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Stabilization of a 1-D tank modeled by the shallow
water equations

Christophe Prieur Jonathan de Halleux

Abstract
We consider a tank containing a fluid. The tank is subjected to a one-

dimensional horizontal move and the motion of the fluid is described by the
shallow water equations. By means of a Lyapunov approach, we deduce con-
trol laws to stabilize the fluid’s state and the tank’s position. Although global
asymptotic stability is yet to be proved, we numerically simulate the system
and observe the stabilization for different control situations.

1. Introduction

We consider an 1-D tank containing an inviscid incompressible irrotational fluid.
We are interested in the stabilization problem of the fluid state (height and speed
relative to the tank) and the tracking problem of the trajectory of the tank (position,
speed and acceleration) to a prescribed trajectory (e.g. a prescribed final position
of the tank).

We suppose that the horizontal acceleration is small compared to the gravity
constant and that the height of the fluid is small compared to the length of the
tank. Hence we describe the dynamic of the fluid by the shallow water equations
(see [3, Section 4.2] and [14] and references therein).

The acceleration defines the control variable. We exhibit a stabilizing feedback
based on a Lyapunov approach (see Theorem 3). We emphasize that we proceed
by increasing the complexity of the Lyapunov function. First we stabilize only the
fluid’s state (Section 3.1), then we stabilize also the tank’s speed (Section 3.2) and
then, we use a forward approach (see [10]) to stabilize the entire state of the system
fluid-tank in Theorem 3.

Many physical motivations can be found in [6, 12] for looking such a feedback
stabilizing the entire state of the system fluid-tank. Some results can be found in
[11] concerning the problem of the stabilization of a tank, but the input is defined
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as a flexible or a rigid wave generators and the equations are linearized around the
equilibrium. Here we choose a different model of the control system.

The asymptotic stability is yet to be proved but we check numerically that the
result is attained (see Section 4.1).

Note that the shallow water equations, linearized around a suitable equilibrium,
are uncontrollable (see [7]) but the non-linear shallow water equations are locally
controllable around the equilibriums (see [1]). We check numerically that the stabi-
lization property is achieved with the non-linear terms of the shallow water equations
in Section 4.2.

2. Model description

The shallow water equations describe the motion of a perfect fluid under gravity g
with a free boundary:

∂H

∂t
(t, x) +

∂

∂x
(HV )(t, x) = 0 , (1)

∂V

∂t
(t, x) +

∂

∂x
(gH +

V 2

2
)(t, x) = −D̈(t) , (2)

where x ∈ [0, L] is the spatial coordinate attached to the tank, t ∈ [0, T ] is the
time coordinate, T > 0, H(t, x) denotes the height of the liquid, V (t, x) denotes
the horizontal speed of the fluid in the referential attached to the tank, D is the
position of the tank in the world coordinates, Ḋ and D̈ are respectively the first
and second derivative of D with respect to the time t. See Figure 1. Note that the
shallow water equations can been dericated from the Euler equations for the perfect
irrotational and incompressible fluids (see [4]).
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Figure 1: A tank of length L containing a fluid.

The boundary conditions are given by, for all t in [0, L],

V (t, 0) = 0 , V (t, L) = 0 . (3)

Let us denote H̄(x) and V̄ (x) the steady state values of (H, V ) along the reach,
i.e.:

∂

∂x
(H̄V̄ ) = 0 ,

∂

∂x
(gH̄ +

V̄ 2

2
) = −Ā , (4)
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where Ā is a constant number defining the constant acceleration of the tank. The
above equations (4) can be rewritten as follows

∀x ∈ [0, L],
V̄ (x) = 0 ,

H̄(x) = H̄(L
2
)− (x− L

2
)Āg .

(5)

In fact, we can compute the (constant) volume of liquid in the tank:

Vol =

∫ L

0

H̄dx = LH̄(
L

2
) . (6)

We define our control variable u

u = D̈ − Ā. (7)

Let |.| be a norm of R and |.|1 be the norm on C1([0, L]) defined by, for all f in
C1([0, L]),

|f |1 = max
x∈[0,L]

|f(x)|+ max
x∈[0,L]

|f ′(x)| ,

where ′ denotes the partial derivative with respect to x.
Given an initial condition (H̃, Ṽ ) for the fluid and an initial acceleration of the

tank Ã, note that there exist sufficient conditions for the existence of a solution of
the Cauchy problem (1), (2) and (3) (see [8, Theorem 4.2, page 96]):

Claim 2.1 There exists a strictly positive constant ε such that, for any (H̃, Ṽ ) in
C1([0, L])2 satisfying the compatibility conditions:

2gH̃(0)H̃ ′(0) + Ṽ (0)Ṽ ′(0) = −Ã , (8)

2gH̃(L)H̃ ′(L) + Ṽ (L)Ṽ ′(L) = −Ã , (9)

and
|H̃ − H̄|1 + |Ṽ − V̄ |1 < ε , (10)

the hyperbolic system (1) and (2) with initial conditions:

H(0, x) = H̃(x) , V (0, x) = Ṽ (x) , ∀x ∈ [0, L] ,

and with boundary conditions (3) has one and only one solution of class C1 defined
on [0, L]× [0, T ), for some T > 0.

Now let us define E = {(H, V, D, S)} the affine subspace of C1([0, L])×C1([0, L])×
R × R such that we have Vol =

∫ L

0
H̃(x)dx, where Vol is defined by (6), and

Hx(0) = Hx(L) = −u+Ā
g

.
We are interested in the problem of the local stabilization to the equilibrium

(H̄, V̄ , D̄, S̄) with Ā in R fixed, satisfying (5) by the control u, i.e. we are looking
for a function u : [0, +∞)× E → R such that we have the following two properties
1. There exists C > 0 such that, for all (H̃, Ṽ , D̃, S̃) in E satisfying the conditions
(8)-(10) and

|H̃ − H̄|1 + |Ṽ − V̄ |1 + |D̃ − D̄|+ |S̃ − S̄| ≤ C ,
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there exists one and only one (H, V, D, S): [0, +∞) → E such that, we have (1)-(3)
where, for all t ≥ 0,

D̈(t)− Ā = u(t,H(t, .), V (t, .), D(t), S(t)) , (11)

such that we have

H(0, .) = H̃ , V (0, .) = Ṽ , D(0) = D̃ , S(0) = S̃ , (12)

and, for all t ≥ 0,
Ḋ(t) = S(t) . (13)

Moreover this function satisfies

|H(t, .)− H̄|1 + |V (t, .)− V̄ |1 + |Ḋ(t)− S̄− Āt|+ |D(t)− D̄− S̄t− 1

2
Āt2| →t→+∞ 0 .

2. For all ε > 0, there exists η > 0 such that, if (H̃, Ṽ , D̃, S̃) in E satisfies the
conditions (8)-(10) and

|H̃ − H̄|1 + |Ṽ − V̄ |1 + |D̃ − D̄|+ |S̃ − S̄| ≤ η ,

if (H, V, D, S): [0, +∞) → E is such that, (1)-(3), (11)-(13) hold, then we have

|H(t, .)− H̄|1 + |V (t, .)− V̄ |1 + |Ḋ(t)− S̄− Āt|+ |D(t)− D̄− S̄t− 1

2
Āt2| ≤ ε , ∀t ≥ 0

In all the following we are interested in this problem and we propose a Lyapunov
control design. Then we check that, numerically, the stabilization is attained.

3. Lyapunov control design

We want to build a Lyapunov candidate to stabilize the state of the system fluid-
tank. The idea of this section is to build a Lyapunov function which is a general
tool to prove, for a differential equation, that the origin is an asymptotic stable
equilibrium.

3.1. Stabilization of the fluid’s state (H, V )

Let us consider first the stabilization of the fluid’s state. We want to find an entropy
E(H, V ) and an entropic flux F (H, V ). There is an infinite number of entropies for
the shallow water equations (see [16, Volume II, Section 9.3]), one of them is derived
from the moments of the fluid:

E(H, V ) = H
V 2

2
+ g

(H − H̄)2

2
, (14)

F (H, V ) = H
V 3

2
+ gV H(H − H̄) . (15)

We can define the Lyapunov candidate (see [2]) R1 : [0, +∞) → R

R1(t) = λ1

∫ L

0

E(H(t, x), V (t, x))dx , (16)
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for a constant λ1 > 0 introduced for the tuning of the control. Note that R1 is
positive and is zero only at the point (H, V ) = (H̄, V̄ ). We can now exhibit a class
of control laws for u, making R1 decrease, as stated in the following

Theorem 1 For any positive gain λ1, the control law

u1(t) = λ1

∫ L

0

(HV )(t, x)dx (17)

makes R1 decrease, i.e. Ṙ1 ≤ 0. Moreover Ṙ1 = 0 if (H, V ) = (H̄, V̄ ).

Remark 3.1 We can not apply LaSalle’s Theorem since we do not know, if the fact
that the equality Ṙ1(t) = 0 holds for all t, yields (h, v) = (0, 0). Note moreover that
in an infinite dimensional space of functions, we have to prove a suitable compactness
property. 3

Proof. We derive (16) with respect to t:

Ṙ1 = λ1

∫ L

0

(
∂E

∂V

∂V

∂t
+

∂E

∂H

∂H

∂t

)
dx .

Hence, using (1), (2) and (14), we have

Ṙ1 = −u1λ1

(∫ L

0

HV dx− [F ]L0

)
. (18)

Using the boundary conditions (3) and (15), we have [F ]L0 = 0, hence a natural
expression for u1 is (17).2

3.2. Stabilization of the fluid’s state (H, V ) and of the tank’s
speed Ḋ

In this section we want to stabilize also the tank’s speed Ḋ around S̄ + Āt. In order
to achieve this, we introduce a modified “kinetic energy” of the tank in (16),

R2(t) = R1(t) + λ2
(Ḋ(t)− S̄ − Āt)2

2
, (19)

where R1 is defined by (16) and λ2 is a positive constant introduced for the tuning
of the controller.

Note that R2 is positive and is zero only at the point (H, V, Ḋ) = (H̄, V̄ , S̄ + Āt).
Using the same approach as before, we can now propose a class of control laws

for u, making R2 decrease, as stated in the following

Theorem 2 For any positive gains λ1, λ2, the control law

u2(t) = λ1

∫ L

0

(HV )(t, x)dx− λ2(Ḋ(t)− S̄ − Āt) , (20)

makes R2 decrease, i.e. Ṙ2 ≤ 0. Moreover Ṙ2 = 0 if (H, V, Ḋ) = (H̄, V̄ , S̄ + Āt).
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Proof. We compute the first derivative of (19) with respect to t: Ṙ2 = Ṙ1 +λ2(Ḋ−
S̄ − Āt)(D̈ − Ā). Hence, using (18) and (7), we have

Ṙ2 = −u2

(
λ1

∫ L

0

HV dx− λ2(Ḋ − S̄ − Āt)

)
. (21)

Thus a natural expression for u2 is (20).2

3.3. Complete stabilization

In Section 3.2 we propose a candidate control law to stabilize the state of the fluid
and the speed of the tank. In this section we want to stabilize the entire function
D and not only its first derivative. To do this we use a forward approach to find
a modification of the Lyapunov function R2 defined by (19). See e.g. [10]. Thus
we have to find a function of the state whose time-derivative is proportional to Ṙ2.
This leads to

R3(t) = R2(t) +
λ3

2

(
−λ2(D(t)− D̄ − S̄t− Āt2

2
) −λ1

∫ L

0

(

∫ x

0

(H − H̄)(t, ξ)dξ)dx

)2

where λ1, λ2 and λ3 are three positive constants introduced for the tuning of the
controller and R2 is defined by (19). Note that R3 is positive and is zero only at
the point (H, V, Ḋ, D) = (H̄, V̄ , S̄ + Āt, D̄ + S̄t + Āt2

2
). We have the following

Theorem 3 For any positive gains λ1, λ2 and λ3 the control law u3

u3 = λ1

∫ L

0

HV − λ2(Ḋ − S̄ − Āt)− λ2λ3(D(t)− D̄ − S̄t− 1

2
Āt2)

−λ1λ3

∫ L

0

(∫ x

0

((H − H̄)(t, ξ))dξ

)
dx , (22)

makes R3 decrease, i.e. Ṙ3 ≤ 0. Moreover Ṙ3 = 0 if (H, V, Ḋ, D) = (H̄, V̄ , S̄ +
Āt, D̄ + S̄t + Āt2

2
).

Proof. Note that due to (1) we have

d

dt

(∫ L

0

(

∫ x

0

H − H̄)dx

)
= −

∫ L

0

(∫ x

0

∂(HV )

∂x

)
dx

= −
∫ L

0

HV ,

therefore the time-derivative of R3 is

Ṙ3 = Ṙ2+λ3

(
−λ2(Ḋ − S̄ − Āt) + λ1

∫ L

0

HV

) (
−λ2(D − D̄ − S̄t− Āt2

2
)− λ1

∫ ∫
(H − H̄)

)
,

where Ṙ2 is given by (21). It can thus be shown that a natural expression for u3 is
(22).2
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4. Numerical results

We discretize the shallow water equations with the semi-implicit Preissman scheme
(see [9] or [5]). When discretizing, it is possible to choose Preissman coefficient θ
and Courant number Cr (namely θ = 0.5 and Cr = 1) such that the discretization
does not introduce numerical damping for the linear equations. However, with this
choice of parameters, the numerical errors are not damped and the solution obtained
becomes non-smooth. Therefore we use a θ > 0.5 even if it generates an artificial
stabilization due to the numeric damping. To overcome this difficulty, we compare
the stabilization rate of open-loop to closed-loop systems.

4.1. Simulation with a complete stabilization

In this section, we set the Preissmann coefficient θ to the value 0.51 and the time-step
∆t = 0.2 and the space-step ∆x = 0.5. We consider the following initial conditions
D̃ = 0, S̃ = 0 and for all x in [0, L], H̃(x) = 0.02x + 0.88, Ṽ (x) = sin2(xπ

L
). Let

us study the stabilization problem of the fluid and note that we want the tank of
length L = 12 to stay the most close as possible from its initial position.

Let us compare the three following control laws: the null control, u = 0, the
control (20) given by Theorem 2 and the control (22) given by Theorem 3, with
the gains λ1 = 0.01, λ2 = 0.05 and λ3 = 0.04. We note in Figures 2 and 3 that
the controls defined in Sections 3.2 and 3.3 succeed in stabilizing the fluid’s state
contrary to the system without control, where some oscillations of the fluid stay
even after 100 seconds. In Figure 4, we check that the control of Section 3.2
stabilize the tank’s speed around the value 0. We note that with this controller,
the tank’s position tends to a constant (≈ −0.05). This motives to use a forward
approach as in Section 3.3 to track this value to 0. This control realize the complete
stabilization of the tank. Note that at the bottom of Figure 4, we have the plot of
the accelerations, therefore we have the controls.

4.2. Importance of the non-linear terms of the shallow water
equations

In this section we consider the following equilibrium: D̄ = 0, S̄ = 0, Ā = 0,
H̄ = 1.5 and V̄ = 0. Note that the shallow water equations linearized around this
equilibrium are uncontrollable, even locally (see [7]). Indeed the function H, V :
[0, +∞)× [0, L] → R and D : [0, +∞) → R defined by, for all t ≥ 0 and for all x in
[0, L],

D(t) = 0 , H(t, x) = 1 + sin2(
πx

L
) , (23)

V (t, x) = −2
π

gL
t cos(

πx

L
) sin(

πx

L
) , (24)

are solutions of the linearized equations with u = 0. However the nonlinear shal-
low water equations are locally controllable (see [1]), we expect (and we check)
numerically that the nonlinear equations are stabilizable.
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Figure 2: Fluid’s speed in the tank at time t = 0, t = 60, t = 120 and t = 180
seconds. The curve – is the fluid with the null control, − − with the control (20)
of Section 3.2 and · · · with the control (22) of Section 3.3.

To do this, we consider as initial condition the value of the functions (23)-(24)
at t = 0 and we implement the feedback of Section 3.3. More precisely let us define
L = 7.5 and the following initial conditions, D̃ = 0, S̃ = 0 and, for all x in [0, L],
H̃(x) = 1 + sin2(

πx

L
), Ṽ (x) = 0. We set λ1 = 0.4, λ2 = 0.1 and λ3 = 0.1. We

choose θ = 0.5001 which is very close to the critical value (namely 0.5). Therefore
we have non-smooth numerical solutions (see Figure 6). We observe in Figure 7
that the tank stays very close to the initial position but succeed in stabilizing the
fluid’s speed (see Figure 5) and the fluid’s height (see Figure 6).

Conclusion

In this paper we have computed a class of feedback which numerically stabilizes the
system fluid-tank. A further work of this paper is to prove that the stabilization is
achived. One possible way is described by Remark 3.1.

In this paper the control laws are feedbacks of all variables of the system fluid-
tank. But to implement these feedbacks and to use it for a physical application
it is important to look for a feedback depending only of variables which are easy
to compute. Thus it is important to explicit a stabilizing output-feedback where
the output is the height of the fluid at the boundary of the tank, the time and the
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Figure 3: Fluid’s height in the tank at time t = 0, t = 60, t = 120 and t = 180
seconds. The curve – is the fluid with the null control, − − with the control (20)
of Section 3.2 and · · · with the control (22) of Section 3.3.

trajectory of the tank only. An other further work is to study a Lyapunov approach
to find such feedbacks.
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Figure 7: Trajectory of the tank in closed-loop with the null control (–), with the
control of Section 3.3 (− −). At the top, we have the plot of the position, in the
middle, the velocity and at the bottom, the acceleration in function of the time.
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