Z denotes several universal constants, possibly different from
line to line. We have

I ≤ 2‖σνR⊗R (uξ ⊗ uξ)‖L2‖σνuξ‖L2 ≤ Z‖σν |uξ|2‖L2‖σνuξ‖L2

≤ Z‖σ1/2
ν uξ‖2L4‖σνuξ‖L2

and by the Caffarelli–Kohn–Nirenberg inequality (2.10) we obtain

I ≤ Z‖σ1/2
ν ∇uξ‖

3/2
L2 ‖σ1/2

ν uξ‖1/2L2 · ‖σ1/2
ν ∇uξ‖

1/2
L2 ‖σ1/2

ν uξ‖1/2L2

= ZḂνa
1/2
ν ≤ Ḃν

3 + ZḂνaν . (3.13)

Consider now the other terms in (3.10). Proceeding as above, we have by CKN (2.10)

|ξ|
∫
R3
σ2
ν |uξ|2 ≤ Z|ξ|‖σ1/2

ν ∇uξ‖L2‖σ1/2
ν uξ‖L2 = Z|ξ|(Ḃνaν)1/2 ≤ Ḃν

3 + Z|ξ|2aν ; (3.14)
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and again by CKN (2.10)∫
R3
σ2
ν |uξ|3 = ‖σ2/3

ν uξ‖3L3 ≤ Z‖σ1/2
ν ∇uξ‖2L2‖σ1/2

ν uξ‖L2 = ZḂνa
1/2
ν ≤ Ḃν

3 + ZḂνaν . (3.15)

Now recalling (3.10), summing all the inequalities and absorbing a term
∫ t

0 Ḃν(s)ds = Bν(t) from
the left hand side, we obtain

aν(t) +Bν(t) ≤ aν(0) + Z

∫ t

0

(
|ξ|2 + Ḃν(s)

)
a(s) ds,

and passing to the limit ν → 0, we arrive at the estimate

a(t) +B(t) ≤ a(0) + Z

∫ t

0

(
|ξ|2 + Ḃ(s)

)
a(s) ds,

for some universal constant Z, where

a(t) =
∫
R3
|y|−1|uξ(t, y)|2dy, B(t) =

∫ t

0

∫
R3
|y|−1|∇uξ(s, y)|2dsdy.

By a standard application of Gronwall’s lemma we get for 0 ≤ t ≤ s̄
a(t) ≤ eZAa(0), A = B(s̄) + s̄|ξ|2.

By (3.5) we have A ≤ 2M2 + s̄|ξ|2. Thus once we restrict to the vectors ξ such that5

|ξ|2s̄ ≤M2 (3.16)
the estimate becomes

a(t) ≤ eZM
2
ε2 for 0 ≤ t ≤ s̄, (3.17)

where we have set ε2 := a(0) and Z is a larger constant.
Let s̄n < s̄ be a sequence converging to s̄ and such that the strong version (in the sense of

Lemma 2.2 with t0 = s̄n) of the generalized energy inequality (3.7) applies for the sequence of
test functions we are going to define. The existence of the sequence s̄n is ensured by Corollary 2.3.
We now repeat the previous argument, starting from the point (s̄n, s̄nξ), so we write the energy
inequality (3.7) on the time interval s̄n ≤ s ≤ t with t ≤ s̄ + T , choosing as test function
φ(t, y) := ψν(t)σν(y)χ(δ|y|) where χ and σν are as before6, while

ψν(t) := e−kBs̄n,ν(t), Bs̄n,ν(t) :=
∫ t

s̄n

∫
R3
σν |∇uξ|2

with k a positive constant to be specified. Note that Bs̄n,ν is bounded if ν > 0 by the properties
of v. In this way we obtain, letting δ → 0,

[
∫
R3
ψνσν |uξ|2]ts̄n + 2

∫ t

s̄n

∫
R3
ψνσν |∇uξ|2

≤
∫ t

s̄n

∫
R3
ψν |uξ|2(−kḂs̄n,νσν − ξ · ∇σν + ∆σν) +

∫ t

s̄n

∫
R3
ψν(|uξ|2 + 2Pξuξ) · ∇σν

for s̄n ≤ t ≤ s̄+ T , and this implies, recalling (3.9),

[
∫
R3
ψνσν |uξ|2]ts̄n + 2

∫ t

s̄n

∫
R3
ψνσν |∇uξ|2

≤
∫ t

s̄n

∫
R3
ψν |uξ|2(|ξ|σ2

ν − kḂs̄n,νσν) +
∫ t

s̄n

ψν

∫
R3
σ2
ν(|uξ|3 + 2|Pξ||uξ|). (3.18)

Now the goal is to prove an integral inequality involving the quantities

aν(t) =
∫
R3
σν |vξ(t)|2, Bs̄n,ν(t) =

∫ t

s̄n

∫
R3
σν |∇vξ|2.

5Remember that s̄ is a function of ξ.
6To be precise we should consider vanishing sequences νl, δm instead of ν, δ in order to use Corollary 2.3. For

simplicity we omit this detail and we continue to write simply ν, δ.
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We estimate the terms at the right hand side of (3.18). We write again

I := 2
∫
R3
σ2
ν |Pξ||uξ| = 2

∫
R3
σ2
ν |vξ||R⊗R (vξ ⊗ vξ)|.

With computations similar to those of the first step, using the (weighted) boundedness of the Riesz
transform and the CKN inequality, we obtain

I ≤ Ḃs̄n,ν
2 + ZḂs̄n,νaν . (3.19)

Next we have

|ξ|
∫
R3
σ2
ν |uξ|2 = |ξ|‖σνuξ‖2L2 ≤ Z|ξ|‖σ1/2

ν ∇uξ‖L2

= Z|ξ|(Ḃs̄n,νaν)1/2 ≤ |ξ|2 + ZḂs̄n,νaν ; (3.20)
and ∫

R3
σ2
ν |uξ|3 = ‖σ2/3

ν uξ‖3L3 ≤ Z‖σ1/2
ν ∇uξ‖2L2‖σ1/2

ν uξ‖L2

= ZḂs̄n,νa
1/2
ν ≤ Ḃs̄n,ν

2 + ZḂs̄n,νaν . (3.21)

We now plug the previous inequalities in (3.18) and we obtain

aν(t)ψν(t)− aν(s̄n) + 2
∫ t

s̄n

Ḃs̄n,ν(s)ψν(s)ds

≤
∫ t

s̄n

ψν(s)[Ḃs̄n,ν + 3ZḂs̄n,νaν + |ξ|2 − kḂs̄n,νaν ](s)ds.

We subtract the first term at the right hand side from the left hand side; then we choose k = 3Z
and note that ∫ t

s̄n

Ḃs̄n,νψν ≡ −
1

3Z

∫ t

s̄n

ψ̇ν = ψν(s̄n)− ψν(t)
3Z = 1− ψν(t)

3Z
so that, for s̄n ≤ t ≤ s̄+ T , we obtain

aν(t)ψν(t)− aν(s̄n) + 1− ψν(t)
3Z ≤ |ξ|2

∫ t

s̄n

ψν(s)ds. (3.22)

Consider now the increasing functions, for t ≥ s̄,

Bs̄(t) :=
∫ t

s̄

∫
R3
|y|−1|∇vξ(s, y)|2dyds, Bs̄,ν(t) :=

∫ t

s̄

∫
R3
σν |∇vξ(s, y)|2dyds, (3.23)

the first one may become infinite at some point t > s̄n. By the definition of s̄, we know that
Bs̄(t) ≥M for t ≥ s̄+ T/M ; since Bs̄,ν → Bs̄ pointwise as ν → 0, we have also

Bs̄,ν(s) ≥ M

2 for s ≥ s̄+ T

M
and ν small enough.

Using this estimate for s ≥ s̄+T/M and the obvious one Bs̄,ν ≥ 0 for s ≤ s̄+T/M , we have easily∫ s̄+T

s̄n

ψν(s) ds =
∫ s̄+T

s̄n

e−3ZBs̄n,ν(s) ds ≤
∫ s̄+T

s̄n

e−3ZBs̄,ν(s) ds

≤ s̄− s̄n + T

M
+ e−

3
2ZM

(
T − T

M

)
≤ s̄− s̄n + 3T

2M (3.24)

(here we use Z ≥ 1). Since T ≥ 1 and s̄n → s̄ as n→ +∞, we can choose n = n(M) large enough
in such a way that s̄− s̄n ≤ T

2M , so that (3.24) gives∫ s̄+T

s̄n

ψν(s) ds ≤ 2T
M
. (3.25)

We now use the estimate aν(s̄n) ≤ a(s̄n) ≤ eZM2
ε2, proved in (3.17), and note that we can assume

ε ≤ 1 ⇒ a(s̄n) ≤ eZM
2
ε. (3.26)
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Thus inequality (3.22) implies

(aν(t)− 1
3Z )ψν(t) + 1

3Z − e
ZM2

ε− 2|ξ|2 T
M
≤ 0

or equivalently
aν(t) + ( 1

3Z − e
ZM2

ε− 2|ξ|2 T
M

)e3ZBs̄n,ν(t) ≤ 1
3Z . (3.27)

We now assume ε is so small that
eZM

2
ε ≤ 1

9Z , (3.28)

(this also ensures (3.26)), so that (3.27) implies

aν(t) + ( 2
9Z − 2|ξ|2 T

M
)e3ZBs̄n,ν(t) ≤ 1

3Z . (3.29)

Assume in addition that ξ satisfies

( 2
9Z − 2|ξ|2 T

M
) > 0 i.e. |ξ|2T <

M

9Z . (3.30)

Note that this condition is stronger than the first condition (3.16) on ξ, i.e. |ξ|2s̄ ≤ M2, since
M,Z ≥ 1 and s̄ ≤ T . Then, if we let ν → 0, we have7

aν(t)→ a(t) :=
∫
R3
|y|−1|vξ(t, y)|2dy,

Bs̄n,ν(t)→ Bs̄n(t) :=
∫ t

s̄n

∫
R3
|y|−1|∇vξ(s, y)|2dyds

and (3.29) implies, for all s̄n ≤ t ≤ s̄+ T

a(t) + ( 2
9Z − 2|ξ|2 T

M
)e3ZBs̄n (t) ≤ 1

3Z . (3.31)

In particular we see that a(t) and Bs̄n(t) (and so Bs̄(t)) are finite for s̄n ≤ t ≤ s̄+ T . Since by the
definition of s̄ we already know that B(s̄) ≤ 2M2 < +∞, we conclude that

B(s) < +∞ for all 0 ≤ s ≤ s̄+ T.

In particular we have

B(T ) =
∫ T

0

∫
|y|−1|∇vξ(s, y)|2dyds =

∫ T

0

∫
|x− sξ|−1|∇v(s, x)|2dyds < +∞ (3.32)

and then the same argument used to conclude the proof in the first case (s̄ = T ) gives, also in the
second case (s̄ < T ), that L(T, ξ) is a regular set, provided (3.28, 3.30) are satisfied.

3.3. Conclusion of the proof
Summing up, we have proved that there exists a universal constant Z such that for any M ≥ 1,
T ≥ 1 and ξ ∈ R3\{0} the following holds: if ε = ‖|x|−1/2u0‖L2(R3) is small enough to satisfy (3.28),
and T, ξ are such that (3.30) holds, then the segment L(T, ξ) is a regular set for the weak solution
u.

Now define
δ0 = 1

9Z .

The (3.28) is implied by
θ2ε ≤ δ0e−ZM

2/δ0 (3.33)
while (3.30) is implied by

|ξ|2T < Mδ0 ⇐⇒ T >
|Tξ|2

Mδ0
or equivalently

(T, Tξ) ∈ ΠMδ0 , ΠMδ0 := {(t, x) ∈ (0,∞)× R3 : t > |x|
2

Mδ0
}. (3.34)

7Notice that it may be a(t) =∞, Bs̄n (t) =∞. Our aim is to use the estimate (3.31) to prevent this.
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In other words, if ε satisfies (3.33) and (T, Tξ) belongs to the paraboloid ΠMδ0 , then L(T, ξ) is a
regular set. Since ΠMδ0 is the union of such segments for arbitrary T ≥ 1 and ξ ∈ R3 \ {0}, we
conclude that ΠMδ0 is a regular set for the solution u, provided (3.33) holds.

References

[1] P. Auscher, S. Dubois, P. Tchamitchian. On the stability of global solutions to Navier–Stokes
equations in the space. J. Math. Pures Appl., (9) 83 (2004), no. 6, 673–697.

[2] L. Caffarelli, R. Kohn and L. Nirenberg. First order interpolation inequalities with weights.
Compositio Math., 53 (1984), no. 3, 259–275.

[3] L. A. Caffarelli, R. Kohn and L. Nirenberg. Partial regularity of suitable weak solutions of
the Navier–Stokes equations. Comm. Pure Appl. Math., 35 (1982), no. 6, 771–831.

[4] M. Cannone. A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat.
Iberoamericana, 13 (1997), no. 3, 515–541.

[5] D. Chae, J. Lee. On the regularity of the axisymmetric solutions of the Navier–Stokes equa-
tions. Math. Z., 239 (2002), no. 4, 645–671.

[6] J.-Y. Chemin, I. Gallagher. Wellposedness and stability results for the Navier-Stokes equations
in R3. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), no. 2, 599–624.

[7] J.-Y. Chemin, I. Gallagher. On the global wellposedness of the 3-D Navier-Stokes equations
with large initial data. Ann. Sci. École Norm. Sup., (4) 39 (2006), no. 4, 679–698.

[8] P. D’Ancona and R. Lucà. On the regularity set and angular integrability for the Navier–
Stokes equation. ArXiv:1501.07780.

[9] P. D’Ancona and R. Lucà. On some stability and regularity properties of the Navier–Stokes
equation. Preprint.

[10] P. Federbush. Navier and Stokes meet the wavelet. Comm. Math. Phys., 155 (1993), no. 2,
219–248.

[11] C. Foias, J.-C. Saut. Asymptotic behavior, as t→ +∞, of solutions of Navier-Stokes equations
and nonlinear spectral manifolds. Indiana Univ. Math. J., 33 (1984), no. 3, 459–477.

[12] H. Fujita and T. Kato. On the Navier–Stokes initial value problem I. Arch. Rational Mech.
Anal. 16 (1964) 269–315.

[13] I. Gallagher. The tridimensional Navier–Stokes equations with almost bidimensional data:
stability, uniqueness and life span. Internat. Math. Res. Notices, (1997), no. 18, 919–935.

[14] I. Gallagher. Stability and weak-strong uniqueness for axisymmetric solutions of the Navier–
Stokes equations Differential Integral Equations, 16 (2003), no. 5, 557–572.

[15] I. Gallagher, S. Ibrahim and M. Majdoub. Existence et unicité de solutions pour le système
de Navier-Stokes axisymètrique. (French) [Existence and uniqueness of solutions for an ax-
isymmetric Navier-Stokes system]. Comm. Partial Differential Equations, 26 (2001), no. 5-6,
883–907.

[16] I. Gallagher, D. Iftimie and F. Planchon. Asymptotics and stability for global solutions to the
Navier–Stokes equations. Ann. Inst. Fourier, 53 (2003), no. 5, 1387–1424.

[17] Y. Giga and T. Miyakawa. Navier–Stokes flow in R3 with measures as initial vorticity and
Morrey Spaces. Comm. Partial Differential Equations, 14 (1989), no. 5, 577–618.

[18] D. Iftimie. The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes
equations. Bull. Soc. Math. France, 127 (1999), no. 4, 473–517.

[19] T. Kato. Strong Lp-solutions of the Navier–Stokes equation in Rm, with applications to weak
solutions. Math. Z., 187 (1984), no. 4, 471–480.

[20] T. Kato. Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Brasil.
Mat. (N.S.), 22 (1992), no. 2, 127–155.

V–13



[21] T. Kawanago. Stability estimate for strong solutions of the Navier–Stokes system and its
applications. Electron. J. Differential Equations, (1998), no. 15, 23 pp. (electronic).

[22] H. Koch and D. Tataru. Well-posedness for the Navier–Stokes equations. Adv. Math., 157
(2001), no. 1, 22–35.

[23] H. Kozono, M. Yamazaki. Semilinear heat equations and the Navier-Stokes equation with
distributions in new function spaces as initial data. Comm. Partial Differential Equations, 19
(1994), no. 5-6, 959–1014.

[24] O. A. Ladyzhenskaja. Unique global solvability of the three-dimensional Cauchy problem for
the Navier-Stokes equations in the presence of axial symmetry. (Russian) Zap. Nau?n. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968) 155–177.

[25] S. Leonardi, J. Málek, J. Necas, M. Pokorný. On axially symmetric flows in R3. Z. Anal.
Anwendungen 18 (1999), no. 3, 639–649.

[26] P. G. Lemarié-Rieusset. Recent developments in the Navier–Stokes problem. Chapman and
Hall/CRC Research Notes in Mathematics, 431. Chapman and Hall/CRC, Boca Raton, FL,
2002.

[27] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63 (1934),
no. 1, 193–248.

[28] F. Lin. A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math., 51
(1998), no. 3, 241–257.

[29] A. Mahalov, E. S. Titi, S. Leibovich. Invariant helical subspaces for the Navier–Stokes equa-
tions. Arch. Rational Mech. Anal., 112 (1990), no. 3, 193–222.

[30] F. Planchon. Global strong solutions in Sobolev or Lebesgue spces to the incompressible
Navier–Stokes equations in R3. Ann. Inst. Henry Poincare, Anal. Non Lineaire, 13:319–336,
1996.

[31] G. Ponce, R. Racke, T. C. Sideris and E. S. Titi. Global stability of large solutions to the 3D
Navier–Stokes equations. Comm. Math. Phys. 159 (1994), no. 2, 329–341.

[32] V. Scheffer. Partial regularity of solutions to the Navier–Stokes equations. Pacific J. Math.,
66 (1976), no. 2, 535–552.

[33] V. Scheffer. Hausdroff measure and the Navier–Stokes equations. Comm. Math. Phys., 55
(1977), no. 2, 97–112.

[34] J. Serrin. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch.
Rational Mech. Anal., 9 (1962) 187–195.

[35] E. M. Stein. Note on singular integrals. Proc. Amer. Math. Soc., 8 (1957), 250–254.
[36] M. E. Taylor. Analysis on Morrey spaces and applications to Navier–Stokes and other evolution

equations. Comm. Part. Diff. Eq., 17(9-10):1407–1456, 1992.
[37] R. Témam. Navier–Stokes equations, Theory and Numerical Analysis. North-Holland. Ams-

terdam and New York, 1977.
[38] M. R. Ukhovskii and V. I. Iudovich. Axially symmetric flows of ideal and viscous fluids filling

the whole space. Prikl. Mat. Meh., 32 59–69 (Russian). Translated as J. Appl. Math. Mech.,
32 (1968) 52–61.

Instituto de Ciencias Matemáticas
CSIC-UAM-UC3M-UCM
Madrid, 28049, Spain
renato.luca@icmat.es

V–14

mailto:renato.luca@icmat.es

	1. Introduction and main results
	2. Preliminaries
	3. Proof of Theorem 1.4
	3.1. First case:  = T
	3.2. Second case: 0  < T
	3.3. Conclusion of the proof

	References

