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On some rigidity properties of mappings between
CR-submanifolds in complex space

Francine Meylan Nordine Mir Dmitri Zaitsev

Abstract
We survey some recent results on holomorphic or formal mappings sending

real submanifolds in complex space into each other. More specifically, the
approximation and convergence properties of formal CR-mappings between
real-analytic CR-submanifolds will be discussed, as well as the corresponding
questions in the category of real-algebraic CR-submanifolds.

Introduction

The classical system of Cauchy-Riemann equations in Cn is an important example of
an overdetermined system with infinite-dimensional space of solutions. Understand-
ing its “boundary version” (obtained by restricting to real hypersurfaces, or more
generally to CR-submanifolds) played an important role in understanding properties
of general linear first order PDE systems (see e.g. [Tr00] for a nice exposition on
that matter). In contrast to the classical case, in the “boundary case”, locally one
obtains infinite-dimensional families of nonequivalent PDE systems (corresponding
to different CR-structures) that can’t be obtained from each other by a change of co-
ordinates. This new phenomenon discovered by Poincaré [Po07] and further studied
in seminal work of Cartan [C32a, C32b], Tanaka [Ta62] and Chern-Moser [CM74],
attracted recently considerable attention due to its connection to classical theory of
PDEs and also to many other extensively developing areas such as e.g. differential,
algebraic and symplectic geometry. The relevant system of PDEs for isomorphisms
between different tangential Cauchy-Riemann systems is, in the “generic" situation,
an overdetermined quasilinear PDE system whose space of solutions (called CR-
mappings) may range from zero-dimensional (or even empty) to infinite-dimensional,
depending on the degeneracies of the systems. The present survey is devoted to re-
cent results on various existence and convergence properties of solutions for these
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systems. One basic difficulty arising in this context is that the relevant degeneracies
may appear for arbitrarily high order derivatives of the system coefficients. Another
basic difficulty comes from the presence of singularities that, again, may arise at ar-
bitrarily high order. In §3 we prove a new result on existence of algebraic solutions
of algebraic systems (with possible singularities) provided analytic solutions exist.
For further discussion of related questions and previously known results, we refer
the reader to [V85, BN90, Fo93, BER99a, BER00b, Hu01, Z02, R03].

An appendix can be found at the end of the paper, where some notation and
basic material needed for this survey are given.

1. Existence of CR-mappings

We begin by discussing the equivalence problem for real-analytic CR-structures. The
usual procedure for treating this problem is to pass to its complexification as follows.
It is well-known (see e.g. [BER99a]) that a real-analytic CR-structure can be locally
realized via an embedding into a complex space and two such CR-structures are
analytically CR-equivalent if and only if the two embeddings are biholomorphically
equivalent, i.e. mapped into each other by a biholomorphic map. Hence we are led
to the following basic problem: Given two (germs of) real-analytic submanifolds in
CN , when is there a (germ of a) biholomorphic map sending one submanifold into
another? In their celebrated paper [CM74], Chern and Moser constructed a normal
form for Levi-nondegenerate real-analytic hypersurfaces in CN providing a solution
to the problem for hypersurfaces of this kind. Their construction of the normal form
has two parts: a simpler one leading to a formal normal form and a finer geometric
construction of the same normal form proving that the obtained normal form is
actually convergent when the hypersurface is real-analytic and showing that the
formal transformation taking the real hypersurface into its normal form is convergent
in this case. In particular, they show in [CM74, §3] that any formal biholomorphic
map sending a (germ of a) real-analytic Levi-nondegenerate hypersurface M ⊂ CN

into another real-analytic Levi-nondegenerate hypersurface M ′ ⊂ CN is convergent.
We recall that a formal biholomorphic map (or formal equivalence) f : (CN , p) →
(CN , p′), p ∈ M , p′ ∈ M ′, is an invertible formal holomorphic map (i.e. given by
formal power series in (z1, . . . , zN)) for which the pullback under f of any local
real-analytic defining function for M ′ near p′ vanishes on M (as a formal power
series in (z1, . . . , zN , z̄1, . . . , z̄n)). Hence the formal equivalence of real-analytic Levi-
nondegenerate hypersurfaces in CN implies their biholomorphic equivalence.

Thus, in case of Levi-nondegenerate hypersurfaces, one can conclude their equiv-
alence by fulfilling the compatibility conditions for CR-mappings at the formal level.
More generally, it is natural to ask whether such a property holds for any pair of
real-analytic submanifolds M, M ′ ⊂ CN of the same dimension. Surprisingly, Moser
and Webster [MW83] have produced an example of a (germ of a) two-dimensional
real-algebraic surface M0 in C2 that is formally equivalent to a real-analytic sur-
face M ′

0 ⊂ C × R, but that cannot be biholomorphically mapped (as a germ) to
it. Such a surface M0 ⊂ C2

z,w is explicitly given by w = |z|2 + γz2 + γz3z for a
suitably chosen real number γ > 2. More recently, Gong [G02] gave another class
of such examples by showing that, for some γ > 2, the quadric Qγ ⊂ C2

z,w given
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by w = |z|2 + γ(z2 + z2) is formally but not biholomorphically equivalent to some
real-analytic surface in C2.

The example of Moser-Webster leads to the question of deciding for which germs
of real-analytic submanifolds the notions of formal and biholomorphic equivalence
coincide. More precisely, one has the following problem: Given two real-analytic
submanifolds M, M ′ ⊂ CN of the same dimension, characterize those points p ∈ M
and p′ ∈ M ′ for which formal equivalence of the germs (M, p) and (M ′, p′) im-
plies their biholomorphic equivalence. A recent result along these lines in [BRZ01a]
states that notions of formal and biholomorphic equivalence coincide at all points
of nonempty Zariski open subsets of the submanifolds (by Zariski open subsets we
shall always mean complements of real-analytic subvarieties). More precisely, the
following holds:

Theorem 1.1 (Baouendi, Rothschild, Zaitsev [BRZ01a]) Let M ⊂ CN be a
connected real-analytic submanifold. Then there exists a closed proper real-analytic
subvariety V ⊂ M such that for any p ∈ M \V , any second real-analytic submanifold
M ′ ⊂ CN with dimR M = dimR M ′, and any p′ ∈ M ′, the germs (M, p) and (M ′, p′)
are formally equivalent if and only if they are biholomorphically equivalent.

The subvariety V in Theorem 1.1 is explicitly described as a union of three
distinguished proper real-analytic subvarieties. The first subvariety is the set of
points of M that are not CR (see the appendix for the definition). After remov-
ing this subvariety from M , we may assume that M is itself CR. To describe the
second subvariety, we need to recall the notion of local CR-orbits in a real-analytic
CR-submanifold. Given a point p ∈ M , its CR-orbit is the (unique) germ of a real-
analytic submanifold Σp through p that satisfies TqΣ

p ⊗ C = gM(q) for all q ∈ Σp,
where gM(q) denotes the Lie algebra (evaluated at q) generated by (1, 0) and (0, 1)
vector fields tangent to M . The existence and uniqueness of Σp follows from a the-
orem of Nagano [N62]. The second subvariety to be removed from M consists of
those points p ∈ M for which the map U 3 q 7→ dimR Σq is not constant in any
neighborhood U of p. Finally, the third subvariety to be removed from M consists of
those points that are not of constant degeneracy. A point p ∈ M is said to be of con-
stant degeneracy if there exists r ∈ {0, . . . , N−1} such that M is biholomorphically
equivalent in a neighborhood of p to a product of the type M̃ × Cr for some real-
analytic CR-submanifold M̃ ⊂ CN−r satisfying a suitable nondegeneracy condition
called finite nondegeneracy (see e.g. [BER99a] for the definition). It can be shown
that the set of points of constant degeneracy on a real-analytic CR-submanifold is
indeed an (analytic) Zariski open subset of M (see [BRZ01a]).

One natural question that arises from the above discussion is to find the optimal
subvariety V for the conclusion of Theorem 1.1 to hold. Since the only known
examples of points p ∈ M for which the conclusion of Theorem 1.1 fails to hold are
non CR-points, one may be tempted to conjecture that the subvariety V in Theorem
1.1 is contained in the set of non CR-points:

Conjecture 1.2 Let M, M ′ ⊂ CN be real-analytic CR-submanifolds of the same
dimension. Then for every p ∈ M , every p′ ∈ M ′, the germs (M, p) and (M ′, p′)
are formally equivalent if and only if they are biholomorphically equivalent.
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A more recent result supporting this conjecture is the following:

Theorem 1.3 (Baouendi, Mir, Rothschild [BMR02]) Let M ⊂ CN be a real-
analytic CR-submanifold. Then for any point p ∈ M of finite type, any real-analytic
CR-submanifold M ′ ⊂ CN with dimR M = dimR M ′, and any p′ ∈ M ′, the germs
(M, p) and (M ′, p′) are formally equivalent if and only they are biholomorphically
equivalent.

Here we recall that a real-analytic CR-submanifold M ⊂ CN is of finite type
at a point p ∈ M (in the sense of Kohn [K72] and Bloom-Graham [BG77]) if the
Lie algebra generated by all (1, 0) and (0, 1) vector fields tangent to M spans the
complexified tangent space of M at p. It is worth mentioning that Theorems 1.1
and 1.3 are independent and not contained into each other. Indeed, given a real-
analytic CR-submanifold M , the set of points of finite type can be empty, e.g. for
M = M0 × R ⊂ CN with M0 ⊂ CN−1 being any CR-submanifold. On the other
hand, for the class of real-analytic CR-submanifolds that are of finite type (for which
the conclusion of Theorem 1.3 holds at every point), the subvariety V constructed
in Theorem 1.1 can be still non-empty:

Example 1.4 Consider the (real-algebraic) hypersurface M ⊂ C3
z1,z2,z3

given by

M := {(z1, z2, z3) ∈ C3 : Im z3 = |z1z2|2}.

Then M is of finite type through every point, but the subvariety V constructed in
Theorem 1.1 is not empty since it can be shown that it is given by the real line
V = {(z1, z2, z3) ∈ C3 : Im z3 = z1 = z2 = 0}. Similarly, for any positive integer
n, any real-algebraic hypersurface M̃ ⊂ Cn+3 of the form M̃ := M × Cn is also of
finite type and has a non-empty corresponding real-analytic subvariety V .

In the next example, we give a situation where Theorems 1.1 and 1.3 cannot be
applied to some points.

Example 1.5 Let M ⊂ CN be any infinite type real-analytic hypersurface at the
origin. Then there exists local holomorphic coordinates (z′, zN) ∈ CN−1 × C near
the origin such that M is given by

M := {(z′, zN) ∈ CN : Im zN = (Re zN)θ(z′, z′, Re zN)},

for some real-analytic function θ (see e.g. [BER99a]). If M is not Levi-flat, then for
any point z ∈ M \ S, where S is the complex hyperplane of CN given by {zN = 0},
M is of finite type at z, and Theorem 1.3 can therefore be applied at those points.
However, it is an open problem to decide whether the conclusions of Theorems 1.1
and 1.3 also hold for points on the hyperplane S.

It is worth pointing out that, in the situation either of Theorem 1.1 or of Theorem
1.3, the assumptions on the manifolds do not imply that all formal equivalences
between them converge. Indeed, for instance if M is a product of the form M̃ × C
for an arbitrary real-analytic CR-submanifold M̃ , then for any point p ∈ M , it is
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easy to construct non-convergent formal self-maps of M centered at p. We shall see
in §4 that more restrictive assumptions have to be put on the manifolds to obtain
convergence of all their formal equivalences.

Although the proofs of Theorems 1.1 and 1.3 are very different, they both use
the approximation theorem due to Artin [A68] (or its generalization). We recall it
for the convenience of the reader.

Theorem 1.6 (Artin [A68]) Let S(x, y) = (Si(x, y))i∈I , Si(x, y) ∈ K{x, y}, be a
family of convergent power series, where K = R or C, x ∈ Kn, y ∈ Kp. Suppose that
there exist a formal solution y(x) ∈ (K[[x]])p, y(0) = 0, of the system of equations

S(x, y) = 0. (1)

Then for any nonnegative integer k, there exists a convergent solution of the system
(1), for which the Taylor series agrees with that of y(x) up to order k.

We should mention that Theorem 1.1 and Theorem 1.3 are correspondingly
consequences of the following more general approximation results:

Theorem 1.7 (Baouendi, Rothschild, Zaitsev [BRZ01a]) Let M ⊂ CN be a
connected real-analytic submanifold. Then there exists a closed proper real-analytic
subvariety V ⊂ M such that for any p ∈ M \ V , any real-analytic submanifold
M ′ ⊂ CN with dimR M = dimR M ′, any p′ ∈ M ′ and any positive integer k, if
f : (CN , p) → (CN , p′) is a formal equivalence sending M into M ′, then there exists
a convergent (biholomorphic) mapping fk: (CN , p) → (CN , p′) sending M into M ′,
whose Taylor series agrees with f up to order k.

Theorem 1.8 (Baouendi, Mir, Rothschild [BMR02]) Let M ⊂ CN be a real-
analytic CR-submanifold. Then for any point p ∈ M of finite type, any real-analytic
CR-submanifold M ′ ⊂ CN with dimR M = dimR M ′, any p′ ∈ M ′ and any positive
integer k, if f : (CN , p) → (CN , p′) is a formal equivalence sending M into M ′, there
exist a convergent (biholomorphic) mapping fk: (CN , p) → (CN , p′) sending M into
M ′, whose Taylor series agrees with f up to order k.

We should mention that Theorem 1.7 and Theorem 1.8 hold for more general
formal maps. We refer the reader to [BRZ01a] and [BMR02] for more details on
this matter. In view of Theorem 1.7 and Theorem 1.8, one may formulate a more
general approximation problem for formal holomorphic maps in complex spaces of
(possibly) different dimensions:

Conjecture 1.9 Let M ⊂ CN and M ′ ⊂ CN ′ be real-analytic CR-submanifolds,
N, N ′ ≥ 2. Then for every p ∈ M , every p′ ∈ M ′, every positive integer k, if
f : (CN , p) → (CN ′

, p′) is a formal map sending M into M ′, there exists a convergent
mapping fk: (CN , p) → (CN ′

, p′) sending M into M ′, whose Taylor series agrees with
f up to order k.

The authors have recently proved the following result supporting Conjecture 1.9:
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Theorem 1.10 (Meylan, Mir, Zaitsev [MMZ03]) Let M ⊂ CN be a real-ana-
lytic CR-submanifold. Then for any point p ∈ M of finite type, any real-algebraic
subset M ′ ⊂ CN ′, any p′ ∈ M ′, and any positive integer k, if f : (CN , p) → (CN ′

, p′) is
a formal mapping sending M into M ′, there exist a convergent mapping fk: (CN , p) →
(CN ′

, p′) sending M into M ′, whose Taylor series agrees with f up to order k.

The algebraicity of the target set M ′ is essential in the proof of Theorem 1.10
given in [MMZ03].

2. Segre sets technique

We now describe a common tool needed for the proofs of Theorems 1.7, 1.8 and
1.10. It is the so-called Segre sets technique introduced by Baouendi, Ebenfelt
and Rothschild [BER96, BER99a, BER03] that has been very successful for study-
ing real-analytic and formal CR-maps between real-analytic CR-manifolds (see e.g.
[BER96, BER97, Z97, BER98, BER99b, BER99a, Z99, M00, BRZ01a, BRZ01b,
KZ01, La01, BMR02, M02a, M02b, MMZ03, BER03]). Roughly speaking, the Segre
sets approach extends to higher codimension the Segre variety approach used by
Webster [W77] for mapping problems between real hypersurfaces in complex space.
We recall here some basic ideas of this approach.

Let M ⊂ CN be a real-analytic generic submanifold of codimension d through
the origin and let ρ(z, z) := (ρ1(z, z), . . . , ρd(z, z)) be a vector-valued real-analytic
defining function of M near the origin so that ρ1, . . . , ρd have linearly independent
complex differentials. Hence there is a connected open neighborhood U ⊂ CN of
the origin such that

M ∩ U = {z ∈ U : ρ(z, z) = 0}. (2)

Complexification of the defining equation of M yields the so-called complexification
of M , which is a complex submanifold of (complex) codimension d in C2N defined
by

M := {(z, ζ) ∈ U × U∗ : ρ(z, ζ) = 0}, (3)

where U∗ := {z : z ∈ U}. For any w ∈ U , its Segre variety Qw is given by

Qw := {z ∈ U : ρ(z, w) = 0}. (4)

Each Segre variety Qw is a complex submanifold of (complex) codimension d in CN .
After the pioneering work of Webster [W77], Segre varieties became a basic tool for
mapping problems. For real-analytic generic submanifolds of higher codimension,
Baouendi, Ebenfelt and Rothschild [BER96] (see also [BER99a, BER03]) introduced
the Segre sets Qs

w, for w ∈ M sufficiently close to the origin, by setting inductively
Q1

w := Qw and Qs+1
w := ∪z∈Qs

w
Qz for s ≥ 1. Another way of looking at the Segre

sets was given by the third author in [Z97, Z99] through the use of the so-called
iterated complexification of M . For every s ≥ 1, define the iterated complexification
of M at 0 by setting

Ms := {ξ = (ξ0, . . . , ξs) ∈ C(s+1)N : ρ(j)(ξj−1, ξj) = 0 forall j = 1, . . . , s}, (5)
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where ρ(j)(ξj−1, ξj) is equal to ρ(ξj−1, ξj) if j is even and to ρ(ξj−1, ξj) if j is odd.
(In this definition, ξ0, . . . , ξs are assumed to be sufficiently close to the origin and for
a holomorphic function h defined near the origin in Ck, h denotes the holomorphic
function obtained from h by taking complex conjugates of the coefficients in its power
series expansion.) The iterated complexification Ms is a complex submanifold of
C(s+1)N of dimension sn + N where n is the CR-dimension of M (i.e. N − d). We
can define on Ms two projections πs:Ms → CN and π′s:Ms → CN on the first and
last component by setting

πs(ξ
0, . . . , ξs) = ξ0, and π′s(ξ

0, . . . , ξs) = ξs.

In this way, for p ∈ M sufficiently close to the origin, the Segre set Qs
p coincide with

the set π′s(π
−1
s ({p})) or with its complex conjugate, depending on whether s is odd

or even. It is often useful to parametrize the Segre sets by the so-called iterated
Segre sets mappings (see [BER99a, BER03]). Since M is generic, we may assume,
after possibly renumbering the coordinates, that the d×d matrix ∂ρ

∂η
(0) is invertible

where z = (ω, η) ∈ Cn × Cd. Then, by the implicit function theorem and after
shrinking U if necessary, the complexification M of M can be viewed as a graph of
the form

M := {(z, ζ) ∈ U × U∗ : η = θ(ω, ζ)} (6)

for some holomorphic function θ. For p ∈ M sufficiently close to the origin, define
the iterated Segre mapping vs

p: Csn → CN , 0 ≤ s ≤ 2(d + 1), inductively as follows:

v0
p := p, vs+1

p (t1, . . . , ts+1) := (ts+1, θ(ts+1, vs
p(t

1, . . . , ts))), tj ∈ Cn. (7)

We may assume that for each s as above, the map

CN × Csn 3 (w, t1, . . . , ts) 7→ vs
w(t1, . . . , ts) ∈ CN ,

which, with the above choice of parametrization of M, may be identified with the
map π′s (or π′s), is holomorphic in all its variables in a sufficiently small neighborhood
of the origin. Then, for p ∈ M sufficiently small, the Segre set Qs

p can be then seen
as the image of a neighborhood Ωs

p of the point (ωp, ωp, ωp, ωp, . . .) in Csn under the
map vs

p, where p = (ωp, ηp). (Note that the Segre sets Qs
p depend on the choice of the

neighborhood Ωs
p and, unlikely Segre varieties, a choice of a smaller neighborhood

yields smaller Segre sets even at the level of germs.)
From the point of view of mapping theory, regularity and uniqueness proper-

ties (such as e.g. convergence or finite jet determination of formal maps) are being
“propagated” through the Segre sets. The following theorem is crucial for the proofs
of Theorems 1.7, 1.8 and 1.10. It is a finite type criterion stating that Segre sets of
order 2(d + 1) attached to the origin cover an open neighborhood of 0 in CN if only
if the manifold M is of finite type.

Theorem 2.1 (Baouendi, Ebenfelt, Rothschild [BER99a, BER03]) Let M ⊂
CN be a real-analytic generic submanifold of codimension d and CR-dimension n
through the origin. Then M is of finite type at 0 if and only if the map π′2(d+1)|π−1

2(d+1)
({0})

has rank N at points in π−1
2(d+1)({0})∩π′−1

2(d+1)({0}) arbitrarily close to 0 ∈M2(d+1).
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3. Algebraic approximation of analytic CR-mappings between
real-algebraic submanifolds

In the category of real-algebraic submanifolds, another natural notion of equivalence,
namely that of algebraic equivalence, is defined as follows.

Definition 3.1 Given two germs (M, p) and (M ′, p′) of real-algebraic submanifolds
of the same dimension in CN , we say that (M, p) and (M ′, p′) are algebraically
equivalent if there exists a local (complex-)algebraic biholomorphism f : (CN , p) →
(CN , p′) sending M into M ′.

Recall that a real submanifold M ⊂ CN is real-algebraic if it is contained in an
irreducible real-algebraic subvariety of CN of the same dimension as that of M . Also,
recall that a holomorphic map is algebraic (or Nash) if each of its components sat-
isfies a non-trivial polynomial identity with (holomorphic) polynomial coefficients.
It is natural to compare the notions of biholomorphic and algebraic equivalence:
Given two (germs of) real-algebraic submanifolds (M, p) and (M ′, p′) of the same
dimension in CN that are biholomorphically equivalent, are they automatically alge-
braically equivalent?

We should mention that no example is known of a pair of biholomorphically
equivalent real-algebraic submanifolds which are not algebraically equivalent. Since
the techniques used in the proofs of the results mentioned in §1 have correspond-
ing algebraic analogs (e.g. the implicit function theorem, Artin’s approximation
theorem [A69], etc.), Theorem 1.1 admits the following algebraic version for local
holomorphic maps.

Theorem 3.2 (Baouendi, Rothschild, Zaitsev [BRZ01b]) Let M ⊂ CN be a
connected real-algebraic submanifold. Then there exists a closed proper real-algebraic
subvariety V ⊂ M such that for any p ∈ M \ V , any real-algebraic submanifold
M ′ ⊂ CN with dimR M = dimR M ′, and any p′ ∈ M ′, the germs (M, p) and (M ′, p′)
are biholomorphically equivalent if and only if they are algebraically equivalent.

On the other hand, the algebraic version of Theorem 1.3 given in Theorem
3.3 below requires only the first manifold M to be (connected and) of finite type
somewhere, which is weaker than what is required in Theorem 1.3.

Theorem 3.3 (Baouendi, Mir, Rothschild [BMR02]) Let M ⊂ CN be a con-
nected real-algebraic CR-submanifold of finite type at some point. Then for any point
p ∈ M , any real-algebraic CR-submanifold M ′ ⊂ CN with dimR M = dimR M ′, any
point p′ ∈ M ′, the germs (M, p) and (M ′, p′) are algebraically equivalent if and only
they are biholomorphically equivalent.

Since connected real-algebraic hypersurfaces that are of finite type at some point
coincide with Levi-nonflat ones, and since Levi-flat real-algebraic hypersurfaces are
locally algebraically equivalent to a real hyperplane, Theorem 3.3 immediately yields
the following positive answer for hypersurfaces to the question posed in the begin-
ning of this section.
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Corollary 3.4 (Baouendi, Mir, Rothschild [BMR02]) Two germs of real-alge-
braic hypersurfaces in CN are biholomorphically equivalent if and only if they are
algebraically equivalent.

Note that the question whether biholomorphic equivalence of general real alge-
braic submanifolds in CN implies their algebraic equivalence remains open already
for submanifolds of codimension two.

A related problem is to approximate up to any given order a local holomor-
phic map sending two real-algebraic submanifolds (in complex spaces of arbitrary
dimension) into each other by algebraic holomorphic maps. We shall show in this
paper that a suitable modification of the arguments of the proof of Theorem 1.10,
in combination with some additional work, can be used to prove the following new
approximation result generalizing, in particular, Theorem 3.3 (and Corollary 3.4):

Theorem 3.5 Let M ⊂ CN be a connected real-algebraic CR-submanifold of finite
type at some point. Then for any point p ∈ M , any real-algebraic subset M ′ ⊂ CN ′,
any point p′ ∈ M ′ and any positive integer k, if f : (CN , p) → (CN ′

, p′) is a local
holomorphic map sending M into M ′, there exists an algebraic holomorphic map
fk: (CN , p) → (CN ′

, p′) sending M into M ′ whose Taylor series at p agrees with that
of f up to order k.

In the rest of the section, we shall give the necessary modifications from the
proof of [MMZ03, Theorem 1.1] leading to the proof of Theorem 3.5. Without loss
of generality, we may assume that p = p′ = 0. Moreover, it is easy to see, by using
the intrinsic complexification of M (see e.g. the proof of [MMZ03, Theorem 1.1]),
that it is enough to show Theorem 3.5 in case M is generic, which we shall assume
in the following.

Similarly to [CMS99, MMZ03] (see also [Pu90a, Pu90b] in another context), to
a given germ of a holomorphic map f : (CN

Z , 0) → CN ′

Z′ defined on a connected open
neighborhood U of the origin, associate a germ at (0, f(0)) of a complex-algebraic
set Zf ⊂ CN×CN ′ as follows. Define Zf , the (algebraic) Zariski closure of the graph
of f , to be the smallest irreducible complex-algebraic subset containing the graph of
f . Setting µf := dimCZf , it is clear that µf ≥ N (since the graph of f is contained
in Zf ). One of the interests in introducing the set Zf lies in the fact that it contains
some information about the algebraic properties of the map f . For instance, it is
easy to see that f is algebraic if and only if µf = N . Another interesting fact is that
one may apply directly the algebraic version of Artin’s approximation theorem given
in [A69] to the system of (holomorphic) polynomial equations defining Zf to obtain,
for any positive integer k, a local holomorphic algebraic map fk: (CN , 0) → (CN ′

, 0),
whose graph is contained in Zf , with the same k-jet at the origin as that of f . We
fix any such sequence (fk)k>0 associated to f and assume that each fk is defined on
a sufficiently small polydisc ∆k ⊂ CN centered at the origin.

Our main goal now is to prove that, if M satisfies the finite type condition
stated in Theorem 3.5 and if f sends (a neighborhood of 0 in) M into M ′, then
necessarily there exists a union of real-algebraic irreducible components of the real-
algebraic subset Zf ∩ (M × CN ′

) that is contained in M × M ′ and that contains
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Γfk
∩ (M × CN ′

), for all sufficiently large k. Here Γfk
denotes the graph of fk over

∆k. The precise statement is given by the following result:

Proposition 3.6 Let M, M ′, f,Zf and (fk)k>0 be as above. Then after shrinking
M around the origin if necessary, there exist a positive integer k0 and an appropriate
union Zf of real-algebraic irreducible components of the real-algebraic subset Zf ∩
(M × CN ′

) such that for any k ≥ k0, Γfk
∩ (M × CN ′

) ⊂ Zf ⊂ M ×M ′.

Clearly, Theorem 3.5 follows directly from Proposition 3.6 and the fact that each
fk is algebraic by our construction.

By inspecting now the proof of Theorem [MMZ03, Theorem 7.1 (i)] (which is
somewhat analogous to the statement of Proposition 3.6 in the formal setting), it is
easy to check that the proof of Proposition 3.6 can be achieved in the same way (with
suitable minor modifications) using the following result (cf. [CMS99, Proposition 5.1]
for a special case).

Proposition 3.7 Let Ω ⊂ CN be a connected open subset and M ⊂ Ω a connected
real-algebraic generic submanifold that is of finite type at some point. Let F : Ω → Ck

be a holomorphic map, k ≥ 1, such that the components of F together with their
complex conjugates F satisfy on M a nontrivial polynomial identity with real poly-
nomial coefficients. Then the components of F satisfy on Ω a nontrivial polynomial
identity with holomorphic polynomial coefficients.

By following the arguments of [CMS99, Proposition 5.1] and [MMZ03, Proposi-
tion 4.3] (see also [Pu90a, Pu90b] where they first appear in another context), it is
easy to see that Proposition 3.7 is a consequence of the following lemma:

Lemma 3.8 Let Ω ⊂ CN be a connected open subset and M ⊂ Ω a connected real-
algebraic generic submanifold that is of finite type at some point. Let h: Ω → C and
g: Ω → Cm, m ≥ 1, be holomorphic maps satisfying

h(z) = ϕ(z, g(z)), z ∈ M, (8)

for some holomorphic algebraic function ϕ of its arguments. Then h is algebraic.

Proof of Lemma 3.8. Let d be the codimension of M in CN and n its CR-dimension,
so that N = n + d. It is enough to prove that h is algebraic near some point
p0 of M of finite type. We may choose local holomorphic algebraic coordinates
z = (ω, η) ∈ Cn × Cd vanishing at p0 such that the complexification M of M near
p0 is given by (6) for some holomorphic algebraic function θ. Complexifying (8), we
obtain

h(z) = ϕ(z, g(ζ)), (z, ζ) ∈M. (9)

For 0 ≤ s ≤ 2(d + 1), let vs
0 be the associated iterated Segre mapping of order s

at 0 as given by (7). Using the fact, which follows directly from (7), that the map
(vs+1

0 , vs
0) takes its values in M, and using (9), we obtain the identity

h ◦ vs+1
0 = ϕ ◦ (vs+1

0 , g ◦ vs
0), (10)
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which holds for values (t1, . . . , ts+1) sufficiently close to the origin in C(s+1)n. We
now show that the algebraicity of h “propagates” along Segre sets by establishing
the following claim.

Claim. Assume that for some 1 ≤ s ≤ 2(d + 1), all derivatives of h pulled back
via vs−1

0 are algebraic. Then the same holds for all derivatives of h pulled back via
vs+1

0 .
The proof of the claim uses an argument appearing in [M98, M00, BMR02,

M02a, MMZ03]. By [BMR02, Lemma 8.2], we can find a holomorphic algebraic
map (t1, . . . , ts) 7→ λ(t1, . . . , ts) near 0 such that

vs+1
0 (t1, . . . , ts, ts+1)|ts+1=λ(t1,...,ts) = vs−1

0 (t1, . . . , ts−1). (11)

Then by differentiating infinitely many times (10) with respect to ts+1, setting ts+1 =
λ(t1, . . . , ts), using (11), the assumption in the claim and the algebraic version of
Artin’s approximation theorem [A69], we obtain the existence of an algebraic map
(t1, . . . , ts) 7→ G(t1, . . . , ts) defined near the origin such h ◦ vs+1

0 = ϕ ◦ (vs
0, G). Since

ϕ is algebraic as well as the iterated Segre sets mappings, we conclude that h ◦ vs+1
0

is algebraic. The algebraicity of all further derivatives of h pulled back via vs+1
0 can

be shown in the same way after differentiating first the identity (9) along M. This
completes the proof of the claim.

Using the fact that all derivatives of h are obviously algebraic when pulled back
via v0

0 and using the claim, we obtain that h◦v
2(d+1)
0 is algebraic. By using the finite

type criterion given by Theorem 2.1 in the algebraic case (see [BER96]), we easily
obtain that h is algebraic. This completes the proof of Lemma 3.8 and therefore the
proof of Theorem 3.5.

4. Convergence of formal transformations

In §1 we have seen many situations where formal equivalence of two real-analytic
submanifolds implies their biholomorphic equivalence. We shall now examine a
closely related problem: Under what conditions a given formal equivalence between
two submanifolds necessarily converges? Recall that it follows from the work of
Chern and Moser [CM74] that any formal equivalence between two real-analytic
Levi-nondegenerate hypersurfaces is convergent. For CR-submanifolds in CN , it is
in general not the case as it is shown by the following examples.

Example 4.1 Let M ⊂ CN be a real-analytic hypersurface through the origin and
set M̃ := M ×C ⊂ CN

z ×Cw; then for any nonconvergent formal power series ν(w)
with ν(0) = 0 and ν ′(0) 6= 0, the formal holomorphic map (z, w) 7→ (z, ν(w)) is a
non-convergent invertible formal self map of M̃ .

Example 4.2 Let M ⊂ Cz1 ×Cz2 ×Cz3 be the real-algebraic hypersurface defined
in Example 1.4. Then for any nonconvergent formal power series ν(z) with ν(0) = 0,
the formal map (z1, z2, z3) 7→ (z1e

ν(z), z2e
−ν(z), z3) is a nonconvergent formal invert-

ible self map of M . The difference with Example 4.1 is that there is no (germ at 0

of a) real-analytic hypersurface M̂ ⊂ C2 such that (M̂ × C, 0) is biholomorphically
equivalent to (M, 0). However such a straightening property holds near a generic
point z0 ∈ M .
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In view of the above examples, one may therefore ask the following: Given
two germs of real-analytic CR-submanifolds (M, p) and (M ′, p′) in CN of the same
dimension, find necessary and sufficient conditions that guarantee the convergence
of all their formal equivalences. An obvious necessary condition is that the source
manifold is generic. In light of Example 4.2, one should assume that the generic
submanifold M is not biholomorphically equivalent, near any point arbitrarily close
to p, to a product of the form M̂ × C for some real-analytic CR-submanifold M̂ ⊂
CN−1 (the submanifold M̂ is allowed to depend of the chosen point). This turns out
to be equivalent to assume that M is holomorphically nondegenerate (at p) in the
sense of Stanton [S96]:

Definition 4.3 Let M ⊂ CN be a real-analytic submanifold and p ∈ M . We say
that M is holomorphically nondegenerate at p if there is no germ at p of a nontrivial
holomorphic vector field (with holomorphic coefficients) whose real and imaginary
parts are tangent to M .

It is easy to see that a real-analytic hypersurface in C2 is holomorphically degen-
erate at some point if and only it is Levi-flat near that point (see the appendix for
the definition). A less trivial fact is that a connected real-analytic CR-submanifold
is holomorphically nondegenerate at a point p ∈ M if and only if it is holomorphi-
cally nondegenerate at every point (see [BER96, BER99a]). By using flows of vector
fields, Baouendi, Ebenfelt and Rothschild [BER97] observed that holomorphic non-
degeneracy is necessary for the convergence of all formal equivalences sending two
real-analytic generic submanifolds of the same dimension into each other. For finite
type submanifolds, the sufficiency of this necessary condition was proved by the
second author [M00] in the hypersurface case and by Baouendi, Rothschild and the
second named author [BMR02] in higher codimension:

Theorem 4.4 (Baouendi, Mir, Rothschild [M00, BMR02]) Let M ⊂ CN be
a connected real-analytic generic submanifold that is holomorphically nondegenerate
and of finite type (at every point). Then for any point p ∈ M , any real-analytic
generic submanifold M ′ ⊂ CN with dimR M = dimR M ′, and any point p′ ∈ M ′,
any formal equivalence f : (CN , p) → (CN , p′) sending M into M ′ is convergent.

The convergence result given by Theorem 4.4 holds also for so-called formal finite
maps that are more general than formal equivalences (see [BMR02, Theorem 1.2]).
Let us mention the following open problem related to Theorem 4.4:

Conjecture 4.5 Let M ⊂ CN be a connected real-analytic hypersurface that is holo-
morphically nondegenerate. Then for any point p ∈ M , any real-analytic hypersur-
face M ′ ⊂ CN , and any point p′ ∈ M ′, any formal equivalence f : (CN , p) → (CN , p′)
sending M into M ′ is convergent.

In view of Theorem 4.4, the only remaining case to treat in order to solve Con-
jecture 4.5 is that of holomorphically nondegenerate real-analytic hypersurfaces that
contain a complex-analytic hypersurface S of CN and the main problem in that case
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is to prove the convergence of the corresponding formal equivalences near any point
lying on S.

The convergence problem for general formal mappings sending a real-analytic
generic submanifold M ⊂ CN into another such submanifold M ′ ⊂ CN ′ of different
dimension has been much less studied. One of the first results in that direction is
due to Lamel [La01]. For formal maps f : (CN , p) → (CN ′

, p′) sending M into M ′,
with M, M ′ as above, p ∈ M , p′ ∈ M ′, an obstruction to conclude their automatic
convergence is due to the possible presence of complex-analytic curves through p′

contained in M ′; indeed, if there exists such a curve, say (C, 0) 3 t 7→ A(t) ∈
(CN ′

, p′), then for any nonconvergent formal power series (CN , p) 3 z 7→ ν(z) with
ν(p) = 0, the map z 7→ A(ν(z)) is a nonconvergent formal map sending M into M ′

(and in fact into the curve). In [MMZ03], the authors have shown that the existence
of complex-analytic curves in a target real-algebraic submanifold is essentially the
only obstruction for the convergence of formal maps:

Theorem 4.6 (Meylan, Mir, Zaitsev [MMZ03]) Let M ⊂ CN be a real-ana-
lytic generic submanifold of finite type and M ′ ⊂ CN ′ a real-algebraic subset with
p ∈ M and p′ ∈ M ′. Denote by E ′ the set of all points of M ′ through which there
exist irreducible complex-analytic subvarieties of M ′ of positive dimension. Then
any formal (holomorphic) mapping f : (CN , p) → (CN ′

, p′) sending M into M ′ is
either convergent or sends M into E ′.

In the context of Theorem 4.6, by saying that f sends M into E ′, we mean that
ϕ(f(x(t))) ≡ 0 holds for all germs of real-analytic maps x: (Rdim M

t , 0) → (M, p) and
ϕ: (M ′, p′) → (R, 0) such that ϕ vanishes on E ′. Such a precision is noteworthy
since the subset E ′ (that coincides with the set of infinite type points in the sense
of D’Angelo [D’A82]) is not in general a real-analytic subset of M ′ as shown by the
following example:

Example 4.7 Consider the tube real-algebraic hypersurface M ′ ⊂ C4 given by

(Re z1)
2 − (Re z2)

2 + (Re z3)
2 = (Re z4)

3 (12)

near the point (1, 1, 0, 0) ∈ M ′. We claim that the subset E ′ ⊂ M ′ is given by
Re z4 ≥ 0 and is therefore not analytic. (Note that E ′ is here semi-algebraic.)
Indeed, every intersection of M ′ with {z4 = const, Re z4 ≥ 0} contains complex
lines through each point and is hence everywhere of D’Angelo infinite type. On the
other hand, if Re z4 < 0, the coordinate Re z2 can be expressed as a strictly convex
function of the other coordinates. Therefore, M ′ is strictly pseudoconvex at each
such point and, in particular, of D’Angelo finite type.

Despite of the rather “bad” structure of the set E ′, it is enough for the proof
of Theorem 4.6 to know that it is a closed subset of M ′. This fact follows from
the work of Lempert [Le86] and D’Angelo [D’A91]. As an immediate application of
Theorem 4.6, we obtain the following characterization:
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Theorem 4.8 (Meylan, Mir, Zaitsev [MMZ03]) Let M ⊂ CN be a real-ana-
lytic generic submanifold of finite type and M ′ ⊂ CN ′ a real-algebraic subset with
p ∈ M and p′ ∈ M ′. Then all formal maps f : (CN , p) → (CN ′

, p′) sending M into M ′

are convergent if and only if M ′ does not contain any irreducible complex-analytic
subvariety of positive dimension through p′.

It is not known whether Theorem 4.8 still holds with M ′ being merely a real-
analytic subset of CN ′ . For the case of real hypersurfaces in the equidimensional case
N = N ′, it has been previously known that the algebraicity condition on the target
manifold in Theorem 4.8 can be dropped provided the source is also of D’Angelo
finite type:

Theorem 4.9 (Baouendi, Ebenfelt, Rothschild [BER00a]) Let M, M ′ ⊂ CN

be real-analytic hypersurfaces which do not contain nontrivial complex-analytic sub-
varieties. Then any formal mapping sending M into M ′ is convergent.

Another intermediate interesting setting to study is that of formal maps (or
embeddings) sending real-analytic strongly pseudoconvex hypersurfaces (in different
dimensions) into each other. In case N ′ = N +1 (and N ≥ 2), we have the following:

Theorem 4.10 (Mir [M02b]) Any formal embedding sending a real-analytic strongly
pseudoconvex hypersurface M ⊂ CN into another such hypersurface M ′ ⊂ CN+1 is
convergent.

Recall that, by a formal embedding sending M into M ′, we mean a formal map
for which the induced differential on the tangent spaces of the reference points
is injective. It turns out that Theorem 4.10 is a special case of a more general
result for so-called CR-transversal formal maps between Levi-nondegenerate real-
analytic hypersurfaces. A formal map F : (CN , p) → (CN ′

, p′) sending two (germs
of) real-analytic hypersurfaces M and M ′ into each other is called CR-transversal if
dF (p)(CTpM) 6⊂ T 1,0

p′ M ′⊕T 0,1
p′ M ′. It is easy to see that CR-transversality automat-

ically holds if both M and M ′ are strongly pseudoconvex and F is an embedding.
Hence Theorem 4.10 follows immediately from the following.

Theorem 4.11 (Mir [M02b]) Any formal CR-transversal map sending a real-
analytic Levi-nondegenerate hypersurface M ⊂ CN into another such hypersurface
M ′ ⊂ CN+1 is convergent.

It is noteworthy to mention that Theorem 4.11 is sharp in the sense that it can
not be extended to formal CR-transversal maps with N ′ −N > 1, as shown by the
following simple example (cf. [La01]):

Example 4.12 For any N ≥ 2, consider the Levi-nondegenerate real-algebraic hy-
persurfaces through the origin given by

M0 := {(z1, . . . , zN) ∈ CN : Re z1 = |z2|2 + . . . |zN |2} ⊂ CN , (13)

M ′
0 := {(z′1, . . . , z′N+1, z

′
N+2) ∈ CN+2 : Re z′1 = |z′2|2+. . .+|z′N+1|2−|z′N+2|2} ⊂ CN+2.

(14)
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Then any nonconvergent formal power series ν(z), with ν(0) = 0, yields a non-
convergent formal embedding Fν sending M0 into M ′

0 defined by setting Fν(z) :=
(z1, . . . , zN , ν(z), ν(z)).

Example 4.12 also shows that the result of Chern-Moser mentioned in the begin-
ning of this section cannot be extended to formal embeddings of Levi-nondegenerate
hypersurfaces if N ′ −N > 1.

In addition to the result in the strongly pseudoconvex case mentioned in The-
orem 4.10, Theorem 4.11 also provides a convergence result for formal embeddings
in other new situations, such as e.g. when the target hypersurface is foliated by
complex curves. The proof of Theorems 4.11 and 4.10 is based on Huang’s work on
algebraicity of local holomorphisms of real-algebraic hypersurfaces [Hu94] as well on
some convergence arguments from [M00, M02a] involving the Segre sets technique
mentioned in §1.

Appendix

A (C∞) smooth submanifold M ⊂ CN is called a CR-submanifold if for any p ∈ M
the complex tangent space T c

pM := TpM ∩J(TpM) ⊂ TpM has constant dimension.
(Here, J : CN → CN denotes the standard complex structure given by multiplication
by i.) It is called generic if TpM + J(TpM) = TpCN , for all p ∈ M . If M is a
CR-submanifold of CN , the subbundle T cM ⊂ TM induces a subbundle T 0,1M of
the complexified tangent bundle CTM := TM ⊗C defined on each fiber by setting
T 0,1

p M := {X + iJX : X ∈ T c
pM} for p ∈ M . Any section of T 0,1M is usually

referred to as a (0, 1) vector field (tangent to M). The bundle T 0,1M satisfies the
conditions (15) and (16) below, that may be used to define an abstract CR-structure
on any given manifold.

We say that a smooth real manifold M is a CR-manifold if there exists a sub-
bundle L of CTM (often called the CR-bundle) satisfying the following conditions

L ∩ L = {0}, (15)

which is the abbreviation of the following property: if V ∈ Γ(L)∩Γ(L) then V = 0,
and the following integrability condition

[L, L] ⊂ L, (16)

which is the abbreviation of the following property: if V, W ∈ Γ(L), then [V, W ] ∈
Γ(L). (Here if E is a vector bundle over some manifold X, Γ(E) denotes the space
of smooth sections from X to E.) The complex dimension of the bundle L is called
the CR-dimension of M . Given two CR-manifolds M, M ′ and a map f : M → M ′ of
class C1, we say that f is CR if the differential of f maps T cM into T cM ′ in such a
way that it commutes with J on T cM . The map f is called a CR-diffeomorphism
if it is a diffeomorphism and f−1 is CR .

Let M be a CR-manifold of dimension 2n + d, where n = dimCR M ; let L be its
CR-bundle. We recall that the Levi-form of M is given at a point p ∈ M by the
vector-valued hermitian form Lp: Lp × Lp → CTpM/(Lp ⊕ Lp) defined by setting

Lp(V1(p), V2(p)) :=
1

2i
πp([V1, V2](p)),
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where V1, V2 ∈ Γ(M, L), Lp denotes the fiber of L at p and πp: CTpM → CTpM/(Lp⊕
Lp) is the natural projection. The CR-manifold M is called Levi-nondegenerate at
p if Lp(v1, v2) = 0 for all v1 ∈ Lp implies v2 = 0. For instance, a model case of Levi-
nondegenerate real hypersurfaces in complex space is given by the hyperquadric
Hl,k ⊂ Cl+k+1 defined by

Hl,k := {(z1, . . . , zl+k+1) ∈ Cl+k+1 : Im zl+k+1 = |z1|2+. . .+|zl|2−|zl+1|2−. . .−|zl+k|2}.

When k = 0, Hl,0 is the standard Heisenberg hypersurface of Cl+1, which is a model
case of real hypersurfaces that are strongly pseudoconvex i.e. for which the Levi form
(which is then a hermitian form) is definite positive (or negative). On the opposite
side of strongly pseudoconvex real hypersurfaces, the real hypersurfaces for which
the Levi form vanishes at every point are called Levi-flat. Such real hypersurfaces,
that are moreover real-analytic, are locally biholomorphically equivalent to a real
hyperplane (see e.g. [BER99a]).
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