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Regularity and geometric properties of solutions of
the Einstein-Vacuum equations

Sergiu Klainerman Igor Rodnianski

Abstract
We review recent results, obtained in [Kl-Ro1]–[Kl-Ro3], concerning the

study of rough solutions to the initial value problem for the Einstein vacuum
equations expressed relative to wave coordinates. We develop new analytic
methods based on Strichartz type inequalities which results in a gain of half a
derivative relative to the classical result. Our methods blend paradifferential
techniques with a geometric approach to the derivation of decay estimates.
The latter allows us to take full advantage of the specific structure of the
Einstein equations.

1. Introduction

This paper is concerned with the issue of low regularity (rough) solutions of the
Einstein Vacuum equations

Rαβ(g) = 0, α, β = 0, .., 3 (1)

where g is an unknown four dimensional Lorentz metric and Rαβ is its Ricci curva-
ture tensor.

We prescribe the initial data, the Riemannian three dimensional metric gij and
a symmetric tensor kij on the space-like hypersurface Σ0 = t = 0. The Cauchy
problem for the equation (1) then consists of finding a metric g satisfying (1) with a
property that the metric induced by g on Σ0 coincides with the Riemannian metric g
and that the 2-tensor k is the second fundamental form of the hypersurface Σ0. The
latter property can be expressed as follows. Let T denote the unit vectorfield normal
to the the level hypersurfaces of the time foliation Σt. Then kij = −1

2
LTgij|Σ0 , where

LT denotes the Lie derivative in the direction of the vectorfield T .
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It is well known that the Einstein equations form an overdetermined system. As
a consequence, the initial data set (g, k) cannot be prescribed arbitrarily and, in
fact, satisfy the system of constraint equations

∇jkij −∇ik
j
j = 0,

R− kijk
ij + kj

jk
i
i = 0,

where the covariant derivative ∇ is defined with respect to the metric g, and R is
the scalar curvature of g.

In a given system of local coordinates xα, α = 0, .., 3 with t = x0, the equation
(1) can be written in the form

gαβ(∂2
αµgβν + ∂2

βνgαµ − ∂2
µνgαβ − ∂2

αβgµν) = Nµν(g, ∂g)

which does not define an equation of a specific type (hyperbolic, elliptic,. . . ). On
the other hand, any solution of the Cauchy problem corresponding to the equation
(1) can be unique only up to a diffeomorphism which preserves the induced metric
g and the second fundamental form k on Σ0. This is often referred to as the gauge
freedom of the Einstein equations. The choice of a special gauge resolves the above
ambiguity. It can also help in converting the Einstein equations into a more tractable
form.

The focus of this work is the study of the Einstein Vacuum equations in the
gauge described by the choice of the special wave coordinates xα, α = 0, .., 3 which
are set to satisfy the wave equation relative to the background metric g.

�gx
α =

1√
|g|
∂µ(gµν

√
|g|∂ν)x

α = 0. (2)

In this coordinates, the Einstein vacuum equations take the reduced form, see [Br],
[H-K-M].

gαβ∂α∂βgµν = Nµν(g, ∂g), µ, ν = 0, .., 3 (3)

with N quadratic in the first derivatives ∂g of the metric. The reduced Einstein
Vacuum equations (3) form a system of quasilinear hyperbolic equations.

Among other possible choices of gauge conditions we note the so called CMCSH
(constant mean curvature + spatial harmonic coordinates) gauge given by the con-
dition that the trace of the second fundamental form k, ki

i = const on each time
slice Σt = {(t, x) : t = const}, together with the choice of harmonic coordinates xi,
i = 1, 2, 3 satisfying the equations 4gx

α = 0. Here we have extended the notations
g and k to denote the induced Riemannian metric g and second fundamental form
k on any level hypersurface Σt. It can be shown that the Einstein equations in this
gauge are reduced to an elliptic-hyperbolic system for which the classical results on
the Cauchy problem proved in the wave coordinate gauge (see Theorem 1.1) also
hold [An-Mo].

We consider the initial value problem for the equation (3) along the space-like
hyperplane Σ0 given by t = x0 = 0,

∇gαβ(0) ∈ Hs−1(Σ0) , ∂tgαβ(0) ∈ Hs−1(Σ0) (4)
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with ∇ denoting the gradient with respect to the space coordinates xi, i = 1, 2, 3 and
Hs the standard Sobolev spaces. We also assume that gαβ(0) is a continuous Lorentz
metric and sup|x|=r |gαβ(0)−mαβ| −→ 0 as r −→∞, where |x| = (

∑3
i=1 |xi|2) 1

2 and
mαβ the Minkowski metric.

The following local existence and uniqueness result (well posedness) is well known
(see [H-K-M] and the previous result of Ch. Bruhat [Br] for s ≥ 4.)

Theorem 1.1. Consider the reduced equation (3) subject to the initial conditions
(4) for some s > 5/2. Then there exists a time interval [0, T ] and unique (Lorentz
metric) solution g ∈ C0([0, T ]×R3), ∂gµν ∈ C0([0, T ];Hs−1) with T depending only
on the size of the norm ‖∂gµν(0)‖Hs−1.

We establish a significant improvement of this result bearing on the issue of
minimal regularity of the initial conditions:

Main Theorem. Consider a classical solution of the equations (3) for which (1)
also holds1. We show that the time T of existence depends in fact only on the size
of the norm ‖∂g(0)‖Hs−1, for any fixed s > 2. The constructed solution satisfies the
Strichartz estimate

‖∂g‖L2
t L∞x

≤ C‖∂g(0)‖Hs−1 (5)

Remark 1.2. Theorem 1.1 implies the classical local existence result of [H-K-M]
for asymptotically flat initial data sets Σ, g, k with ∇g, k ∈ Hs−1(Σ) and s > 5

2
.

Uniqueness can be proved for additional regularity s > 1 + 5
2
.

Remark 1.3. The Main Theorem ought to imply existence and uniqueness2 for initial
conditions with Hs, s > 2, regularity. To achieve this we only need to approximate
a given Hs initial data set( i.e. ∇g ∈ Hs−1(Σ0), k ∈ Hs−1(Σ0), s > 2 ) for the
Einstein vacuum equations by classical initial data sets, i.e. Hs′ data sets with
s′ > 5

2
, for which theorem 1.1 holds. The Main Theorem allows us to pass to the

limit and derive existence of solutions for the given, rough, initial data set. We don’t
know however if such an approximation result for the constraint equations exists in
the literature.

One of the aspects of our result is a new connection between the propagation of
regularity for the solutions of the Einstein equations addressed in the Main Theorem
and the geometry induced by the above metric solutions. Here by the geometry we
mean the generated local causal structure [Ha-El]. In comparison, the geometry
associated with a classical solution of the Einstein equations is irrelevant to the
proof of the classical result. It in fact only uses the Lorentzian character of the
uknown metric g.

To explain the above connection we now describe the relevant geometric concepts
and state the geometric counterpart of the Main Theorem. In Minkowski space one
can define two special global foliations Cu and St,u. The foliation Cu is that of the

1In other words for any solution of the reduced equations (3) whose initial data satisfy the
constraint equations, see [Br] or [H-K-M]. The fact that our solutions verify (1) plays a fundamental
role in our analysis.

2 Properly speaking uniqueness holds, with s > 2, only for the reduced equations. Uniqueness
for the actual Einstein equations requires one more derivative, see [H-K-M].
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light cones Cu = {(t, x) : t− |x| = u}, dependent on the parameter u. This is also
the foliation generated by the level surfaces of the optical function u(t, x) := t−|x|.
The foliation St,u of the 2-dimensional spheres, dependent on two parameters t and
u, is obtained by intersecting the light cones Cu with the time slices t =const. The
optical function u is a solution of the eikonal equation

mαβ∂αu∂βu = 0

associated with the Minkowski metric m. The light cones Cu are generated by the
vectorfield

L = −mαβ∂αu∂β = ∂t + ∂r

which is null, i.e., m(L,L) = 0. One cal also define the complementary null vec-
trofield L = ∂t − ∂r so that the vectorfields L,L form a so called null pair. Finally,
adding two orthonormal vectorfields eA, A = 1, 2 tangent to the 2-spheres St,u defines
a null frame (L,L, eA).

Let now g be an arbitrary smooth Lorentzian metric of the form

g = −n2dt2 + gij(dx
i + vidt)(dxj + vjdt),

where gij is a Riemannian metric on slices Σt, n is a lapse function, and v is a
vector-valued shift function. We can define the associated light or null cones Cu by
means of the optical function u which is now a solution of the corresponding eikonal
equation

gαβ∂αu∂βu = 0 (6)

with the initial data u|Γt = t, where Γt is the analogue of the time axis defined to
be a time-like geodesic orthogonal to the time slices Σt. It is not too difficult to see
that for a general metric g the eikonal equation (6) admits only a local solution. As
a result it is only a small neighborhood of the time axis Γt that can be shown to be
foliated by the light cones Cu and the corresponding 2-surfaces St,u. The latter are
again obtained by intersecting Cu with the time slices Σt. Similarly, we define the
null pair (L,L) with

L = −bgαβ∂αu∂β, L = 2T − L (7)

and b−1 = T (u) is the null lapse function measuring the separation between the
null cones Cu. We can complement (L,L) by a pair of orthonormal vectorfields eA

tangent to the 2-surfaces St,u to define a null frame (L,L, eA).
Let 〈, 〉 denote the scalar product with respect to the metric g, D be a covariant

derivative associated with g, let ∇ stand for the covariant derivative induced on Σt,
and ∇/ be the corresponding covariant derivative on §t,u.

The foliations Cu and St,u can be shown to be quantitatively controlled by means
of the following geometric quantities.

χAB = 〈DeA
L, eB〉, ηA =

1

2
〈DLL, eA〉,

kij = −1

2
LTgij, (8)
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where χAB is the null second fundamental form of the 2-surfaces St,u, ηA is the so
called torsion, and kij is the second fundamental form of the level surfaces Σt. The
quantities χ and η are null components of the Hessian D2u of the optical function.
The second fundamental form χAB can be further decomposed into its trace and
traceless parts

χAB =
1

2
trχδAB + χ̂AB

One of the basic and most important properties of the St,u foliation is the area
growth. In Minkowski space, St,u is the sphere of radius t − u and thus A(St,u) =
4π(t − u)2 grows quadratically with the increase of the parameter r = t − u. In
the situation of a general smooth Lorentzian metric g this property also holds in
the sense that A(St,u) ≈ (t− u)2 at least in a small neighborhood of the time axis.
The area growth is in fact related to the behavior of trχ, which in Minkowski space
is precisely 2

t−u
and in the general smooth case can be shown to be close to the

quantity 2
n(t−u)

.
Our interest however is in the geometric properties of the rough Lorentzian met-

rics g. In particular, we are interested in metrics g with the regularity comparable
to the one described in the Main Theorem. It is easy to see that for a general
Lorentzian metric g with the property that ∂g(t, ·) only belongs to Hs−1 for some
s > 2 sufficiently close to s = 2 and with a finite Strichartz norm ‖∂g‖L2

t L∞x
, even

the local picture does not survive. The light cones Cu, for example, may collapse
instantaneously. The situation changes however in the case of the Einstein metrics.
We have the following companion of the Main Theorem.

Geometric Theorem. Consider a classical solution of the equations (3) for which
(1) also holds. Then any sufficiently small neighborhood of space-time can be foliated
by the family of light cones3 Cu or the 2-surfaces St,u generated by the optical function
u defined in (6). The size of a neighborhood depends only on the size of the norm
|‖g‖|s defined as follows

|‖g‖|s := ‖∂g‖L∞t Hs−1 + ‖∂g‖L2
t L∞x

+ ‖D∗g‖L∞u Hs−1(Cu), (9)

where D∗ denotes any tangential to the light cone Cu derivative and Hs−1(Cu) refers
to the restriction of the standard Hs−1(R4) Sobolev space to the light cone Cu. More-
over, in that region the following estimates on the geometric quantities χ, η, and k
associated with our foliations hold for any fixed value of the parameter s > 2.

∥∥trχ− 2

n(t− u)

∥∥
L2

t L∞x
+ ‖χ̂‖L2

t L∞x
+ ‖η‖L2

t L∞x
+ ‖k‖L2

t L∞x
≤ C(|‖g‖|s), (10)∥∥∥sup

u≥ t
2

∥∥D(trχ− 2

n(t− u)
)
∥∥

L2(St,u)

∥∥∥
L1

t

≤ C(|‖g‖|s) (11)

These estimates in particular imply the growth property of St,u, A(St,u) ≈ (t− u)2.

3with vertices an a time-line geodesic Γt orthogonal to Σt and passing through the above
neighborhood

XV–5



Remark 1.4. Our Main Theorem implies that the first two quantities in the definition
of the |‖g‖|s can be controlled purely in terms of ‖∂g(0)‖Hs−1 norm of the initial
data provided that s > 2 and the above space-time neighborhood intersects the
initial hypersurface Σ0. In fact, the proof of the Main Theorem also gives control
of the quantity ‖D∗g‖L∞u Hs−1(Cu). This is achieved by proving the analogue of the
characteristic energy estimate for solutions of the linear wave equation. Therefore,
combination of the Main and Geometric theorems gives a stronger result in which
the size of a neighborhood depends only on the norm ‖∂g‖Hs−1(Σt) for some value
of s > 2 and a time slice Σt intersecting the above neighborhood. Perhaps more
interesting is the fact that the proof of the Main Theorem itself crucially relies on
the information available from the Geometric Theorem.

Remark 1.5. In [Kl-Ro2] we prove a slightly weaker version of the Geometric The-
orem. More precisely, we define the frequency truncated metric

g<λ = P<λg,

where P<λ is the Littlewood-Paley projector on the frequencies < λ. This pro-
jector is a multiplier in Fourier space represented by a function ζ(λ−1ξ) for some
smooth compactly supported function ζ equal to one on the ball of radius one. We
then show that for all sufficiently large λ and for any ε > 0 the foliations Cu and
St,u defined relative to the metric g<λ exist and satisfy estimates (10) and (11) on
any neighborhood of the size λ−εC(‖|g‖|Hs). This is an ”ε- weaker” result than
the Geometric Theorem. However, we believe that the stronger conclusion of the
Geometric Theorem also holds.

2. Main ideas of the Proof

For convenience we shall also write the reduced equations (3) in the form of a system
of quasilinear wave equations of the form,

gαβ∂α∂βφ = N(φ, ∂φ) (12)

where φ = (gµν), N = Nµν and gαβ = gαβ(φ). The classical local existence result
for systems of wave equations of type (12) is based on energy estimates and the
standard Hs ⊂ L∞ Sobolev inequality. Indeed using energy estimates and simple
commutation inequalities one can show that,

‖∂φ(t)‖Hs−1 ≤ E‖∂φ(0)‖Hs−1 (13)

with E = exp

(
C

∫ t

0
‖∂φ(τ)‖L∞x dτ

)
. By the classical Sobolev inequality,

E ≤ exp

(
Ct sup

0≤τ≤t
‖∂φ(τ)‖Hs−1dτ

)
provided that s > 5

2
. The classical local existence result follows by combining this

last estimate, for a small time interval, with the energy estimates (13). This scheme
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is very wasteful. To do better one would like to take advantage of the mixed L1
tL

∞
x

norm appearing in the definition of E. If φ is a solution of the standard wave
equation

�φ = 0 (14)

in Minkowski space, we have the following Strichartz type inequality:

‖∂φ‖L2
t L∞x ([0,T ]×R3) ≤ CT ε‖∂φ(0)‖H1+ε . (15)

with ε > 0 arbitrarily small. Based on this fact it was reasonable to hope that
one can improve the Sobolev exponent in the classical local existence theorem from
s > 5

2
to s > 2. This can be easily done for solutions of semilinear wave equations,

see [Po-Si]. In the case of general quasilinear wave equations of the form (12),
however, the situation is far more difficult. One can no longer rely on the Strichartz
inequality (15) for the flat D’Alembertian in (14); we need instead its extension to
the operator gαβ∂α∂β appearing in (12). Moreover, since the metric gαβ depends
on the solution φ, it can have only as much regularity as φ itself. This means that
we have to confront the issue of proving Strichartz estimates for wave operators
gαβ∂α∂β with very rough coefficients gαβ. This issue was recently addressed in the
pioneering works of Smith [Sm], Bahouri-Chemin [Ba-Ch1], [Ba-Ch2] and Tataru
[Ta1], [Ta2], we refer to the introduction in [Kl1] and [Kl-Ro] for a more thorough
discussion of their important contributions. The results of Bahouri-Chemin and
Tataru are based on establishing a Strichartz type inequality, with a loss, for wave
operators with very rough coefficients4. The optimal result5 in this regard, due to
Tataru, see [Ta2], requires a loss of σ = 1

6
. This leads to a proof of local well

posedness for systems of type (12) with s > 2 + 1
6
.

To do better than that one needs to take into account the nonlinear structure
of the equations. In [Kl-Ro] we were able to improve the result of Tataru by taking
into account not only the expected regularity properties of the coefficients gαβ in
(12) but also the fact that they are themselves solutions to a similar system of
equations. This allowed us to improve the exponent s, needed in the proof of well
posedness of equations of type6 (12), to s > 2 + 2−

√
3

2
. Our approach was based

on a combination of the paradifferential calculus ideas, initiated in [Ba-Ch1] and
[Ta2], with a geometric treatment of the actual equations introduced in [Kl1]. The
main improvement was due to a gain of conormal differentiability for solutions to
the eikonal equations

gαβ
<λ∂αu∂βu = 0 (16)

That gain could be traced down to the fact that a certain component of the Ricci
curvature of the metric h = g<λ has a special form. More precisely recalling vec-
torfield L, the null generator of the light cones Cu we found that the null Ricci

4The derivatives of the coefficients g are required to be bounded in L∞t Hs−1
x and L2

t L
∞
x norms,

with s compatible with the regularity required on the right hand side of the Strichartz inequality
one wants to prove.

5Recently Smith-Tataru [Sm-Ta1] have shown that the result of Tataru is indeed sharp.
6The result in [Kl-Ro] applies to general equations of type (12) not necessarily tied to (1). In

[Kl-Ro] we have also made the simplifying assumptions n = 1 and v = 0.
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component RLL =Ric(h)(L,L), verifies the remarkable identity:

RLL = L(z)− 1

2
LµLν(hαβ∂α∂βhµν) + e (17)

where z ≤ O(|∂h|) and e ≤ O(|∂h|2). Thus, apart from L(z) which is to be inte-
grated along the null geodesic flow generated by L, the only terms which depend
of the second derivatives of h appear in hαβ∂α∂βh and can therefore be eliminated
with the help of the equations (12).

In [Kl-Ro1]–[Kl-Ro3] we developed the ideas of [Kl-Ro] further by taking full
advantage of the the structure of the Einstein equations (1). An important aspect
of our analysis is that the term L(z) appearing on the right hand side of (17) vanishes
identically. We make use of both the vanishing of the Ricci curvature of g and the
wave coordinate condition (2). The other important new features are the use of
energy estimates along the null hypersurfaces generated by the optical function u
and a deeper use of the conormal properties of the null structure equations.

In [Sm-Ta2] H. Smith and D. Tataru obtained the parallel Hs, s > 2 local well
posedness result for general quasilinear equations, as well as the new improved re-
sults in other dimensions rather than n = 3. For general equations their results
in dimensions two and three are sharp due to the counterexamples of H. Lindblad
[Li]. Their approach is based on the construction of a wave packet approximation
of a solution. The geometry of wave packets controls the desired Strichartz esti-
mate. The construction relies on the foliation by the null planes. It uses a gain of
differentiablity along each plane, which can be traced to the decomposition of the
tangential components of the curvature in the spirit (17), but avoids references to
the regularity of the foliation in the direction transversal to the leafs (i.e. torsion of
the foliation).

We strongly believe that the result of our main theorem is not sharp. The critical
Sobolev exponent for the Einstein equations is sc = 3

2
. A proof of well posedness for

s = sc will provide a much stronger version of the global stability of Minkowski space
than that of [Ch-Kl]. This is completely out of reach at the present time. A more
reasonable goal is to prove the L2- curvature conjecture, see [Kl2], corresponding
to the exponent s = 2.

Below we outline the main steps in the proofs of the Main and Geometric theo-
rems. The details are contained in [Kl-Ro1]–[Kl-Ro3].

Bootstrap

The proof of the Main Theorem is based on a bootstrap argument in which we
assume that the inequality

‖∂φ‖L∞
[0,T ]

Hs−1 + ‖∂φ‖L2
[0,T ]

L∞x
≤ B0 (18)

holds for some positive constant B0 on a time interval [0, T ]. To achieve the con-
clusion of the Main Theorem we establish that the constants B0 and T depend, in
fact, only on the size of the initial data ‖∂φ(0)‖Hs−1 for any fixed s > 2. The energy
estimate (13) implies that the desired conclusion would follow from the Strichartz
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estimate
‖∂φ‖L2

[0,T ]
L∞x

≤ C(B0)T
δ. (19)

for some δ > 0. This is the key estimate.

Linearization

Since the right hand-side of the equation (12) contains only the terms which depend
only on φ and quadratically on ∂φ we can reduce the proof of (19) to the correspond-
ing Strichartz estimate for a solution of the linear wave equation gαβ∂α∂βψ = 0. This
is done with the help of the Duhamel formula. The desired estimate now takes the
form

‖∂ψ‖L2
[0,T ]

L∞x
≤ C(B0)T

δ‖ψ(0)‖H2+γ . (20)

for some 0 < γ < s− 2.

Microlocalization

We introduce the Littlewood-Paley projectors Pλ truncating all the frequencies out-
side of the dyadic shell of size λ. It is easy to see that the estimate (20) can be
replaced by a dyadic Strichartz estimate

‖∂Pλψ‖L2
[0,T ]

L∞x
≤ C(B0) cλT

δ‖ψ(0)‖H2+γ ,
∑

λ

cλ ≤ 1,

for all sufficiently large values of the dyadic parameter λ. We can furthermore derive
a wave equation for the function Pλψ. Using the standard techniques of the Bony’s
paradifferential calculus [Ba-Ch1], [Ta2], [Kl1], [Kl-Ro1] and the Duhamel formula
we can make a reduction to the Strichartz estimate

‖Pλ ∂ψ‖L2
IL∞x

≤ C(B0) T̄
δ‖∂ψ(0)‖Ḣ1+δ (21)

where ψ now is a solution of gαβ
<λ∂α∂βψ = 0, with initial conditions at t = 0 verifying,

(2−10λ)m ≤ ‖∇m∂ψ(0)‖L2
x
≤ (210λ)m‖∂ψ(0)‖L2

x
. The time interval I which can be

assumed to be the interval [0, T̄ ] is now restricted to the size ≤ λ−ε for some ε > 0.

Rescaling

Introduce the rescaled metric H(t, x) = g<λ(λ
−1t, λ−1x) and consider the rescaled

equation Hαβ∂α∂βψ = 0 in the region [0, t∗]×R3 with t∗ ≤ λ1−ε. Then, with P = P1,

‖P ∂ψ‖L2
IL∞x

≤ C(B0) t
δ
∗‖∂ψ(0)‖L2

would imply the estimate (21).
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Reduction to a localized L2 − L∞ decay estimate

The standard way to prove a Strichartz inequality of the type discussed above is
to reduce it, by a TT ∗ type argument, to an L1 − L∞ dispersive type inequality.
However an additional spatial localization allows us to replace it with the L2 − L∞

decay estimate. We state this as the following theorem (see [Kl-Ro1]):

Theorem 2.1. Let ψ be a solution of the equation, �Hψ = 0 on the time interval
[0, t∗] with t∗ ≤ λ1−ε Assume that the initial data is given at t = t0 ∈ [0, t∗], supported
in the ball B 1

2
(0) of radius 1

2
centered at the origin. There exists a function d(t),

with t
1/q
∗ ‖d‖Lq([0,t∗]) ≤ 1 for some q > 2 sufficiently close to 2, an arbitrarily small

δ > 0 and a sufficiently large integer m > 0 such that for all t ∈ [0, t∗] and the
projection P on the frequencies of size 1,

‖P ∂ψ(t)‖L∞x ≤ C(B0)

(
1

(1 + |t− t0|)1−δ
+ d(t)

) m∑
k=0

∥∥∇k∂ψ(t0)
∥∥

L2
x
. (22)

This reduction finishes the first part of the proof of the Main Theorem.
The proof of theorem 2.1 crucially relies on the information provided by the

Geometric Theorem. The bootstrap conditions (18) guarantee7 the assumptions of
the Geometric Theorem for the metric g. In fact, we make use of the version of this
theorem stated in the Remark 1.5 for the rescaled metric H. This means that the
size of the allowed neighborhood is λ1−εC(B0) and the estimates (10), (11) should
be adjusted for the rescaling.

Generalized energy estimates and the vectorfield method [Kl-Ro1]

For the second part of the proof of the Main Theorem we assume the Geometric
Theorem, postponing its proof, and establish the decay estimate of Theorem 2.1. Its
proof relies on a purely geometric argument based on the construction of a modified
Morawetz vectorfield K. We construct it with the help of the optical function u
associated with the metric H.

The modified Morawetz vectorfield is defined according to the formula

K = u2L+ u2L, u = 2t− u

with the null frame (L,L) defined as in (7) relative to the metric H. The standard
generalized energy identity associated to K takes the form∫

Σt

Q̄(K,T ) =

∫
Σt0

Q̄(K,T )− 1

2

∫
[t0,t]×R3

Qαβ (K)π̄αβ +

∫
[t0,t]×R3

ψ2�H(t) (23)

where Q and Q̄ are the standard and the modified energy momentum tensors, see
[Kl1], [Kl-Ro1], or [Kl-Ro], associated to the equation �Hψ = 0. Also,

(K)π̄µν = LKHµν − 4tHµν = DµKν +DνKµ − 4tHµν

7modulo the characteristic energy norm ‖D∗g‖L∞u Hs−1(Cu) which can be also shown to be
controlled by the bootstrap constant B0
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is the modified deformation tensor of the vectorfield K.
We show that the decay estimate (22) follows from the the boundedness theorem:∫

Σt

Q̄(K,T ) .
∫

Σt0

Q̄(K,T ).

This requires the control of the error term on the right hand side of (23). For this
we need good estimates for (K)π̄ which depend on the control of the geometric
quantities χ, η. The desired control is given precisely by the estimates (10) and (11)
of the Geometric Theorem.

Proof of the Geometric Theorem [Kl-Ro2]

It finally remains to establish the Geometric Theorem. The proof once again relies
on the bootstrap argument in which we assume the existence of the foliations Cu and
St,u as well the desired estimates (10), (11). We then reestablish the bounds with
improved values of the constants and show that the estimates hold in the region
whose size only depends on the |‖g‖|s for some s > 2. The quantities trχ, χ̂, and
η satisfy8 the null structure equations, which can be written approximately in the
form

L(trχ) +
1

2
(trχ)2 = −|χ̂|2, (24)

(div/ χ̂)A =
1

2
∇/
A

trχ−RBLAB, (25)

div/ η =
1

2
µ− 1

2
RBLLB, curl/ η = −1

2
∈AB RBLLA. (26)

Here ∇/ , div/ , and curl/ are the covariant derivative, divergence, and curl induced
on the 2-surfaces St,u. Equation (24) is the transport equation along the integral
curves9 of the vectorfield L. It in fact follows from the Jacobi equation for the
Hessian of the optical function u and is also known as the Raychaudhuri equation.
The equations (25) and (26) are the elliptic Codazzi equations for χ̂ and η on the
2-surfaces St,u. The quantity µ is related to the so called mass aspect function and
also satisfies a transport equation.

The null structure equations for the null components of the Hessian of u played
an important role in the proof of stability of Minkowski space of [Ch-Kl], and in the
context of a double foliation in [Kl-Ni].

Integrating the transport equation (24) we can show that approximately

∣∣trχ− 2

n(t− u)

∣∣ ≤ C

∫
γ

|χ̂|2

where γ is the integral curve of L connecting a given point with the time axis Γt.
Thus using the bootstrap assumption on the ‖χ̂‖L2

t L∞x
we can reestablish an L2

tL
∞
x

8The estimates (10) for k follow immediately from the bootstrap assumption for g and (8)
9In Minkowski space these are the lines t = ω · x for any ω ∈ S2
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estimate for trχ − 2
n(t−u)

. The equation (25) is a first order elliptic equation for χ̂
on St,u and thus the elliptic estimates lead us to the bound10

‖χ̂‖L∞(St,u) ≤ C
∥∥trχ− 2

n(t− u)

∥∥
L∞(St,u)

+ ‖|∇/ |−1RBLAB‖L∞(St,u)

The crucial observation is that the RBLAB component of curvature can be decom-
posed as follows

RBLAB = ∇/ π + E, (27)

where |π| ≤ C|∂g| and |E| ≤ C|∂g|2. This allows us to recover the L2
tL

∞
x estimate

for χ̂ in terms of the |‖g‖|. Finally, equations (26) form an elliptic system for η.
Once again, the curvature components appearing on the right hand side of these
equations decompose in a way similar to (27). Thus arguing as in the case of the
estimate for χ̂ we can obtain the L2

tL
∞
x estimate for η. The only subtle difference

is the control of the quantity |∇/ |−1µ. Here we can show that this term is related to
trχ and satisfies a transport equation which, crucially, has only mild dependence on
the curvature. This is where we heavily use the fact that the metric g is Einstein.

The estimates (11) can be obtained along the same lines. There the important
role is played by the characteristic energy part of the triple norm of g.

Since we actually prove Geometric Theorem for the metric g<λ = P<λg which
is obtained from the Einstein metric g by truncating the frequencies above λ, we
cannot assume that its Ricci curvature vanishes. This introduces additional terms
in the null structure equations. We call the Ricci curvature of a metric, obtained
by a frequency truncation from an Einstein metric, the Ricci defect. In [Kl-Ro3] we
discover a cancellation property for the RLL component of the Ricci defect. This
is important for the control of the analysis of the null structure equations for a
frequency truncated metric.
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