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Journées Équations aux dérivées partielles
Port d’Albret, 7 juin–11 juin 2010
GDR 2434 (CNRS)

Cauchy problem for hyperbolic operators with
triple characteristics of variable multiplicity

Enrico Bernardi Antonio Bove Vesselin Petkov
Abstract

We study a class of third order hyperbolic operators P in G = Ω ∩ {0 ≤
t ≤ T}, Ω ⊂ Rn+1 with triple characteristics on t = 0. We consider the case
when the fundamental matrix of the principal symbol for t = 0 has a couple
of non vanishing real eigenvalues and P is strictly hyperbolic for t > 0. We
prove that P is strongly hyperbolic, that is the Cauchy problem for P +Q is
well posed in G for any lower order terms Q.

1. Introduction
Consider a differential operator

P (t, x,Dt, Dx) =
∑

α+|β|≤m
cα,β(t, x)Dαt Dβx , Dt = −i∂t, Dxj = −i∂xj

of order m with C∞ coefficients cα,β(t, x), t ∈ R, x ∈ Rn. Denote by
pm(t, x, τ, ξ) =

∑
α+|β|=m

cα,β(t, x)ταξβ

the principal symbol of P . Let Ω ⊂ Rn+1 be an open set and let
Ω−η = Ω ∩ {t ≤ η},Ω+

η = Ω ∩ {t ≥ η}, G = Ω ∩ {0 ≤ t ≤ T}.
We say that P is hyperbolic with respect to N0 = (1, 0, ..., 0) at (t0, x0) if

(i) pm(t0, x0, N0) 6= 0,
(ii) the equation

pm(t0, x0, τ, ξ) = 0 (1.1)
with respect to τ has only real roots τ = λj(t0, x0, ξ) for all ξ ∈ Rn.

Set Pm(t, x,Dt, Dx) = pm(t, x,Dt, Dx).
Definition 1. We say that the Cauchy problem

Pu = f in Ω ∩ {t < T}, supp u ⊂ Ḡ (1.2)
is well posed in G if
(i) (existence) for every f ∈ C∞0 (Ω), supp f ⊂ Ω−T there exists a solution u ∈ E ′(Ω)
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satisfying (1.2).
(ii) (uniqueness) if u ∈ E ′(Ω) satisfies (1.2), then for every s, 0 < s ≤ T, if Pu = 0
in Ω−s , then u = 0 in Ω−s .

A necessary condition for the well posedeness of the Cauchy problem (WPC) is
the hyperbolicity of the operator P at every point (t, x) ∈ G.

Definition 2. We say that the operator P with principal symbol pm is strongly
hyperbolic in G if for every point z0 = (t0, x0) ∈ G there exists a neighborhood U of
z0 and T0 ≥ 0 (T0 < t0 if t0 > 0 and T0 = 0 if t0 = 0) such that the Cauchy problem
(1.2) for the operator L = Pm(t, x,Dt, Dx) +Qm−1(t, x,Dt, Dx) is well posed in U+

s

for every T0 ≤ s < T (U) and for any operator Qm−1(t, x,Dt, Dx) of order less or
equal to m− 1.

A classical result says that if P is strictly hyperbolic, that is the equation (1.1) has
simple roots λj(t, x, ξ) for all (t.x, ξ) ∈ G×RN \{0}, then P is strongly hyperbolic. If
the equation (1.1) has real roots with constant multiplicity for (t, x, ξ) ∈ G×Rn\{0},
the operator P is strongly hyperbolic if and only if it is strictly hyperbolic. Thus
if we have some roots with constant multiplicity mj ≥ 2 for the (WPC) we must
impose some conditions on lower terms Qm−1 called Levi conditions. The analysis
of the Cauchy problem for such operators is complete and we know the necessary
[4] and sufficient [3] conditions for (WPC).

Passing to the case of variable multiplicity of the roots of (1.1), notice that the
roots λj(t, x, ξ) in general are not smooth but only continuous. The case of operators
with constant coefficients is also completely examined and P is strongly hyperbolic
if and only if P is strictly hyperbolic. The necessary and sufficient condition of
Gårding for (WPC) says that there exists a constant c > 0 such that for the full
symbol p of P we have

p(τ, ξ) 6= 0, for |Im τ | > c, ∀ξ ∈ Rn.

To understand the situation of variable multiplicity and variable coefficients, con-
sider the example

P = D2
t − a(z)D2

x + b0(z)Dt + b1(z)Dx + c(z), z = (t, x) ∈ R2 (1.3)

with a(z) ≥ 0. If a(z0) = da(z0) = att(z0) = 0, b1(z0) 6= 0, in a point z0 ∈ G,
the Cauchy problem for P is not well posed. On the other hand, if for a point
z0 = (t0, x0) ∈ G, we have a(z0) = da(z0) = 0, att(z0) 6= 0, then there exists
a neighborhood U of z0 such that the Cauchy problem in U+

t0 is well posed for
arbitrary smooth lower order terms [14] and u ∈ Hk+2(U) if f ∈ Hk+N(R2), k ∈ N,
where

N = 3 + 2
[3
2 +
∣∣∣∣b1(z0)(att(z0))−1/2∣∣∣∣],

[z] being the integer part of z.

Below we change the notations and we denote t = x0, x = (x0, x1, ..., xn) ∈ Rn+1.
The dual variables will be denoted by ξ = (ξ0, ξ1, ..., ξn) = (ξ0, ξ′). Let Σ(p) = {z ∈
T ∗Ω \ {0} : p(z) = 0}, Σ1(p) = {z ∈ T ∗(Ω) : z ∈ Σ(p), dp(z) = 0}. If we have a
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critical point (x̂, ξ̂) ∈ Σ1(p), then the Hamiltonian system
dx

ds
= ∂ξp,

dξ

ds
= −∂xp

has a stationary point and we consider the differential of the right hand part. Thus
we obtain the fundamental matrix

Fp(x̂, ξ̂) =
(
pξ,x(x̂, ξ̂) pξ,ξ(x̂, ξ̂)
−px,x(x̂, ξ̂) −px,ξ(x̂, ξ̂)

)
.

We note below two properties of Fp:
1. For every point z ∈ Σ1(p) the Hessian Qp(X, Y ), X, Y ∈ Tz(T ∗(Ω)) at z of p2
is well defined. Then Qp(X, Y ) = σ(X,Fp(z)Y ), σ being the symplectic form on
T ∗(Ω). Thus after canonical transformation the fundamental matrix is transformed
into a similar one and its eigenvalues are invariant under canonical transformations.
Hörmander [5] called Fp(z) Hamiltonian map of Qp.
2. If P is hyperbolic in G and (x̂, ξ̂) is a critical point of pm(x, ξ), then Fpm(x̂, ξ̂) has
at most two non vanishing real simple eigenvalues µ and −µ and all other eigenval-
ues λ are purely imaginary, that is Re λ = 0.

The existence of non vanishing real eigenvalues of Fpm(x̂, ξ̂) is a necessary condi-
tion for strong hyperbolicity. More precisely, let pm−1(x, ξ) = ∑|α|=m−1 cα(x)ξα and
let

p′m−1(x, ξ) = pm−1(x, ξ) + i
2

n∑
j=0

∂2pm
∂xj∂ξj

(x, ξ)

be the subprincipal symbol of P which is invariantly defined for (x, ξ) ∈ Σ1(pm).
Then we have the following

Theorem 1 ([7]). If P is strongly hyperbolic in G, then at every point (x̂, ξ̂) ∈
Σ1(pm) the fundamental matrix Fpm(x̂, ξ̂) has two non-zero real eigenvalues. More-
over, for (x, ξ′) ∈

◦
G× (Rn \ {0}) the multiplicities of the roots of (1) are not greater

than two, and for (x, ξ′) ∈ {x0 = 0} ×Rn \ {0} or for (x, ξ′) ∈ {x0 = T} ×Rn \ {0}
these multiplicities are not greater than three. If Fpm(x̂, ξ̂) has only purely imaginary
eigenvalues, the condition Im p′m−1(x̂, ξ̂) = 0 is necessary for (WPC).

If Fpm(x̂, ξ̂) has only purely imaginary eigenvalues, for (WCP) we have a second
necessary condition

|Re p′m−1(x̂, ξ̂)| ≤
1
4

2n+2∑
j=0
|µj|,

µj being the eigenvalues of Fpm(x̂, ξ̂) repeated following their multiplicities. This
condition has been proved in [7] in some special cases concerning the structure of
Fpm(x̂, ξ̂) and without any restriction by Hörmander [5].

Definition 3. A hyperbolic operator with principal symbol p(x, ξ) will be called
effectively hyperbolic if at every point (x̂, ξ̂) ∈ Σ1(p), the fundamental matrix Fp(x̂, ξ̂)
has two non-zero real eigenvalues.

V. Ivrii introduced the following
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Conjecture A hyperbolic operator is strongly hyperbolic if and only if it is effec-
tively hyperbolic.

For operators with at most double characteristics some results for special class of
operators have been obtained by Hörmander [5], Ivrii [8] and Melrose [11]. The suf-
ficient part of the above conjecture is difficult since the double roots of the equation
(1) in general are not smooth and we have not a factorization with smooth factors.
Moreover, the loss of regularity could depend on the point and a microlocalization
leads to considerable difficulties when we must treat the commutators. The above
conjecture for operators with double characteristics has been completely solved by
N. Iwasaki [9], [10] and T. Nishitani [12], [13]. The proofs are rather long and very
technical.

An effectively hyperbolic operator could be strongly hyperbolic if it has triple
characteristics on the boundary on G but to our best knowledge there are no exam-
ples of such operators in the literature. Our purpose is to study a class of operators P
with triple characteristics on t = 0 and to prove that P is strongly hyperbolic. Thus
the above conjecture is true for some special operators with triple characteristics.
The analysis of the general case remains open.

2. Hyperbolic operators with triple characteristics

In this section we use again the notations of Section 1. According to Theorem 1, an
effectively hyperbolic operator P in G may have triple characteristics in G only for
t = 0 or t = T . Assume that P has triple characteristics for t = 0 and suppose that
the triple roots of (1.1) for t = 0 are τ = 0 (in general the triple characteristics for
t = 0 are τ = λ(0, x, ξ)). Let P be of order 3 and let

p3 = τ 3 + q1(t, x, ξ)τ 2 + q2(t, x, ξ)τ + q3(t, x, ξ)

be the principal symbol of P with qj, j = 1, 2, 3, real-valued polynomials of order j
with respect to ξ with smooth coefficients.

Lemma 1 ([7]). Let p3(t, x, τ, ξ) be hyperbolic in G and let τ = 0 be a triple root of
p3(0, x, τ, ξ) = 0, (0, x) ∈ G. Then

q3(0, x, ξ) = ∂tq3(0, x, ξ) = q2(0, x, ξ) = q1(0, x, ξ) = 0, (0, x) ∈ G, ξ ∈ Rn.

Moreover, p3 is effectively hyperbolic for t = τ = 0, if and only if

∂2p3
∂τ∂t

(0, x, 0, ξ) < 0, ξ ∈ Rn \ {0}.

Thus we must study an operator P with principal part

P3 = D3
t + ta1(t, x,Dx)D2

t − ta2(t, x,Dx)Dt + t2a3(t, x,Dx)

with aj(t, x, ξ) real-valued polynomials of order j in ξ and a2(t, x, ξ) ≥ c|ξ|2, c > 0
for ξ 6= 0. We write P = P3 + Q with lower order terms Q = B2(t, x,Dx) +
B1(t, x,Dx)Dt + C(t, x,Dt, Dx). Here B2 and B1 are differential operator of order
2 and 1, respectively, while C is an operator of order 1. Notice that for |ξ| = 1 the
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discriminant ∆ of the equation p3(t, x, τ, ξ) = 0 with respect to τ has the form

∆(t, x, ξ) =
(−3ta2 − t2a21

9

)3
+
(−9t2a1a2 − 27t2a3 − 2t3a31

54

)2

= q3 + r2 = − 1
27 t

3a32 +O(t4)a6
and ∆ ≤ 0 for small t ≥ 0. Thus the operator P is strictly hyperbolic for small t > 0
and it suffices to examine the Cauchy problem for 0 ≤ t ≤ t0, t0 � 1. Since the
coefficients of the cubic equation p3(t, x, τ, ξ) = 0 are real, for t ≥ 0 its real roots
λk(t, x, ξ), k = 1, 2, 3, have the following trigonometric form (see for instance, [15])

λ1 = 2ρ1/3 cos(θ/3)− ta1
3 ,

λ2 = 2ρ1/3 cos(θ/3 + 2π
3 )− ta1

3 ,

λ3 = 2ρ1/3 cos(θ/3 + 4π
3 )− ta1

3 ,

where
ρ = (−q)3/2, θ = arccos(r/ρ).

Next consider the symbols

δk = ∂p3
∂τ

∣∣∣∣
τ=λk

=
(

3τ 2 + 2ta1τ − ta2
)∣∣∣∣
τ=λk
, k = 1, 2, 3.

Since these symbols are homogeneous of order 2 in ξ, to find lower bounds for |δk|,
it is sufficient to examine their behavior for |ξ| = 1. We have

δ1 = 12ρ2/3 cos2(θ/3)− ta2 +O(t3/2)a2 =
(

4 cos2(θ/3)− 1
)
ta2 +O(t3/2)a2.

Since r
ρ

= O(t1/2), we have cos(θ/3) =
√

3
2 + o(t) and this implies for small t and

|ξ| = 1 the estimate |δ1| ≥ c1ta2 with c1 > 0. On the other hand,

δ2,3 = 3λ2
2,3 − ta2 +O(t3/2)a2 =

(
4 sin2(π/6± θ/3)− 1

)
ta2 +O(t3/2)a2

and we obtain the following

Lemma 2. There exist constants γ > 0 and γ1 > 0 such that for 0 ≤ t ≤ γ1 we
have

|δk| ≥ γ ta2(t, x, ξ) ≥ γct|ξ|2, k = 1, 2, 3. (2.1)

Finally, notice that λ1λ2λ3 = −t2a3(t, x, ξ).

3. Energy estimates for a model operator
Consider the operator
P (t,Dt, Dx) = D3

t + ta1(t,Dx)D2
t − ta2(Dx)Dt + t2a3(t,Dx) + b(t,Dx), t ≥ 0 (3.1)

where a2(Dx) = ∑ni,j=1 ai,jDiDj and b(t,Dx) = ∑ni,j=1 bi,j(t)DiDj is a second order
differential operator. For simplicity we assume that a2 is independent on t. The
analysis of operators with a2(t,Dx) goes without any change. We assume that

a(ξ) = a2(ξ) =
n∑
i,j=1
ai,jξiξj ≥ δ0|ξ|2, δ0 > 0.
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Moreover, the symbols a1(t, ξ), a3(t, ξ) are real-valued and homogeneous of order 1
and 3 in ξ, respectively. We want to establish an a priori estimate for P for t ≥ 0.
Set

f(t, ξ) = t+ 1
(1 + a(ξ))1/3 .

Let v(t, x) ∈ C∞0 (Rt × Rn). Multiplying P by −i and taking the Fourier transform
with respect to the variable x, we obtain

P̂ u = −̂iPv = ∂3
t u+ ita1(t, ξ)u′′ + t∂ta(ξ)u− it2a3(t, ξ)u+ b1(t, ξ)u

with b1(t,Dx) = −ib(t,Dx) and u = v̂. Let u′′ = v̂tt, u′ = v̂t. We have

2Re P̂ uū′′ = ∂t|u′′|2 + ta(ξ)∂t|u′|2 + 2t2a3(t, ξ)Im (uū′′) + 2Re
(
b1(t, ξ)uū′′

)
.

Denote by N a large positive integer and by λ a large positive parameter. Multiply
the above identity involving P̂ u by e−λtf−2N . We obtain

e−λtf−2N2Re (P̂ uū′′) = e−λtf−2N∂t|u′′|2 + e−λtf−2N ta(ξ)∂t|u′|2

+ e−λtf−2N2
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
= e−λtf−2N∂tẼ(u)−e−λtf−2Na(ξ)|u′|2+e−λtf−2N2

(
t2a3(t, ξ)Im(uū′′)+Reb1(t, ξ)uū′′

)
,

where
Ẽ(u) = |u′′|2 + ta(ξ)|u′|2.

The above identity can be rewritten as

e−λtf−2N2Re (P̂ uū′′) = ∂t
(
e−λtf−2N Ẽ(u)

)
+ λe−λtf−2N Ẽ(u)

+2Ne−λtf−2N−1Ẽ(u)−e−λtf−2Na(ξ)|u′|2+2e−λtf−2N
(
t2a3(t, ξ)Im(uū′′)+Reb1(t, ξ)uū′′

)
.

Since
e−λtf 2N2Re (P̂ uū′′) ≤ e−λtf−2N+1|P̂ u|2 + e−λtf−2N−1|u′′|2,

we have the inequality

e−λtf−2N+1|P̂ u|2 ≥ ∂t
(
e−λtf−2N Ẽ(u)

)
+ λe−λtf−2N Ẽ(u)

+ (2N − 1)e−λtf−2N−1|u′′|2 + 2Ne−λtf−2N−1ta(ξ)|u′|2

− e−λtf−2Na(ξ)|u′|2 + 2e−λtf−2N
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
.

Let us now consider the following identity, where k is a positive integer and g
denotes a smooth function in the same class as u:

e−λtf−2k2Re g′ḡ = ∂t
(
e−λtf−2k|g|2

)
+ λe−λtf−2k|g|2 + 2ke−λtf−2k−1|g|2.

This implies
e−λtf−2k+1|g′|2 ≥ ∂t

(
e−λtf−2k|g|2

)
+ λe−λtf−2k|g|2 + (2k − 1)e−λtf−2k−1|g|2.

Now, taking g = u′ we have

e−λtf−2k+1|u′′|2 ≥ ∂t
(
e−λtf−2k|u′|2

)
+λe−λtf−2k|u′|2+(2k−1)e−λtf−2k−1|u′|2, (3.2)
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while, taking g = u, we get

e−λtf−2k+1|u′|2 ≥ ∂t
(
e−λtf−2k|u|2

)
+ λe−λtf−2k|u|2 + (2k− 1)e−λtf−2k−1|u|2. (3.3)

From (3.2) and (3.3) above we obtain

e−λtf−2k+1|u′′|2 ≥ ∂t
(
e−λtf−2k|u′|2

)
+ λe−λtf−2k|u′|2

+ (2k − 2)e−λtf−2k−1|u′|2

+ ∂t
(
e−λtf−2k−2|u|2

)
+ λe−λtf−2k−2|u|2 + (2k + 1)e−λtf−2k−3|u|2. (3.4)

Plugging this into the estimate for |P̂ u|2 and choosing k = N + 1, we obtain

e−λtf−2N+1|P̂ u|2 ≥ ∂t
(
e−λtf−2N Ẽ(u)

)
+ λe−λtf−2N Ẽ(u)

+O(N)
{
e−λtf−2N−1|u′′|2 + ∂t

(
e−λtf−2N−2|u′|2

)
+ λe−λtf−2N−2|u′|2

}
+O(N2)e−λtf−2N−3|u′|2

+O(N)
{
∂t
(
e−λtf−2N−4|u|2

)
+ λe−λtf−2N−4|u|2

}
+O(N2)e−λtf−2N−5|u|2

+ 2Ne−λtf−2N−1ta(ξ)|u′|2 − e−λtf−2Na(ξ)|u′|2

+ 2e−λtf−2N
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
. (3.5)

Here O(N) means a function of N which satisfies an estimate of the type: O(N) ≥
cN , with a fixed positive constant c.

From inequality (3.4) above we also deduce that

e−λtf−2N−1ta(ξ)|u′|2 ≥ ∂t
(
e−λtf−2N−2ta(ξ)|u|2

)
+ λe−λtf−2N−2ta(ξ)|u|2

− e−λtf−2N−2a(ξ)|u|2 + (2N + 1)e−λtf−2N−3ta(ξ)|u|2.
Replacing the part of the corresponding term in (3.5) with the above inequality, we
finally obtain

e−λtf−2N+1|P̂ u|2 ≥ ∂t
(
e−λtf−2N Ẽ(u)

)
+ λe−λtf−2N Ẽ(u)

+O(N)
{
e−λtf−2N−1|u′′|2 + ∂t

(
e−λtf−2N−2|u′|2

)
+ λe−λtf−2N−2|u′|2

}
+O(N2)e−λtf−2N−3|u′|2

+O(N)
{
∂t
(
e−λtf−2N−4|u|2

)
+ λe−λtf−2N−4|u|2

}
+O(N2)e−λtf−2N−5|u|2 +O(N)e−λtf−2N−1ta(ξ)|u′|2

+O(N)
{
∂t
(
e−λtf−2N−2ta(ξ)|u|2

)
+ λe−λtf−2N−2ta(ξ)|u|2

}
+O(N2)e−λtf−2N−3ta(ξ)|u|2

−O(N)e−λtf−2N−2a(ξ)|u|2 − e−λtf−2Na(ξ)|u′|2

+ 2e−λtf−2N
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
. (3.6)

There are four ”error” terms, all written in the last two lines of (3.6). We deal
first with the term containing u′, the second term term in the second line from
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below. Neglecting the exponential term, we would like to estimate f−2Na(ξ) by
f−2N−3 + f−2N−1ta(ξ). First we would like to prove an inequality of the form

f−2N−3

1 + a(ξ) + tf−2N−1 ≥ αf−2N , (3.7)

with a positive constant α. Dividing by f−2N−3, the proof is reduced to the inequality
1

1 + a(ξ) + tf2 ≥ αf 3.

Now

f 3 = t3 + 1
1 + a(ξ) + 3t2

(1 + a(ξ))1/3 + 3t
(1 + a(ξ))2/3 ,

while on the left hand side we have

1
1 + a(ξ)) + t3 + 2t2

(1 + a(ξ))1/3 + t

(1 + a(ξ))2/3 .

The terms on both sides are the same, so that if we choose α suitably, (3.7) ensues.
Thus we deduce

αf−2Na(ξ) ≤ ta(ξ)f−2N−1 + a(ξ)
(1 + a(ξ)f

−2N−3 ≤ ta(ξ)f−2N−1 + f−2N−3. (3.8)

Next let us treat the first term in the second line from below in (3.6). We want
to estimate f−2N−2a(ξ) with f−2N−5 + f−2N−3ta(ξ). This is very easy, since the
coefficients of the terms containing |u|2 in (3.6) grow as N2, and a small portion of
them may absorb O(N). Now the inequality

f−2N−5 + f−2N−3ta(ξ) ≥ αf−2N−2a(ξ)

is obtained from (3.8), dividing by f 2.
Now we pass to the analysis of the last term in the last line of (3.6). First we

deduce
Re (b1(t, ξ)uū′′) = Re b1(t, ξ)Re (uū′′)− Im b1(t, ξ)Im (uū′′).

To deal with the term involving Re b1(t, ξ), we use the equality

2Re (uū′′) = ∂t2Re (uū′)− 2|u′|2

The term with |u′|2 can be treated as above since |b1(t, ξ)| ≤ Cδ0a(ξ). To study the
term with Re (uū′), we write

e−λtf−2NRe
(
b1(t, ξ)Re (uū′)

)
= ∂t
(
e−λtf−2NRe b1(t, ξ)Re (uū′)

)
+ λe−λtf−2NRe b1(t, ξ)Re (uū′)

+ 2Nf−2N−1Re b1(t, ξ)Re (uū′) + e−λtf−2NRe b1,t(t, ξ)Re (uū′)
= ∂t(...) + I + II + III.

(3.9)

There are three terms on the right hand side of (3.9). Consider I. Applying the
Cauchy-Schwartz inequality and |b1(t, ξ)| ≤ C|ξ|2, we obtain
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λ

∣∣∣∣e−λtf−2NRe b1(t, ξ)Re (uū′)
∣∣∣∣

≤ Cλδ−1
0

[
εe−λtf−2N+1a(ξ)|u′|2 + 1

ε
e−λtf−2N−1a(ξ)|u|2

]
≤ Cλδ−1

0 εα
−1e−λt[f−2N ta(ξ)|u′|2 + f−2N−2|u′|2]

+ Cλ
ε
δ−1

0 α
−1e−λt[f−2N−2ta(ξ)|u|2 + f−2N−4|u|2],

(3.10)

where ε > 0 is a small positive constant, to be chosen below. Taking Cδ−1
0 α

−1ε <
1/2, we may estimate the term with f−2N ta(ξ)|u′|2 by f−2N Ẽ(u).

Next Cλ
ε
δ−1

0 α
−1e−λtf−2N−2ta(ξ)|u|2 can be absorbed by the corresponding term

in (6) with large N and the same is true for the term with f−2N−4|u|2. The analysis
of III is similar and simpler.

To handle II, we use the inequality
II ≤ C2

1δ
−1e−λtf−2Na(ξ)|u′|2 + 4N2δf−2N−2a(ξ)|u|2,

where C1 = Cδ−1
0 and β > 0 is a small constant.

The latter term in the above line is similar to the first in the last line of (3.6);
the only difference is the factor in front, which is bigger here. However, remarking
that all the terms containing |u|2 in (3.6) have also O(N2), it is clear that choos-
ing δ suitably small, but finite and independent of u, N and λ, will allow us to
conclude by arguing as above. The fist summand on the other hand is similar to
the middle term in the last line of (3.6): C1 is real and depends on the lower order
terms, δ is fixed. This is estimated as we did before, provided that N is large enough.

Next we turn to the term containing −Im b1(t, ξ)Im (uū′′) containing Im b1(t, ξ).
We remark that Im (uū′′) = ∂t(uū′ − u′ū), so that we obtain two terms which can
be discussed almost verbatim as before. This might require enlarging N .

Finally, consider the term
2e−λtf−2N t2a3(t, ξ)Im (uū′′) ≥ −C1e

−λtf−2N t4(1 + |ξ|2)3|u|2 − e−λtf−2N |u′′|2.
The last term in the right hand side can be treated as above, however the first one
cannot be absorbed by other positive terms taking N large enough. Consequently,
in (3.6) we obtain an upper bound on the left by

e−λtf−2N+1|P̂ u|2 + C1t
4e−λtf−2N(1 + |ξ|2)3|u|2.

Now assume 0 ≤ s < T ≤ 1 and v = Dtv = D2
t v = 0 when t = s. We integrate

from t to T w.r.t. to the time variable s. Thus yields some integrals
∫ T
t (....)ds and

terms
e−λTf−2N(T, ξ)Ẽ(u(T, ξ))

+O(N)
[
e−λTf−2N−2(T, ξ)|u′(T, ξ)|2 + e−λTf−2N−4(T, ξ)|u(T, ξ)|2

]
+O(N)e−λTf−2N−2(T, ξ)Ta(ξ)|u(T, ξ)|2

+2e−λTf−2N(T, ξ)Re b(T, ξ)Re (uū′)(T, ξ)
−2e−λTf−2N(T, ξ)Im b(T, ξ)(uū′ − ū′u)(T, ξ).
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Concerning the boundary terms, only the last three terms in the above sum has no
positive sign. We have no coefficient λ before them and these terms can be treated
by the above argument using the positive terms and choosing N large enough. Next
we integrate with respect to ξ in Rn and we replace the L2(Rnξ ) norms by L2(Rnx)
norms. Moreover, we have the obvious inequalities

f−1 = (1 + a(ξ))1/3

t(1 + a(ξ))1/3 + 1 ≤ (1 + a(ξ))1/3 ≤ C2(1 + |ξ|2)1/3, t ≥ 0,

f−1 ≥ 1/2, 0 ≤ t < T ≤ 1.
Then

C1t
4
∫ T
t

∫
e−λsf−2N(1 + |ξ|2)3|u|2dξds ≤ C2t

4
∫ T
t

∫
e−λs(1 + |ξ|2)2N/3+3|u|2dξds

≤ C3t
4
∫ T
t
e−λs‖v‖2(2N/3+3)ds,

where ‖.‖(s) is the H(s) norm in Rn for fixed s. Now for v and 0 < t ≤ T and small
T we may apply the energy estimates for strictly hyperbolic operators (see Section
23.2 and the proof of Lemma 23.2.1 in [5]). Taking into account Lemma 2, we get∫ T

t
e−λs‖v‖2(2N/3+3)ds ≤

CN
t2

∫ T
t
e−λs‖Pv‖2(2N/3+1)ds.

We introduce U1(s, ξ) = (1 + |ξ|2)1/2u(s, ξ) and observe that U1 satisfies the same
initial conditions on s = t as u and

P̂U1 = (1 + |ξ|2)1/2P̂ u.

Finally, we obtain the following

Theorem 2. Let v ∈ C∞0 (Rt × Rn) and let v(s, x) = Dtv(s, x) = D2
t v(s, x) = 0 for

s = t. Let 0 ≤ t < T ≤ 1 Then for T small enough and for an integer N and λ > λ0
depending on the lower order terms b(t,Dx) we have the estimate

λ
∫ T
t
e−λs
(
‖D2
t v‖2(1) +‖Dtv‖2(2) +‖v‖2(2)

)
ds ≤ C(N)

∫ T
t
e−λs‖Pv‖2(2N/3+2)ds. (3.11)

Now will treat the estimates for functions v ∈ C∞0 (Rt × Rn) with initial data
v(T, x) = Dtv(T, x) = D2

t v(T, x) = 0.

To do this we multiply P̂ u by −eλtf 2N ū′′ and repeating the above argument, we
obtain for 0 ≤ t < T ≤ 1

eλtf 2N+1|P̂ u|2 ≥ −∂t
(
eλtf 2N Ẽ(u)

)
+ λeλtf 2N Ẽ(u)

+O(N)
{
eλtf 2N−1|u′′|2 − ∂t

(
eλtf 2N−2|u′|2

)
+ λeλtf 2N−2|u′|2

}
+O(N2)eλtf 2N−3|u′|2

+O(N)
{
−∂t
(
eλtf 2N−4|u|2

)
+ λeλtf 2N−4|u|2

}
+O(N2)eλtf 2N−5|u|2

− 2Neλtf 2N−1ta(ξ)|u′|2 + eλtf 2Na(ξ)|u′|2

+ 2eλtf 2N t2a3(t, ξ)Im (uū′′)− 2eλtf 2NRe b1(t, ξ)uū′′. (3.12)
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Now we assume 0 ≤ s < T ≤ 1 and let v = Dtv = D2
t v = 0 when s = T. We

integrate from t to T with respect to the time variable s and we treat the boundary
terms with s = t as above, while the "error" terms are handled in the same way as
in the case with initial data on s = t. Thus we obtain a priori estimate involving
the "weights" f 2N−k(Dx), −1 ≤ k ≤ 5. On the other hand,

f 2N+1 ≤ (t+ 1)2N+1, 0 ≤ t < T ≤ 1,

f 2N ≥ 1
(1 + a(ξ))2N/3 ≥ BN(1 + |ξ|2)−2N/3.

We introduce UN(s, ξ) = (1 + |ξ|2)(2N+2)/3u(t, ξ) and observe that UN satisfies the
same initial conditions on s = T as u and

P̂UN = (1 + |ξ|2)(2N+2)/3P̂ u.

Thus we deduce the following

Theorem 3. Let v ∈ C∞0 (Rt × Rn) and let v(s, x) = Dtv(s, x) = D2
t v(s, x) = 0

for s = T. Let 0 ≤ t < T ≤ 1. Then for T small enough and for an integer N and
λ > λ0 depending on the lower order terms b(t,Dx) we have the estimate

λ
∫ T
t
eλs
(
‖D2
t v‖2(2/3) + ‖Dtv‖2(4/3) + ‖v‖2(2)

)
ds ≤ C1(N, T )

∫ T
t
eλs‖Pv‖2(2N/3+2)ds,

(3.13)
where ‖.‖(m) is the H(m) norm in Rn for fixed s.

From Theorems 2 and 3 we conclude in a standard way that the Cauchy problem
for P is well posed.

4. Operators with coeffcients depending on t and x

We sketch briefly some ideas for the analysis of the case when we have operators
with coefficients depending on t and x.

First consider a scaling t = ε2/3s, x = εy, ε > 0. Multiplying by ε2, we obtain an
operator

P = D3
s − sa2(ε2/3s, εy,Dy)Ds +B2(ε2/3s, εy,Dy)

+ε1/3
[
sa1(ε2/3t, εy,Dy)D2

s + s2a3(ε2/3s, εy,Dy) +B1(ε2/3s, εy,Dy)Ds
]

+ εC1(...).

Our final purpose is to choose ε = O( 1
N

), where N is a big fixed integer related
to lower order terms as in the case treated in Section 3. With this choice of ε we
are going to study the Cauchy problem for sufficiently small t > 0. This is enough
since for t > 0 our operator is strictly hyperbolic.

We cannot apply Fourier transform and moreover it is convenient to employ a
suitable class of pseudodifferential operators. Notice that f = t+(1+a2(t, x, ξ))−1/3

is a symbol in the class S0
1,2/3, when derivatives with respect to t are considered, but

is in the class S0
1,0 if t is just a parameter and no derivatives with respect to t are

involved.
Let 〈ξ〉2 = 1 + |ξ|2 and let

g(x,ξ) = |dx|2 + 〈ξ〉−2|dξ|2 (4.1)
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be the classical slowly varying (1, 0)− metric. We need also the dilated metric
gε(x,ξ) = ε2|dx|2 + 〈ξ〉−2|dξ|2. (4.2)

Define the following ”order” function
mt,µN (x, ξ) = f−N(t, ξ)〈ξ〉µ/2, (4.3)

where N is a large integer and µ is any real number. Then we may define the class
S(mt,µN , g) of symbols in the standard way. We point out explicitly that t is just a
parameter and at this level we may omit it in our notation. We have

Proposition 1. f−N(t, ξ) ∈ S(mt,0N , g).
We have also

Proposition 2. Let c(x, ξ) ∈ Sµ(1, g) be a classical symbol of order µ. Then
f−N(t, ξ)#xc(x, ξ) = bt(x, ξ), where bt ∈ S(mt,µN , g). Here #x denotes the operation
of formal asymptotic composition g#xc = ∑|α|≥0

1
α!∂
α
ξ g(x, ξ)Dαxc(x, ξ).

To examine the lower order terms we need to handle the term

f−N(t,Dx)b(ε2/3t, εx,Dx)fN(t,Dx),
b(t, x,Dx) being a second order pseudodifferential operator. We deduce that

BN = f−N(t, ξ)#xb(ε2/3t, εx, ξ)(1 + |ξ|2)−1fN(t, ξ) ∈ S(mt,0N , g)
but we need to estimate the L2 norm of the operator BN and for this reason we
take ε to be of order O( 1

N
). Therefore in the calculus of lower order terms of BN

the powers of N are compensated by the powers of ε. Moreover, we may write the
composition of symbols BN by using a finite sum and an integral representation of
the remainder introduced by J.M. Bony [2].

The details of the analysis of the operators with variable coefficients depending
on (t, x) will be given in a paper in preparation [1].
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