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(Semi)classical limits of Schrödinger-Poisson
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Abstract
We deal with classical and “semiclassical limits” , i.e. vanishing Planck

constant ~ ' ε → 0, eventually combined with a homogenization limit of a
crystal lattice, of a class of "weakly nonlinear" NLS. The Schrödinger-Poisson
(S-P) system for the wave functions {ψε

j(t, x)} is transformed to the Wigner-
Poisson (W-P) equation for a “phase space function” f ε(t, x, ξ), the Wigner
function. The weak limit of f ε(t, x, ξ), as ε tends to 0, is called the “Wigner
measure” f(t, x, ξ) (also called "semiclassical measure" by P. Gérard).

The mathematically rigorous classical limit from S-P to the Vlasov-Poisson
(V-P) system has been solved first in 1993 by P.L. Lions and T. Paul in [21]
and, independently, by P.A. Markowich and N.J. Mauser in [23]. There the
case of the so called “completely mixed state”, i.e. j = 1, 2, . . . ,∞, was
considered where strong additional assumptions can be posed on the initial
data.

For the so called “pure state” case where only one (or a finite number)
of wave functions {ψε

j(t, x)} is considered, recently P. Zhang, Y. Zheng and
N.J. Mauser [33] have given the limit from S-P to V-P in one space dimension
for a very weak class of measure valued solutions of V-P that are not unique.

For the setting in a crystal, as it occurs in semiconductor modeling, we
consider Schrödinger equations with an additional periodic potential. This
allows for the use of the concept of “energy bands”, Bloch decomposition of
L2 etc. On the level of the Wigner transform the Wigner function f ε(t, x, ξ)
is replaced by the “Wigner series” f ε(t, x, k), where the “kinetic variable” k
lives on the torus (“Brioullin zone”) instead of the whole space.

Recently P. Bechouche, N.J. Mauser and F. Poupaud [7] have given the
rigorous “semiclassical” limit from S-P in a crystal to the “semiclassical equa-
tions”, i.e. the “semiconductor V-P system”, with the assumption of the
initial data to be concentrated in isolated bands.
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1. Introduction

We consider the Schrödinger-Poisson (S-P) system as a special weakly nonlinear
“one-particle” Schrödinger equation :

iε∂tψ
ε
j = − ε2

2
4ψε

j + V εψε
j, x ∈ Rn, t > 0,

ψε
j|t=0 = φε

j, x ∈ Rn, j ∈ N. (1.1)

The “asymptotic parameter” ε > 0 is the scaled Planck constant ~. The index
j ∈ N means that we consider a set of possibly infinite many Schrödinger equations,
which is called a “mixed state” where the particle density ρε(t, x) and the “current
density” J ε(t, x) are given by weigthed sums as

ρε(t, x) =
∞∑

j=1

λε
j|ψε

j(t, x)|2 , J ε(x, t) := ε
∑
j∈IN

λε
j Im

(
∇ψε

j(t, x) · ψε
j(t, x)

)
(1.2)

where the coefficients λε
j ≥ 0 are the “occupation probabilities” of L2(Rn)–orthonor-

malized initial states φε
j(x). These λε

j are constant in the time evolution, but depend
in general on ε, which is crucial for the classical limit.

The potential V ε in (1.1) is a multiplication operator that models the interaction
of the “particle” with the rest of the world. The (Coulomb) interaction among
electrons and with a positively charged background (“doping profile” b(x) ≥ 0) is
modeled as

V ε = −Ṽ ∗ (ρε − b), (1.3)

where Ṽ represents the two body interaction potential that we consider. If Ṽ is the
Green’s function of the Laplace operator then the integral representation (1.3) can
be rewritten as the Poisson equation :

∆V ε = −C(ρε − b), (1.4)

Note that only in the 3-d case the Coulomb interaction of point particles and
the Green’s function of Laplace coincide. The use of the Poisson equation in lower
dimensions means that we no longer consider point particles.

For this case where V ε is the Coulomb potential (1.4) it is known from [12], [13]
that (1.1) has a global smooth solution (ψε

j(t, x)) such that the mass is conserved
and the kinetic energy is uniformly (in ε) bounded :

∞∑
j=1

λε
j‖ψε

j(t, ·)‖2
L2 + ε2

∞∑
j=1

λε
j‖∇ψε

j‖2
L2 <∞. (1.5)

Despite its wide use the rigorous derivation of the time-dependent S-P equation has
been an open problem for decades and only recently two completely different ways
of obtaining the S-P system have been successfull :

The most fundamental way to derive S-P is by a weak coupling limit of the N
particle Schrödinger Coulomb system which has been done in a series of papers by
C. Bardos, F. Golse, N.J. Mauser and L. Erdös, H.T. Yau [3], [16], [2].
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For an improvement of this very crude approximation of the linear N particle
problem by a nonlinear “mean field”one-particle equation, based on a molecular
chaos ansatz (Hartree ansatz) for N interacting electrons, the inclusion of the Pauli
principle for fermions would be essential. However, the attempts to incorporate the
resulting “exchange interaction” as a local term in the time-dependent S-P model,
are heuristic (cf [28]) up to now. Steps in this direction are the recent progress
on the derivation of the time dependent Hartree-Fock (HF) equation [4], [5] and
the derivation of the “Xα” potential as a local approximation of the HF exchange
potential [10], [11].

Another direction of extending the S-P model is to incorporate relativistic cor-
rections, at least at first order, which yields the Pauli equation where spin and mag-
netic field are taken into account. A consistent first order semi-nonrelativistic time-
dependent model is given by the self-consistent “Pauli-Poiswell” equation which was
introduced in [26]. The classical limit of this system seems doable analogous the
the S-P case with the methods and assumptions of [21], with appropriate "magnetic
Lieb-Thirring type estimates".

The rigorous derivation of the S-P system as the non-relativistic limit of the
Dirac-Maxwell and the Klein Gordon Maxwell system has been given by P. Be-
chouche, N.J. Mauser, S. Selberg and N. Masmoudi, K. Nakanishi [8], [9] , [27].

For modeling electrons in a semiconductor [25] a key modification of the S-P
equation is to take into account the additional periodic “crystal potential”. The
starting point is hence a a mixed state Schrödinger equation with a periodic po-
tential due to the ions of a crystal lattice and a nonperiodic potential due to the
selfconsistent Coulomb interaction among the electrons, i.e.

i~∂tψj(t, x) =

(
− ~2

2m
∆ + Vper(x) + V (t, x)

)
ψj(t, x), j ∈ IN , (1.6)

with a given periodic potential Vper(x) and a nonperiodic potential V (t, x).
On a semiclassical level of description [1], the Schrödinger equation (1.6) is re-

placed by the semiclassical Liouville equation for the phase space (i.e. position–wave
vector space) density f = f(t, x, k), where k ∈ B, the bounded Brillouin zone (the
torus). Under the assumption that the electron “stays in the m–th (energy) band
Em(k)” the semiclassical Liouville equation reads [1]

∂tf +
1

~
∇kEm(k) · ∇xf −

1

~
∇xV (t, x) · ∇kf = 0, x ∈ IR, k ∈ B, t ∈ R (1.7)

subject to a periodic boundary condition in k and an initial condition f(t = 0) = fI .
The position density ρ and the current density J are now computed as

ρ(t, x) =
1

4π3

∫
B

f dk, J(t, x) =
1

4π3

∫
B

1

~
∇kEmf dk (1.8)

The self-consistent potential V (t, x) is again calculated by solution of the Poisson
equation (1.4) with ρ given by (1.8).

The transition from the quantum model (1.6), (1.2), (1.4) to the semiclassical
model (1.7), (1.8), (1.4) has been made rigorous in [7] where a new variant of Wigner
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transforms, the Wigner-Bloch series were introduced. The reader is referred to [24],
[7] for a comprehensive presentation and precise results.

By “classical limit” we mean the transition from quantum mechanics to classical
mechanics for vanishing Planck constant ε→ 0; without keeping any “semiclassical”
corrections. Note that we avoid the frequently used term “semiclassical limit” for
ε → 0; in particular since in solid state physics the term “semiclassical equation”
is reserved for (1.7) as a “crystal” version of the Vlasov equation. The limit from
a Schrödinger equation with a periodic potential, which yields the “semiclassical
equations” as a simultaneous classical limit plus homogenization limit of the periodic
structure, deserves the name “semiclassical limit” and in fact quantum corrections
are contained in the limit via the “energy bands” (ε = ~ is even explicitly contained
in (1.7)).

For the purpose of “semiclassical approximations” of quantum mechanics, E.
Wigner ([31]) introduced the “Wigner transform” from “physical space” to “phase
space” :

f ε(t, x, ξ) =
1

(2π)n

∫
Rn

e−iξyzε(t, x+
εy

2
, x− εy

2
) dy, (1.9)

where zε(t, r, s) is the so-called mixed state density matrix defined by

zε(t, r, s) =
∞∑

j=1

λε
jψ

ε
j(t, r)ψ

ε
j(t, s), r, s ∈ Rn. (1.10)

We use “overhead bar” for complex conjugate. Note that zε(t, r, s) is the inte-
gral kernel of the “density operator” ρ̂ε in L2, which is trace class with Tr(ρ̂ε) =∑∞

j=1 λ
ε
j = 1 .

A direct calculation by applying the transform (1.9) to the Schrödinger equation
(1.1) (see e.g. [21], [23]) shows that f ε(t, x, ξ) satisfies the so-called Wigner equation

∂tf
ε + ξ∇xf

ε + θε[V ε]f ε = 0, x, ξ ∈ Rn, t > 0,

f ε|t=0 = f ε
I (x, ξ), (1.11)

where θε[V ε]f ε is the pseudo-differential operator (local in x and nonlocal in ξ)

θε[V ε]f ε =
i

(2π)n

∫∫
R2n

η,y

V ε(x+ εy
2
)− V ε(x− εy

2
)

ε
f ε(t, x, η)e−i(ξ−η)y dη dy, (1.12)

associated to the potential V ε and the initial datum f ε
I (x, ξ) is the Wigner transform

of the initial density matrix zε
I(r, s) =

∑∞
j=1 λ

ε
jφ

ε
j(r)φ

ε
j(s).

The macroscopic densities ρε(t, x) and the current density J ε(t, x) are now given
as the zero order and the first order moment, respectively, in the kinetic variable ξ,
i.e. by a linear expression in f ε due to the quadratic nature of the Wigner transform,
in complete analogy to classical and “semiclassical” (cf (1.8)) physics.

ρε(t, x) =

∫
Rn

f ε(t, x, ξ) dξ ≥ 0 , J ε(t, x) =

∫
Rn

ξf ε(t, x, ξ) dξ , (1.13)
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The global existence and uniqueness of classical solution for the Wigner-Poisson
(W-P) system, i.e (1.11) coupled to (1.4) using (1.13) was proven (in 3-d) in [12].

An important advantage of using the Wigner transform lies in the structural
similarity of the quantum Wigner equation (1.11) with the classical Vlasov equation
and the fact that the role of the moments is the same (cf (1.13)). Formally passing
ε → 0 in (1.11), the pseudodifferential operator (1.12) becomes ∇xV · ∇ξf . Hence
formally the limit of the W-P equation (1.11),(1.4) is given by the V-P equation,
where :

∂tf + ξ · ∇xf −∇xV · ∇ξf = 0, x, ξ ∈ Rn, t > 0, (1.14)
∆V = −C(ρ(t, x)− b(x)), (1.15)
f |t=0 = fI ,

where f(t, x, ξ), fI(x, ξ), V (t, x) are the formal limits of f ε(t, x, ξ), f ε
I (x, ξ), V ε(t, x)

and ρ(t, x) =
∫

Rn f(t, x, ξ) dξ.

There are several serious problems in justifying this formal limit which can a
priori only be some sort of weak limit since the Wigner function inherits the ε-
oscillatory behaviour from the wave functions. The first rigorous proof was not
given before 1993 by P.L. Lions and T. Paul [21] and by P.A. Markowich and N.J.
Mauser [23]. Note that the Wigner function f ε is in general real, but has also
negative values, whereas the limit f is a “true”, nonnegative distribution function.
In [21] and [23], independently, the method of using a smoothed Wigner function, the
“Husimi function” (which is closely related to the “coherent states”), was introduced
to overcome this problem.

By the special structure of the “mixed state” Schrödinger equations (1.1), the
natural assumption for the initial data of (1.1), i.e. λε

j and φε
j should be φε

j ∈ Hs(R)
with s large and the conservation of mass :

∑∞
j=1 λ

ε
j and the bound on the kinetic

energy : ε2
∑∞

j=1 λ
ε
j‖∇φε

j‖2
L2 < ∞. Then (1.5) holds for t > 0 and thus by [21] or

[17] it follows that f(t, ·, ·) is in fact a Wigner measure.

2. Results on classical limits

The problem we deal with is to rigorously justify the limit for the Coulomb case
of the weak “self consistent” nonlinearity (1.3), i.e. from S-P (1.11) to V-P (1.14),
(1.15).

In the results [21], [23] this problem was solved for a “really mixed state” where
infinitely many wave functions contribute in a very particular dependence on the
Planck constant ε, as stated in the following assumption

1

ε3

∞∑
j=1

(λε
j)

2 ≤ C. (2.16)

Note that the l.h.s. of (2.16) corresponds to the trace of the square of the density
operator associated to (1.10), i.e.

∑∞
j=1(λ

ε
j)

2 = Tr((ρ̂ε)2). We see from (1.9) that the
r.h.s of (2.16) is the uniform (in ε) bound in L2(IRn

x × IRn
ξ ) of the Wigner functions
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f ε (up to a factor (2π)3). However, the uniform bound on f ε of Proposition 1 below
does not need the additional assumption (2.16), but only the uniform L2 bounds of
the wave functions ψε.

In [33] the classical limit of the one dimensional S-P to the V-P system for
general initial data; in particular the “pure state case”, without assumption (2.16),
was given. The trick in the pure state case is to change the concept of solutions of
V-P such that jumps in ∇V are allowed and A′ convergence of the Wigner measure
f is enough. The price to pay is loss of uniqueness in the V-P system.

The space of finite nonnegative Radon measures is denoted by M+. For the
study of the convergence of the Wigner function f ε, the following space A has been
introduced in [21] which is a separable Banach algebra of test functions containing
S(IRn

x × IRn
ξ ) :

A =
{
ϕ ∈ C0(IR

n
x × IRn

ξ

∣∣(Fξϕ)(x, η) ∈ L1(IRn
η ; C0(IR

n
x))

}
(2.17)

‖Fξϕ‖L1
η(Cx) =

∫
IRm

η

sup
x
|Fξϕ|(x, η)dη.

This space immediately allows for a uniform estimate on the Wigner function :
Proposition 1 Let the sequence ψε be uniformly bounded in L2. Then the

sequence of Wigner transforms f ε of ψε is uniformly bounded in A′.
Hence f ε converges, possibly after extracting a subsequence, to a distribution

µ in A′ weak − ∗. Note that µ is in general not unique, since it may depend on
the selection of a particular subsequence. It can be proven [21], [17] that µ is in
fact a nonnegative measure, thus justifying the term ’Wigner measure’ and the
identfication µ = f , where f stands for a solution of a Vlasov type equation.

For the “pure state” result below this non-uniqueness of the limiting Wigner
measure corresponds to the non-uniqueness of the kind of solutions of V-P intro-
duced in [34] and used in [33]. See [22] for a construction of non-unique solutions
to 1-d V-P (in a setting which is periodic in x, however) where different “regular-
ization schemes” give different limits (cf also the remarks in [35]). Hence in this
formulation the classical limit of the quantum problem does not provide a selection
criterion among the non-unique measure-valued solutions of the V-P equation in the
sense of Section 2.2.

A word of caution, however, should be said on the physical interpretation : terms
like “concentration in a point charge” for the singularities are somewhat misleading
in a low-dimensional V-P model which actually do not model point charges but
infinite planes (1-d model) or straight wires (2-d model) since we have to assume
translational invariance in 2 or 1 directions for obtaining the Poisson equation.

The physical interpretation, why in the techniques of [21] and [23] (that apply
also to the 2- and 3-d case where no pure state result is known) the mixed state
is so different from the pure state is not obvious. In some sense a mixed state
obeying (2.16), i.e. a density operator which has the property that the trace norm
of its square tends to zero with the (third power of the) Planck constant, is closer to
classical mechanics than a pure state, which is reflected in a uniformly L2(IRn

x×IRn
ξ )

bound for the Wigner function and the admissible initial Wigner measures.
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2.1. S-P to V-P “in vacuum” for mixed states

The results of [21] and [23] yield the limit from S-P to V-P only for the mixed state
case. In [21], in addition, an exhaustive list of results, including the linear case, is
given. We just sketch the results on the weakly nonlinear case.

Let ψε(t, x) be the solution of the Schrödinger equation (1.1) and f ε(t, x) and
f(t, x) its Wigner function and a Wigner measure of the sequence ψε.
Theorem 1.a Let V |ε = Ṽ ∗ ρε, Ṽ = Ṽ + + Ṽ − and ρε = |ψε(t, x)|. Suppose that
Ṽ − ≥ −C, Ṽ ∈ C1(IRn), ∇Ṽ ∈ Cb(IR

n), Tr
(

ε2

2
∆ρ̂ε

I

)
≤ C, and that∫ ∫

IR2n

Ṽ +(x− y)ρε
I(x)ρ

ε
I(y) dx dy ≤ C,

∫
IRn

|x|2ρε
I(x) dx ≤ C,

where ρε
I = ρε|t=0, ρ̂ε

I is the density operator in L2. Then we have
• f ε ⇀ f weak-* in A′ for f ∈ Cb(IRt,Mw−∗) uniformly on all compact subsets

in IRt and f is a solution in D′ of the following nonlinear Vlasov equation

∂tf + divx(ξf)− divξ(∇xV
0(x)f) = 0 with initial data f |t=0 = f 0

I (2.18)

where V 0 = Ṽ ∗ ρ0 and ρ0 =

∫
IRn

ξ

df( ·, · , ξ) . (2.19)

Corollary 1.a If Ṽ ∈ C1,1(IRn), then the above f is given by the unique Hamiltonian
flow of fI : (x, ξ) → (x(t), ξ(t)) with ẋ = ξ, ξ̇ = −∇V 0(x), x(0) = x, ξ(0) = ξ.

Remark ! In general, we can relax the C1 regularity assumption on V or Ṽ , but
then we have to ask more properties on the initial data that are possible only for
the mixed state, namely (2.16) which guarantee a better convergence of the Wigner
function than in A′, namely weakly in L2, in order to pass to the limit in the
pseudodifferential operator (1.12) that contains the crucial product term.

Theorem 1.b Let V ε = Ṽ ∗ ρε, Ṽ = Ṽ + + Ṽ − and ρε = |ψε(t, x)|. Suppose that

Ṽ − ∈ L
n+4

4
,∞(IRn) + L∞(IRn) n ≤ 3, (2.20)

∇Ṽ ∈ L
2n+8
n+8 (IRn) + Lq(IRn) with

2n+ 8

n+ 8
< q <∞, (2.21)

Tr

(
ε2

2
∆ρ̂ε

I

)
≤ C,

∫ ∫
IR2n

Ṽ +(x− y)ρε
I(x)ρ

ε
I(y) dx dy ≤ C,

where ρε
I = ρε|t=0, is the initial density and ρ̂ε

I is the initial density operator in L2.
Assume initially a mixed state where (2.16) holds (which is behind (87) in [21] !
Then we have the convergence result :
• f ε ⇀ f in L∞((0, T );L2(IRn

x × IRn
ξ ) weak-* (and in C([0, T ];M+w − ∗), ∀T ∈

(0,∞), and f ∈ Cb(IRt,Mw − ∗) ∩ L∞(IRt;L
1 ∩ L2(IRn

x × IRn
ξ ) is a solution of the

nonlinear Vlasov equation (2.18),(2.19).

Remark 2.1 In the S-P case we have : n=3, Ṽ = 1/|x| and the assumptions (2.20)
and (2.21) are satisfied with Ṽ − = 0, ∇Ṽ ∈ L3/2,∞(IR) and 2n+8

n+8
= 14

11
< 3

2
.
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2.2. S-P to V-P “in vacuum” in 1-d for pure states

Before the presentation of 1-d pure state result of [33], let us first recall some related
existence results for V-P, i.e. (1.14), (1.15) with b = 0 and Ṽ being the Coulomb
potential. Note that we consider a one dimensional model by assuming translational
invariance in two space dimensions, such that in (1.3) Ṽ = 1/|x|.
• For n = 3, under the assumption that there exists some p0 > 3 such that

fI(x, ξ) ∈ L1 ∩ L∞(R6),

∫
R6

|ξ|pfI dx dξ <∞, for all 1 ≤ p < p0, (2.22)

In [20] (see also [29] and [30]) it was proved that V-P has a global distributional
solution which satisfies (2.22) for all time; under the weaker assumption that∫∫

R6

(1 + |ξ|2 + | ln fI |)fI dx dξ <∞, (2.23)

In [15] the global existence of renormalized solutions of V-P was proved. When
fI(x, ξ) is a nonnegative Radon measure, the global existence of weak solutions of
V-P is open.
• For n = 1, however, i.e. in one dimension and if fI(x, ξ) satisfies∫∫

R2

eα|ξ|fI(x, ξ) dx dξ ≤ Cα, ∀α ≥ 0 , (2.24)

the global existence of weak solutions of V-P was proved in [34] in the following
sense:

Definition 2.1 A pair (E(t, x), f(t, x, ξ))) of a function and a finite nonnegative
Radon measure is called a weak solution of V-P, i.e. of (1.14), (1.15), if for any
T > 0, there hold
1) E(t, x) ∈ (BV ∩ L∞)(ΩT ); (ΩT := [0, T ]× R1)

2) f(t, x, ξ) ∈ L∞(R+,M+(R2));

3)
∫

R φ(t, x, ξ)f(t, x, ξ) dξ = ∂xgφ as measures for some gφ in BV (ΩT ), for all
φ(t, x, ξ) in C∞

c (ΩT × R);

4) E(t, x) =
∫ x

−∞(b(y)−
∫

R f(t, y, ξ) dξ)dy, a. e.;

5) ∀φ ∈ C∞
c ((0, T )× R2),∫ T

0

∫∫
R2

(φtf + φxξf)dx dt−
∫ T

0

∫
R
Ē

∫
R
φξf( dξ) dx dt = 0; (2.25)

5b) Here the term Ē(t, x) in (2.25) in the above definition is the Vol’pert’s symmetric
average:

Ē(t, x) =

{
E(t, x), if E is approximately continuous at (t, x),
1
2
(El(t, x) + Er(t, x)) if E has a jump at (t, x),

(2.26)
where El(t, x) and Er(t, x) denote respectively the left and right limits of E(t, x) at
a discontinuity line at (t, x).

6) f ∈ C0,1([0, T ), H−L

loc(R2) for some L > 0 and f(0, x, ξ) = fI(x, ξ) in H−L

loc(R2).
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Note that overhead bars are used to denotes complex conjugate, too, we hope it
does not cause confusion with the one term Ē. A special and very useful property
of Ē is : if E(t, x) ∈ (BV ∩ L∞)(R2), then E2(t, x) ∈ BV (R2) and

∇E2 = 2Ē∇E (2.27)

in the sense of measures.
The definition 2.1 of weak solutions of V-P is used in the sequel. More precisely,

when the space dimension n = 1, under appropriate assumption on φε
j(x), we can

show that f ε(t, x, ξ) tend to a weak solution of (1.14), (1.15) as ε→ 0.
In the following, we let ψε(t, x) be the solution of the 1-d S-P equation

iε∂tψ
ε = −ε

2

2
∂2

xψ
ε + V εψε, ∂2

xV
ε = bε(x)− |ψε|2, x ∈ R, t ≥ 0,

ψε|t=0 = ψε
0, (2.28)

where bε(x) ≥ 0 and ψε
0 will be specified later in Theorem 2.1. We assume V ε and

V ε
x vanish as x→ −∞.

We use the V-P system (1.14), (1.15) in the form written directly in the electric
field E = −∂xV

∂tf + ξ∂xf − E∂ξf = 0, ∂xE = b(x)−
∫

R
f dξ, x ∈ R, t ≥ 0,

f |t=0 = fI . (2.29)

We also assume that E vanishes as x→ −∞.
We note that it is convenient and sharp to use the space A′ to consider the weak

convergence of f ε(t, x, ξ). Let us add that A′ can be embedded in H−s(Rn) with
s > n

2
.

Then the result on the “pure state case” is :

Theorem 2.1 Let ϕε(x) be uniformly bounded in L2(R), b(x) ∈ (L1 ∩ L2)(R),
ψε

0(x) = jε ∗ ϕε(x), bε(x) = b ∗ jε(x) where jε(x) denotes the standard Friedrichs’
mollifier, and f ε(t, x, ξ) be the Wigner transform of the solution ψε(t, x) of (2.28).

Then there is a nonnegative bounded Radon measure f(t, x, ξ) such that

f ε(t, x, ξ) ⇀ f(t, x, ξ) in C([0,∞),A′), (2.30)

and the Wigner measure f(t, x, ξ) is a weak solution of (2.29) in the sense of Defi-
nition 2.1 with fI determined by ψε

0(x) and an L > 3
2
.

Remark 2.2 1) Obviously, any ε−independent L2(R) function or the WKB type
initial data ϕε(x) = ρ(x)e

iS(x)
ε with ρ(x) ∈ L2(R) satisfy the condition of Theorem

2.1.
2) By the proof of Theorem 4.2 in [34] and Appendix B of [33], we can still prove

the global existence of weak solution to (2.29) with fI(x, ξ) ∈ M+(R2) and (2.24)
holds only for some α > 0.

3) If the initial data ψ(x) and the doping profile b(x) are C∞ smooth, then no
mollification is needed.
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Remark 2.3 The “semiclassical Vlasov-Poisson” system (cf (1.7), (1.8), (1.4)) has
much better properties than the classical V-P system. This results from the fact that
the “velocities” are in the bounded Brillouin zone instead of whole space. It implies
that the densities nm0 (m0 denoting a fixed isolated energy band) inherit the Lp

natural bounds of the distribution function fm0. The existence of strong solution
for this system is then easily deduced and we have moreover uniqueness of the weak
solution for fm0,I in L1 ∩ L∞ as in [Ro]. As a consequence the whole sequence
converges if it converges at initial time towards a bounded distribution function.

Acknowledgement. I thank Patrick Gérard for many valuable discussions.
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