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Uniqueness results for some PDEs

Nader MASMOUDI

Abstract
Existence of solutions to many kinds of PDEs can be proved by using a

fixed point argument or an iterative argument in some Banach space. This
usually yields uniqueness in the same Banach space where the fixed point is
performed. We give here two methods to prove uniqueness in a more natural
class. The first one is based on proving some estimates in a less regular space.
The second one is based on a duality argument. In this paper, we present
some results obtained in collaboration with Pierre-Louis Lions, with Kenji
Nakanishi and with Fabrice Planchon.

1. Introduction

Consider the following system of equations{
ut = Lu + N(u)

u(t = 0) = u0 (1)

where L is linear and N(u) is a nonlinear term and the initial data u0 is given in some
Hs space. We want to study the well-posedness of (1) in Hs, namely we want to
prove the existence and uniqueness of a solution u to (1) in the space C([0, T ); Hs).
Here, the Hs space can also be replaced by a Lebesgue space Lp, a Besov space or
a more general Banach space... Under some conditions on L and N the existence
can be proved by using a fixed point argument or and iterative argument in some
Banach space X such that X ⊂ C([0, T ); Hs). This, of course, yields a better
existence result than the required one since it proves that the solution u is actually
in X which is in general smaller than C([0, T ); Hs). However, the uniqueness is only
proved in X and in many examples it turns out to be not easy to prove that we have
uniqueness of solutions in C([0, T ); Hs). In this review paper, we want to address
this issue and give two general methods, one can use to try to prove uniqueness in
the more natural class C([0, T ); Hs). The first one is based on proving estimates
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in a space which is less regular than X but which contains C([0, T ); Hs) or more
generally a space which contains the difference between two solutions u and v which
are both in C([0, T ); Hs). More precisely, the space X can be written as X = Xs

for some family of spaces Xs. Then, using that u and v are two solutions of (1) and
that u, v ∈ C([0, T ); Hs), we can prove that u − v ∈ Xs′ for some s′ < s. Then,
we can prove some estimates in Xs′ . In some examples the spaces Xs and Xs′ only
differ by the regularity index and in some other cases, Xs and Xx′ are completely
different.

The second method consists in proving an existence result for a dual problem
and then using the solution of the dual problem as a test function. In other words,
we replace the uniqueness problem by an existence problem. We will apply these
two methods to different parabolic and hyperbolic examples.

In, the next section, we recall how we can prove existence for (1) by using a
fixed point argument. In the other sections of this review paper, we study different
examples. The author would like to thank Fabrice Planchon for providing many
related references and giving some remarks about the manuscript.

2. Existence using a fixed point argument

We can prove the existence of solutions to (1) using a fixed point argument or an
iterative scheme. Let uL be the solution of the linear problem{

∂tuL = LuL

uL(t = 0) = u0.
(2)

To perform a fixed point argument, we have to find a Banach space Bs
T such that

uL ∈ Bs
T and

Bs
T ↪→ C([0, T ); Hs).

We consider the function Φ defined by

Φ : Bs
T → Bs

T

v 7→ u

where u solves the following equation{
∂tu = Lu + N(uL + v)

u(t = 0) = 0.
(3)

We assume that Φ satisfies

||Φ(v)||Bs
T

≤ CT A(||uL||Bs
T

+ ||v||Bs
T
)

||Φ(v1)− Φ(v2)||Bs
T

≤ CT A′(||uL||Bs
T

+ ||v1||Bs
T

+ ||v2||Bs
T
)(||v1 − v2||Bs

T
)

where CT goes to 0 when T goes to 0. Besides, A(c), A′(c) ≥ 0 and are non-increasing
and A(c) + A′(c) goes to 0 when c goes to 0.

Using the above hypotheses, it is easy to see that taking T small enough, we
can prove the local existence and uniqueness of a fixed point v for the function Φ.
Moreover uL + v is a solution to the equation (1).
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On the other hand if we also assume that supT CT ≤ C∞ and that A(c)/c →
α < 1/C∞ when c goes to 0, then we can prove the global existence of a solution
w = uL + v to (1) by using a fixed point argument in the Banach space Bs

∞.
Going back to the uniqueness issue, we point out that in most of the interesting

examples (specially the critical ones) the fixed point argument can not be performed
directly in C([0, T ); Hs) and one has to work (sometimes very hard) to exhibit a
space Bs

T where we can perform the fixed point.
Instead of continuing in a very general framework, we will give some examples.

3. The Navier-Stokes equation

The Navier-Stokes system describes the motion of a viscous incompressible fluid.
When the fluid fills a regular domain Ω (which can be bounded or unbounded) of
RN , the system is written on (0, T )× Ω

∂tu + u.∇u− ν∆u = −∇p (4)
div(u) = 0 (5)

together with initial and boundary conditions

u(0) = u0 (6)
u = 0 on ∂Ω (7)

where u(t, x) ∈ RN is the velocity, p(t, x) ∈ R is the pressure and t ∈ (0, T ), x ∈ Ω.
Besides the result of J. Leray [15] who proved that if u0 ∈ L2(Ω) then there exists
a global weak solution to (4) and (5) in L∞(0, T ; L2) ∩ L2(0, T ; H1

0 ), we have the
following existence of mild-solution due to T. Kato [11] for the case Ω = RN

Theorem 3.1 If u0 ∈ LN(RN), then there exists a unique maximal time T ∗ and a
unique solution of the Navier-Stokes system in

C([0, T ∗); LN(RN)) ∩ {u/t
1
4 u(t) ∈ C([0, T ∗[; L2N(RN))}. (8)

The fact that u belongs to {u/t
1
4 u(t) ∈ C([0, T ∗[; L2N)} is essential for the applica-

tion of the fixed point argument in the proof by Kato. For N = 3, the uniqueness
in C([0, T ∗); L3(R3)) was proved by G. Furioli, P-G. LemariÈ-Rieusset and E. Ter-
raneo [7], [8] by proving some estimates on the difference between two solutions in
the space B

1
2
2,∞. In collaboration with P.-L. Lions [16, 17], we gave a more general

proof of uniqueness which also applies to the case of domains with boundaries. We
have

Theorem 3.2 If u1 and u2 are two solutions of the Navier-Stokes system (4) and
(5), with the same initial condition u0 in C([0, T ); LN(Ω)) with N ≥ 3, then u1 = u2.

Theorem 3.3 If u1 and u2 are two solutions of the Navier-Stokes system (4) and
(5), with the same initial condition u0 in L∞([0, T ); LN(Ω)) with N ≥ 4, then
u1 = u2.
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The proof of the first theorem 3.2 is based on proving existence to the following
dual problem. Let Φi, with 1 ≤ i ≤ N , be a solution in Ω× (0, T ) of the following
backward Stokes system

−∂tΦi − u1
j∂jΦi − ν∆Φi − u2

j∂iΦj + ∂iΨ = Fi (9)

div(Φ) = 0 Φ = 0 on ∂Ω Φ(T ) = 0

where the summation is performed over j and where F ∈ C∞
0 (Ω× (0, T )). Then if

we multiply formally the following equation satisfied by u1 − u2

∂t(u
1 − u2)− ν∆(u1 − u2) + u1.∇(u1 − u2) + (u1 − u2).∇u2 = −∇(p1 − p2) (10)

by Φ, we get after some computations∫ T

0

∫
Ω

(u1 − u2).F = 0. (11)

Since (11) holds for all F ∈ C∞
0 (Ω× (0, T )), we deduce that u1 = u2. To justify

this computation, we show the existence of Φ by showing some a priori estimates
and then using the regularity of the Stokes operator we deduce that Φ is regular
enough and decays fast enough at infinity to make the computations rigorous. By
doing so, we have replaced a proof of uniqueness by an existence proof of some
solution satisfying enough regularity and decay.

To prove theorem 3.3, we argue as follows. Since, we know that there exists a
solution in C([0, T ); LN(Ω)) we can assume, with out loss of generality, that u2 ∈
C([0, T ); LN(Ω)). Then, multiplying at least formally (10) by v = u1 − u2, we get

1

2
∂t||v||2L2 + ν||∇v||2L2 ≤

∫
Ω

|v| |∇v| |u2|

≤ C ε||∇v||L2||v||L2N/(N+2) + Cε||v||L2||∇v||L2 (12)
≤ 2C ε||∇v||2L2 + C||v||2L2

where we have decomposed u2 in the following form

u2 = v2 + w2 with ||v2||C([0,T );LN (Ω)) ≤ ε and ||w2||L∞x,t
≤ Cε.

Then, choosing ε small enough and applying a Gronwall lemma, we deduce that
v = 0. To make this computation, we have to prove that u1−u2 ∈ L∞(L2)∩L2(H1)
since N ≥ 4. This can be proved by using the regularity of the Stokes operator (see
[17] for the details).

4. Maxwell-Dirac

To write the Maxwell-Dirac equation, we introduce the following notations

∂ = (∂0, . . . , ∂3) = (∂t,∇), Dα = ∂α + iAα, (13)
Fαβ = ∂αAβ − ∂βAα, (14)
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where (t, x) denotes the space-time coordinates, A = (A0, . . . , A3) = (A0,AAA) denotes
the electromagnetic potential, D denotes the covariant derivative, and F denotes the
electromagnetic field. F is decomposed into the electric field E = (F10, F20, F30) =
−(F01, F02, F03) and the magnetic field B = (F23, F31, F12) = −(F32, F13, F21). In
other words, they are given by

E = ∇A0 − ȦAA, B = ∇×AAA. (15)

The existence of A satisfying these relations is equivalent to the following equations
for E and B:

∇ ·B = 0, Ḃ +∇× E = 0. (16)

In the sequel, we employ the convention of tacit summation over coupled upper and
lower indices, where Greek letters run from 0 to 3 while Latin letters run from 1
to 3. We denote Xα = gαβXβ with gαβ = diag(−1, 1, 1, 1) for any tensor X. We
consider the following Maxwell-Dirac system which describes the evolution of the
wave function of a self-interacting relativistic electron:{

∂αFαβ = Jβ = 〈γ0u, γβu〉,
iγαDαu = mu,

(17)

where u ∈ C4 denotes the spinor field coupled with F , m ≥ 0 is a constant, J0 =
−|u|2 is the charge density, JJJ = (J1, J2, J3) is the electric current given by Jk =
〈γ0u, γku〉 for 1 ≤ k ≤ 3, and 〈a, b〉 denotes the real part of the inner product,
namely 〈a, b〉 = <(ab). The Dirac matrices are given by

γ0 =

(
I2 02

02 −I2

)
, γk =

(
02 σk

−σk 02

)
, (18)

where 02 is the null 2× 2 matrix, I2 is the 2× 2 identity and the Pauli matrices are
given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(19)

This system has a conserved total charge
∫

J0dx = −
∫
|u|2dx and the conserved

energy given by

E =

∫
2〈iD0u, u〉+ |E|2 + |B|2dx

=

∫
2〈γjDju, iγ0u〉+ 2m〈u, γ0u〉+ |E|2 + |B|2dx,

(20)

which does not have a definite sign. The Maxwell-Dirac in the Coulomb gauge
(∇ ·AAA = 0) can be written as

iγα∂αu−mu = γαAαu,

− ∂2
t AAA + ∆AAA = PJJJ,

∆A0 = −|u|2, ∇ ·AAA = 0,

(21)
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where P denotes the projection on divergence-free vectors which is given by PJJJ =
JJJ −∇∆−1(∇ · JJJ). We complement (21) with the following initial data

(u(0),AAA(0), ȦAA(0)) ∈ H1/2(R3; C4)× (Ḣ1 × L2)(R3; R3),

∇ ·AAA(0) = ∇ · ȦAA(0) = 0,
(22)

In collaboration with Kenji Nakanishi [18] we proved

Theorem 4.1 (with Kenji Nakanishi) Given any initial data as in (22), there exists
a unique solution (u, A) to the Maxwell-Dirac in the Coulomb gauge (21) on some
time interval (−T, T ) satisfying

(u, A0,AAA,ȦAA) ∈ C(−T, T ; H1/2 × C0 × Ḣ1 × L2). (23)

where C0 is the completion of C∞
0 with respect to the L∞ norm.

The existence part improves Bournaveas’ result [1], where a strictly greater reg-
ularity was necessary, namely C(H1/2+ε × H1+ε). To prove the existence, we have
to use a fixed point argument in an Xs,b which we are going to define. For s, b ∈ R
and an interval I ⊂ R, we define

‖u‖Xs,b
± (I) := inf

u(t)=U(±t)v(t)onI
‖v‖Hb

t (R;Hs
x), (24)

where Hs denotes the inhomogeneous Sobolev space. Schematically, we have

Xs,b
± = U(±t)Hb

t H
s
x. (25)

We also denote Xs,b = Xs,b
+ + Xs,b

− . We remark that those spaces do not change if
we consider the Klein-Gordon propagator Um(±t) = e±it

√
m2−∆ instead of U(±t) =

U0(±t), since Um(−t)U0(t) is a uniformly bounded operator on any Hb
t (H

s
x) and

Hb
t (Ḣ

s
x). Then, it is obvious that we have

‖Um(±t)ϕ‖Xs,b
± (I) . ‖ϕ‖Hs (26)

for any m, s, b, I. We estimate the solution (u, A) in the following spaces : u ∈
X1/2,b, u̇ ∈ X−1/2,b, AAA ∈ Ẋ1,b and ȦAA ∈ X0,b for some b > 1/2. By the standard
multiplication estimate in the Besov spaces and the Hölder inequality, we obtain
the following estimates. Notice that Ḃ

3/2
2,1 ⊂ C0 by the Sobolev embedding.

‖A0‖L∞(Ḃ
3/2
2,1 )

. ‖|u|2‖
L∞(Ḃ

−1/2
2,1 )

. ‖u‖2
L∞H1/2 ,

‖Ȧ0‖Ḃ
1/2
2,∞

. ‖uu̇‖
Ḃ
−3/2
2,∞

. ‖u‖L∞H1/2‖u̇‖L∞H−1/2 ,

‖AαAαu‖L∞H−1/2 . (‖AAA‖L∞Ḣ1 + ‖A0‖L∞Ḃ
3/2
2,1

)2‖u‖L∞H1/2 ,

‖A0u̇‖L∞H−1/2 . ‖A0‖L∞Ḃ
3/2
2,1
‖u̇‖L∞H−1/2 ,

‖ΦJJJ‖L2L2 . ‖u‖2
L4L4 .

(27)

Using null-form structure, we get

‖AAA · ∇u‖L2H−1/2 . ‖AAA‖Ẋ1,b‖u‖X1/2,b , (28)
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since we have AAA · ∇u = ∂i(∂i∆
−1Aj)∂ju − ∂j(∂i∆

−1Aj)∂iu by virtue of ∇ ·AAA = 0.
Using the embedding L2L4/3(I) ⊂ Ẋ

−1/2,−1/4−ε
± (I), we get

‖(∂AAA)u‖X−1/2,−1/4−ε . ‖(∂AAA)u‖L4L4/3 . ‖∂AAA‖L∞L2‖u‖L4
t,x

,

‖(∂A0)u‖X−1/2,−1/4−ε . ‖(∂A0)u‖L4L4/3 . ‖∂A0‖Ḃ
1/2
2,∞
‖u‖L∞t L2

x∩L4
t,x

.
(29)

Thus we can estimate �u in X−1/2,−1/4−ε and �AAA in L2
t,x. Then, using the above esti-

mates as well as a classical iteration argument, we deduce the existence of a unique
local solution for the Maxwell-Dirac system satisfying u ∈ X1/2,b, u̇ ∈ X−1/2,b,
A0 ∈ C(C0), AAA ∈ Ẋ1,b and ȦAA ∈ X0,b for some 3/4 > b > 1/2.

For the uniqueness, we have to prove some similar estimate but at a lower level
of regularity. We take two solutions (u, A) and (uw, Aw) on some time interval
I = (−T, T ) in the energy space. Without loss of generality, we can assume that
(u, A) is the solution constructed above and hence u ∈ X1/2,b, u̇ ∈ X−1/2,b, AAA ∈ Ẋ1,b

and ȦAA ∈ X0,b for some b > 1/2. We denote u′ = u − uw and A′ = A − Aw.
Using that (uw, Aw) solves the Maxwell-Dirac system, we can prove that (u′,AAA′)

is in the following spaces: u′ ∈ X0,b, u̇′ ∈ X−1,b, AAA′ ∈ Ẋ1/2,b and ȦAA
′ ∈ Ẋ−1/2,b.

Notice that these are exactly the same spaces where we have proved the existence
with 1/2 derivative less. We introduce the Klein-Gordon propagator and the Dirac
propagator given respectively by

K(t) := Ω−1 sin Ωt, D(t) := K̇(t) + (γj∂j − im)γ0K(t), (30)

where Ω =
√

m2 −∆. Hence, u satisfies

u(t) = D(t)u(0)− i

∫ t

0

D(t− s)γ0γα(Aαu)(s)ds (31)

and u′ satisfies

u′(t) = −i

∫ t

0

D(t− s)γ0γα(A′
αu + A′

αu′ + Aαu′)(s)ds. (32)

Using that (u, A) is a “good solution”, we can estimate all the terms appearing in
(32). We refer to [18] for the details. Hence, we get

‖u′‖X0,b + ‖AAA′‖Ẋ1/2,b . C(|I|1/4 + |I|1−b)(‖u′‖X0,b + ‖AAA′‖Ẋ1/2,b)

where C depends here on the two solutions (u, A) and (uw, Aw). Taking I to be
small enough, we deduce that (u, A) = (uw, Aw) and we can iterate the argument
on the whole interval (−T, T ).

Remark 4.2 In [18], we prove a similar result for the Maxwell-Klein-Gordon (MKG)
system {

∂αFαβ = Jβ = −=(uDβu) = 〈iu, Dβu〉,
DαDαu = m2u,

(33)

where u is a complex scalar field. We refer the reader to [18] for the proof. We recall
that, the existence and uniqueness with additional restrictions have been obtained by
Klainerman and Machedon in [13] for MKG in the energy space C(H1). For MKG,
unconditional uniqueness was also proved by Zhou in [30] who proved the uniqueness
for a simplified model which carries only the null quadratic terms of MKG.
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5. Nonlinear wave equations

We consider the following quintic wave equation in three space dimensions,{
�φ + φ5 = 0,
φ(t = 0) = φ0, φt(t = 0) = φ1,

(34)

Existence of global solutions in the energy space C(R; H1) ∩ C1(R; L2) is due to
Shatah and Struwe [27] (see also [9, 26]). Uniqueness was proved only under an
additional space-time integrability assumption of Strichartz type, which is a crucial
ingredient to the proof of the existence result. This condition is for instance an
L5(L10) bound. Another condition can also be found in [29]. To state our result,
let us recall that a smooth solution of the wave equation (34) satisfies the following
energy identity on each backward cone : Let (t0, x0) be the vertex of such a backward
cone K, K = {|x − x0| = t0 − t} and e(u) = |∂u|2/2 + u6/6 be the energy density
(here and thereafter ∂ denotes the full space-time gradient). Then we have for all
s ≤ t ≤ t0∫

B(x0,t0−t)

e(u(t, x))dx +
1√
2

∫ t

s

∫
∂B(x0,t0−τ)

|∂Ku(τ)|2

2
+

u(τ)6

6
dσdτ (35)

≤
∫

B(x0,t0−s)

e(u(s, x))dx,

where ∂K denotes the derivatives tangent to the backward cone K and the inequality
is actually an equality. The second term on the left-hand side is usually referred to
as the (outgoing) flux through the cone K. Moreover, if we consider the forward
cone K1 of vertex (t0 − 2s, x0), namely K1 = {|x − x0| = t − (t0 − 2s)}, then
K ∩K1 = {(t, x) |t = t0 − s, |x− x0| = s} and

1√
2

∫ t0−s

t0−2s

∫
∂B(x0,τ−(t0−2s))

|∂K1u(τ)|2

2
+

u(τ)6

6
dσdτ

+
1√
2

∫ t0−s

t0−2s

∫
∂B(x0,t0−τ)

|∂Ku(τ)|2

2
+

u(τ)6

6
dσdτ (36)

≤
∫

B(x0,2s)

e(u(t0 − 2s, x))dx.

and the equality holds. The first term in the left hand side is usually referred to as
the (incoming) flux through the cone K1. In collaboration with Fabrice Planchon
[19], we prove the following result

Theorem 5.1 (with Fabrice Planchon) Let u be a weak solution to (34) which sat-
isfies (36) and (35). Then this solution is unique among all weak solutions satisfying
(36) and (35).

To prove the theorem, let us take u and v, two solution of (34) satisfying (36)
and (35). Taking φ to be an admissible test function φ ∈ C∞

0 ([0,∞), R3), we have∫
(u− v)(�φ + V φ) = 0. (37)
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where V = u4 + 4u3v + 6u2v2 + 4uv3 + v4. We intend to solve the following (dual)
problem: let F ∈ C∞

0 ((0, T )× R3) and φ be the solution of the following backward
wave equation {

�φ + V φ = F,
φ(T ) = ∂tφ(T ) = 0,

(38)

for some T > 0 which will be chosen small enough. Let K = {(t, x)| |x − x0| =
t0 − t, t0 ≤ t ≤ T}. Then, the solution of (38) is given by

φ(t0, x0) =

∫
K

F (z)− V φ(z)

|z − z0|
dσ(z), (39)

with z = (t, x) and where σ is the surface measure on K. Then, we proceed as
Jörgens [10, 25], and get the following a priori estimate

‖φ‖L∞((0,T )×R3) ≤ C(F ) + ‖φ‖L∞((0,T )×R3) sup
z0

∫
K

|V |
|z − z0|

dσ(z), (40)

and as |V | . u4 + v4, we use∫
K

|u|4

|z − z0|
dσ(z) ≤ C

∫
K

|∂Ku|2 + |u|6

which is controlled using (36) by the initial energy in the ball B(x0, T ). By choosing
T small enough this can be made uniformly small and hence, using the a priori
estimate (40), we can prove the existence of a solution to (38) in L∞t,x. At this
level of regularity φ can not be used as a test function in (37). However, using a
regularizing procedure (see [19]), we can prove that

∫
(u−v)F = 0 and hence u = v.

Remark 5.2 In four space dimensions, a related problem is the cubic wave equation{
�φ + φ3 = 0,
φ(t = 0) = φ0, φt(t = 0) = φ1,

(41)

For this equation F. Planchon [24] proved the uniqueness of solutions in C(R; H1)∩
C1(R; L2) without any extra assumption and regardless of the sign in front of φ3. The
proof uses the end-point Strichartz estimate. In the defocusing case, one has again
weak finite energy solutions; by taking advantage of finite speed of propagation, the
proof can be adapted to obtain uniqueness of weak solutions satisfying only forward
in time local energy inequalities.

6. Wave maps

Let (N, g) be a complete Riemannian manifold of dimension k without boundary.
We denote (xα), 0 ≤ α ≤ d the canonical coordinate system of R × Rd where
t = x0 denotes the time variable. Moreover, we denote ∂α = ∂/∂xα and use the the
Minkowski metric on R×Rd to raise and lower indices. In particular, ∂0 = −∂0 and
∂α = ∂α for 1 ≤ α ≤ d. The wave map equation from R× Rd into N , reads

Dα∂αu = 0,
u(x, 0) = u0(x),

∂tu(x, 0) = u1(x) x ∈ Rn, t ≥ 0.
(42)
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where Dα is the pull-back of the covariant derivative on the target Riemannian
manifold N . Low regularity solutions to (42) are usually constructed via fixed point
methods. Hence, while one is ultimately seeking solutions which are continuous evo-
lutions of the data, that is (u, ∂tu) ∈ Ct(Ḣ

s)×Ct(Ḣ
s−1), the necessary requirements

to set up a fixed point lead to a smaller Banach space. For example, this translates
into additional space-time integrability conditions, like u ∈ Lp

t (L
q
x) for suitable p, q.

Our aim is to remove these assumptions which are incorporated in the uniqueness
and existence statement given by, say, Picard’s theorem. Note that in the wave
map situation, one does not construct a solution directly by iteration, at least when
working at the critical regularity. Nevertheless, in order to obtain a priori estimates,
one is led to add similar requirement (∂u ∈ L2

t (L
2n
x ) for example in [28, 22]).

From now on, we generically denote (∇u, ∂tu) as ∂u, so that any statement
regarding u and ∂tu can be summarized into one, like ∂u ∈ Ct(Ḣ

s−1).

Theorem 6.1 Let u be a solution to (42) on [0, T ∗), with d ≥ 4. Then u is the
unique solution of (42) in the class

∂u ∈ Ct(Ḣ
d
2
−1).

Remark 6.2 The same result holds for n = 3 if we take ∂u ∈ Ct(Ḣ
1
2
+ε), ε >

0. In fact, both schemes of proof from [28, 22] work in that framework, modulo
technicalities related to the low regularity.

Let us explain the idea behind the proof of theorem 6.1. Using the finite speed of
propagation, we can assume that we have small data. Using a Gauge transform (see
[20] for the details), we can reduce the uniqueness problem to the uniqueness for
the following model equation{

�q = A · ∇q + q∇ · A + A2q + q3

∆A = ∇(A2) +∇(q2).
(43)

To prove existence for (43), one can perform a fixed point argument in the class
E = Ct(Ḣ

1) ∩ L2(Ḃ
1/6,2
6 ) for q, and F = Ct(Ḣ

1) ∩ L1(Ḃ1,1
4 ) for A ([22]). To prove

Uniqueness, we consider δ = q − qw the difference between two solutions, and α =
A−Aw the difference between the vectors, and set (q, A) to be “the good solution”
obtained by the fixed point argument. The equation for (δ, α) is

�δ ≡ A · ∇δ + α∇(q − δ) + δ∇A + (q − δ)∇α
+ qα(2A− α) + δ(A− α)2 + δ(q2 + qδ + δ2)

∆α ≡ ∇(2Aα− α2) +∇(2qδ − δ2).
(44)

Then, we prove an estimate for (δ, α) in X × Z where X = Ct(Ḣ
1
6 ) ∩ L2

t (Ḃ
− 2

3
,2

6 ).
and Z = L2

t (Ḃ
1,2
12/7) ↪→ L2L3. The first step is actually to prove that (δ, α) ∈ X × Z

which is a consequence of the small energy bound and the fact that (q, A) and
(qw, Aw) are solutions of (43). The last step is to prove some estimates on the
different nonlinear terms by studying the interactions between low, medium and
high frequencies. Finally, we get

‖δ‖X + ‖α‖Z . ε0‖α‖Z + ε0‖δ‖X + ‖δ‖X‖q‖L2Ḃ
1/6
6

.

for some small ε0. Hence, (δ, α) = (0, 0).
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7. Schrödinger equation

We consider the following semilinear Schrodinger equation{
iut + ∆u = ±|u|2u
u(t = 0) = u0 ∈ Hs(R3).

(45)

For s ≥ 1/2, Cazenave and Weissler [3] proved the existence of a solution in C(Hs).
The uniqueness was only known in a more restrictive class. For s ≥ 1, Kato [12]
proved the uniqueness in C(Hs). In [6], Furioli and Terraneo extended this result
to the case s > 1/2. The proof is again based on estimating the difference between
two solutions in some less regular space.
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