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Existence globale et diffusion
pour l’équation de Schrödinger nonlinéaire

répulsive cubique sur R3 en dessous l’espace
d’énergie

J. Colliander M. Keel G. Staffilani H. Takaoka
T. Tao

Abstract
Nous profilons une demonstration de l’existence globale et diffusion pour

l’équation de Schrödinger nonlinéaire répulsive cubique avec données à Hs(R3)
pour s > 4

5 . La raisonnement utilise une estimation nouvelle de type de
Morawetz. Nous détaillerons la demonstration ailleurs.

1. Introduction

Consider the following initial value problem for a cubic defocussing nonlinear Schrödinger
equation,

i∂tφ(x, t) + ∆φ(x, t) = |φ(x, t)|2φ(x, t) x ∈ R3, t ≥ 0 (1)
φ(x, 0) = φ0(x) ∈ Hs(R3). (2)

Here Hs(R3) denotes the usual inhomogeneous Sobolev space. Our goal is to loosen
the regularity requirements [4, 15] on the initial data which ensure global-in-time
solutions. In addition, we aim to loosen the symmetry assumptions on the data
which were previously used [4] to prove scattering for rough solutions.
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It is known [7] that (1)-(2) is well-posed locally in time in Hs(R3) when1 s > 1
2
.

In addition, these local solutions enjoy L2 conservation,

‖φ(·, t)‖L2(R3) = ‖φ0(·)‖L2(R3), (3)

and the H1(R3) solutions have the following conserved energy,

E(φ)(t) ≡
∫

R3

1

2
|∇xφ(x, t)|2 +

1

4
|φ(x, t)|4 dx = E(φ)(0). (4)

Together, energy conservation and the local-in-time theory immediately yield
global-in-time well-posedness of (1)-(2) from data in Hs(R3) when s ≥ 1. It is
conjectured that (1)-(2) is in fact globally well-posed in time from all data included
in the local theory. The obvious impediment to claiming global-in-time solutions in
Hs, with 1

2
< s < 1, is the lack of any applicable conservation law.

The first argument extending the lifespan of rough solutions to (1)-(2) in a range
s0 < s < 1 was given in [4] (see also [5]). In what might be called a “Fourier trun-
cation" approach, Bourgain observed that from the point of view of regularity, the
high frequency component of the solution φ is well-approximated by the correspond-
ing linear evolution of the data’s high frequency component. More specifically: one
makes a first approximation to the solution for a small time step by evolving the
high modes linearly, and the low modes according to the nonlinear flow (for which
one has energy conservation). The correction term one must add to match this ap-
proximation with the actual solution is shown to have finite energy. This correction
is added to the low modes as data for the nonlinear evolution during the next time
step, where the high modes are again evolved linearly. For s > 11

13
, one can repeat

this procedure to an arbitrarily large time provided the distinction between “high"
and “low" frequencies is made at |ξ| = N for a sufficiently large number N .

The argument in [2] has been applied to other subcritical initial value problems
with sufficient smoothing in their principal parts. (See e.g. [5], [8], [16], [22], [28],
and [29]). It is important to note that the Fourier truncation method demonstrates
more than just rough data global existence. Indeed, write SNL(t) for the nonlinear
flow2 of (1)-(2), and let SL(t) denote the corresponding linear flow. The Fourier
truncation method shows then that for s > 11

13
and for all t ∈ [0,∞),

SNL(t)φ0 − SL(t)φ0 ∈ H1(R3). (5)

Besides being part of the conclusion, the smoothing property (5) seems to be a
crucial constituent of the Fourier truncation argument itself.

In this paper we will use a modification of the above arguments, originally put
forward to analyze equations where the smoothing property (5) is not available
because it is either false (e.g. wave maps [20]3) or simply not known (e.g. Maxwell-
Klein-Gordon equations [19], for which we suspect (5) is false). In this “almost
conservation law" approach, one controls the growth in time of a rough solution by

1In addition, there are local in time solutions from H
1
2 data. However, it is not yet known

whether the time interval of existence for such solutions depends only on the data’s Sobolev norm.
2That is, SNL(t)(φ0)(x) = φ(x, t), where φ, φ0 is as in (1)-(2).
3See the appendix of [19] for the failure of (5) for Wave Maps.
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monitoring the energy of a certain smoothed out version of the solution. It can be
shown that the energy of the smoothed solution is almost conserved as time passes,
and controls the solution’s sub-energy Sobolev norm.

The almost conservation approach to global rough solutions has proven to be
quite robust [20], [19], [10], [13], [15] and has been improved significantly by adding
additional correction terms to the original almost conserved energy functional. As
a result, one obtains even stronger bounds on the growth of the solution’s rough
norm, and at least in some cases sharp global well-posedness results [14], [11], [12].

The above work, along with the theorem outlined below, is motivated by a
number of considerations. We mention here just a few examples. First and most
obviously, we aim to better understand the global in time evolution properties of
rough solutions to these nonlinear equations. Second, our results for rough solutions
yield polynomial in time bounds for the growth of the below-energy Sobolev norms
of smooth solutions. Such bounds give, for example, a qualitative understanding of
how the energy in a smooth solution moves from high frequencies to low frequencies4.
Third, we hope that the techniques developed for these subcritical, rough solution
problems can be used to address open problems for relatively smooth solutions.
As an example of this, our arguments below give a new proof of the finite energy
scattering result of [17]. The bounds we obtain on the global Schrödinger admissible
space-time norms of the solution depend polynomially on the energy of the initial
data, whereas previous bounds were exponential. (See remark in [4], page 276, and
(9) below.) There are of course much more interesting examples where low-regularity
techniques have helped to solve open problems for smooth solutions, e.g. [3, 30].

Our main result is the following:

Theorem 1.1. The initial value problem (1)-(2) is globally-well-posed from data
φ0 ∈ Hs(R3) when s > 4

5
. In addition, there is scattering for these solutions: given

data φ0 ∈ Hs(R3), s > 4
5
, there is a unique function φL

0 ∈ Hs(R3) so that 5

lim
t→∞

‖φ(t)− SL(t)φL
0 ‖Hs(R3) = 0 (6)

where SL(t)φL
0 is as defined above, the evolution of the data φL

0 according to the
linear Schrödinger equation.

By “globally-well-posed", we mean that given data φ0 ∈ Hs(Rn) as above, and
any time T > 0, there is a unique solution to (1)-(2)

φ(x, t) ∈ C([0, T ]; Hs(Rn)) (7)

which depends continuously in (7) upon φ0 ∈ Hs(Rn).
Scattering in the space H1(R3) was shown in [17]. Theorem 1.1 extends to some

degree the work in [4, 5] where global well-posedness was shown when s > 11
13

in

4If one has a smooth solution with large but finite energy, the below-energy Sobolev norms can
start relatively small and grow large when the low frequency pieces of the solution grow in (for
example) L2, while the high frequency pieces decrease in L2. A polynomial bound on the rough
norm’s growth says that this “movement of energy from high to low frequencies" cannot occur to
an enormous extent.

5More precisely, we are asserting here asymptotic completeness.
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the case of general Hs(R3) data φ0. In the case of radially symmetric data, [4, 5]
establish global well-posedness and scattering6 for φ0 ∈ Hs(R3), s > 5

7
. In a different

sense, the result here is weaker than the results of [4, 5] as we obtain no information
whatsoever along the lines of (5). Theorem 1.1 also extends the result of [15], where
we showed global existence for s > 11

13
, with no scattering statement. The extension

of global well-posedness to the cases s > 4
5
, as well as the proof of scattering in a

nonradial context, depend very heavily on a new Morawetz-type inequality for (1)
whose proof we sketch very briefly below. Details of all arguments outlined in this
lecture will appear elsewhere.

We do not expect our results here to be sharp. For example, we hope to ex-
tend Theorem 1.1 to allow lower values of s, using the additional correction terms
mentioned above (see [14], [11], [12]).

2. Sketch of Proof

In sketching the proof of Theorem 1.1, we emphasize the following three main in-
gredients, the first two of which are relatively new.

Ingredient 1: A New Morawetz Estimate

Suppose that we take initial data φ0 ∈ C∞
0 (R3), so that global existence for (1)

follows easily from the local theory and energy conservation. In studying the asymp-
totic behavior of this global solution, past work (e.g. [23, 17, 5, 4]) has demonstrated
the usefulness of the following Morawetz-type estimate (see [23], or [24], [25] for the
motivating estimates in the context of nonlinear Klein-Gordon equations),∫ ∞

0

∫
R3

|φ|4

|x|
dxdt ≤ 2‖φ0‖2

H1(R3) + ‖φ0‖4
L4(R3) . E(φ0) + ‖φ0‖2

L2(R3). (8)

We will use heavily instead the following related global L4 space-time bound for
solutions of (1)-(2),∫ T

0

∫
R3

|φ(x, t)|4dxdt . ‖φ(0)‖2
L2(R3) · sup

0≤t≤T
‖φ(t)‖2

Ḣ
1
2 (R3)

. (9)

Ingredient 2: Almost Conservation Law

Keeping in mind that the energy (4) of our solutions might be infinite, our aim will
be to control the growth in time of E(Iφ)(t), where Iφ is a certain smoothed version
of φ. The operator I depends on a parameter N >> 1 to be chosen later, and the
level of regularity s < 1 at which we are working7.

Definition 2.1. Given s < 1 and N >> 1, define the following Fourier multiplier
operator I,

Îf(ξ) ≡ mN(ξ)f̂(ξ), (10)
6The phrase here again refers to asymptotic completeness, (6).
7We abuse notation and suppress this dependence, writing simply I instead of Is,N .
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where the multiplier mN(ξ) is smooth, radially symmetric, nonincreasing in |ξ| and

mN(ξ) =

1 |ξ| ≤ N(
N
|ξ|

)1−s

|ξ| ≥ 2N.
(11)

The following two inequalities follow quickly from the definition of I, the L2

conservation (3), and by considering separately those frequencies |ξ| ≤ N and |ξ| ≥
N .

E(Iφ)(t) .
(
N1−s‖φ(·, t)‖Ḣs(Rn)

)2

+ ‖φ(t, ·)‖4
L4(Rn), (12)

‖φ(·, t)‖2
Hs(Rn) . E(Iφ)(t) + ‖φ0‖2

L2(Rn). (13)

In studying the possible growth of our solution in time, we will not estimate the
norm ‖φ(t)‖Hs(R3) directly. Instead, we will use (13). Of course, since (1) is a
nonlinear equation, it’s certainly not true that Iφ(x, t) solves (1). In particular, one
doesn’t expect E(Iφ)(t) to be constant. One of the main ingredients of Theorem
1.1 is proving that this quantity is uniformly bounded in time. This upper bound,
or more precisely some local in time result which contributes to the proof of such
a bound, is what we mean by an almost conservation law. Global well-posedness
follows from (13), a uniform bound on E(Iφ)(t) in terms of ‖φ0‖Hs(R3), and the
local in time theory.

Combining these first two ingredients with a scaling argument, we will be able to
prove the following Proposition giving uniform bounds in terms of the rough norm
of the initial data.

Proposition 2.2. Suppose φ(x, t) is a global in time solution to (1)-(2) from data
φ0 ∈ C∞

0 (R3). Then so long as s > 4
5
, we have

‖φ‖L4([0,∞]×R3) . C(‖φ0‖Hs(R3)) (14)
sup

0≤t<∞
‖φ(t)‖Hs(R3) ≤ C(‖φ0‖Hs(R3)). (15)

Ingredient 3: Previous Work on Local Well-Posedness and
Scattering

Assuming Proposition 2.2 for the moment, we turn to the proof of Theorem 1.1. We
have explained above why the global well-posedness statement in Theorem 1.1 fol-
lows from (15). It remains only to sketch the argument for asymptotic completeness
(6) using the following well-known arguments. (See e.g. [23, 17, 4, 7].)

We’ll bootstrap a family of norms using the following Strichartz estimates for the
linear Schrödinger equation. (See e.g. [26, 27, 18, 31, 21]). The estimates involve
the following definition: a pair of Lebesgue space exponents are called Schrödinger
admissible for R3+1 when q, r ≥ 2, and

1

q
+

3

2r
=

3

4
. (16)
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Proposition 2.3 (Strichartz estimates in 3 space dimensions). Suppose that
(q, r) and (q̃, r̃) are any two Schrödinger admissible pairs as in (16). Suppose too
that φ(x, t) is a (weak) solution to the problem

(i∂t + ∆)φ(x, t) = F (x, t) (x, t) ∈ R3 × [0, T ] (17)
φ(x, 0) = φ0(x) (18)

for some data u0 and T > 0. Then we have the estimate

‖φ‖Lq
t Lr

x([0,T ]×R3) . ‖φ0‖L2(R3) + ‖F‖Lq̃
t Lr̃

x([0,T ]×R3). (19)

We aim for a uniform bound of the form,

Z(t) ≡ sup
q,r admissible

‖〈∇〉sφ‖Lq
t Lr

x([0,t]×R3) (20)

. C(‖φ0‖Hs(R3)). (21)

By (14), we can decompose the time interval [0,∞) into a finite number of disjoint
intervals J1, J2, . . . JK where for i = 1, . . . K we have

‖φ‖L4
x,t(Ji×R3) ≤ ε (22)

for a constant ε(‖φ0‖Hs(R3)) to be chosen momentarily.
We apply 〈∇〉s to both sides of (1). Choosing q̃, r̃ = 10

7
, (19) and a fractional

Leibnitz rule give us that for all t ∈ J1,

Z(t) . ‖〈∇〉sφ0‖L2(R3) + ‖(〈∇〉sφ)φφ‖
L

10/7
t,x ([0,t]×R3)

. (23)

We apply Hölder’s inequality to the last term on the right, taking the factors here in
L

10
3 , L5, and L5, respectively. The factor ending up in L

10
3 is bounded by Z(t). The

remaining L5
x,t factors are bounded using interpolation involving the small L4

x,t(J1×
R3) norm and the quantity Z(t). To be more precise: interpolate between ‖φ‖L4

x,t

and ‖φ‖L6
x,t

. The latter norm is bounded by Z(t) using Sobolev embedding:

‖φ‖L6
x,t

. ‖〈∇〉
2
3 φ‖

L6
t L

18/7
x

≤ Z(t).

We conclude
Z(t) . ‖φ0‖Hs(R3) + εδ1Z(t)(1+δ2). (24)

for some constants δ1, δ2 > 0. For sufficiently small choice of ε, the bound (24) yields
(21) for all t ∈ J1, as desired. Since we are assuming the bound (15), we may repeat
this argument to handle the remaining intervals Ji.

The scattering claim in Theorem 1.1 follows from (21) and the following standard
arguments. Given φ0 ∈ Hs(R3), we look for a φL

0 satisfying (6). Set,

φL
0 ≡ φ0 − i

∫ ∞

0

SL(t− τ)
(
|φ|2φ

)
dτ (25)
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which will make sense once we show the integral on the right hand side converges
in Hs(R3). Equivalently, we want

lim
t→∞

∥∥∥∫ ∞

t

〈∇〉sSL(−τ)
(
|φ|2φ

)
dτ

∥∥∥
L2(R3)

= 0. (26)

With this,

lim
t→∞

∥∥SL(t)φL
0 − φ(t)

∥∥
Hs(R3)

= lim
t→∞

∥∥∥〈∇〉sSL(t)

∫ ∞

t

SL(−τ)
(
|φ|2φ

)
dτ

∥∥∥
L2(R3)

= 0

since we are assuming (26). To prove (26), test the time integral on the left against
an arbitrary L2(R3) function F (x). Using the fractional Leibnitz rule,

〈
F (x) ,

∫ ∞

t

〈∇〉sSL(−τ)
(
|φ|2φ

)
dτ

〉
L2(R3)

≈
〈
SL(τ)F (x) , (∇sφ)φφ

〉
L2

x,t([t,∞)×R3)

≤ ‖SL(τ)F (x)‖
L

10/3
x,t
‖∇sφ‖

L
10/3
x,t
‖φ‖2

L5
x,t([t,∞)×R3) → 0,

where in the last step we’ve used (21) and the L5
x,t argument before (24) sketched

above.

3. Proofs for the ingredients

Three topics remain to be discussed: the basic steps behind the Morawetz inequality
(9); a sketch of the almost conservation law; and some indication of how these two
estimates yield the global bounds in Proposition 2.2.

In discussing (9), we assume φ solves (1)-(2) with φ0 ∈ C∞
0 (R3). Define then

M0(t) ≡ Im
∫
R3 φ(x, t)∂rφ(x, t)dx (27)

with ∂r ≡ x
|x| · ∇. It can be shown relatively easily using Plancherel’s theorem that

|M0(t)| . ‖φ(t)‖2

Ḣ
1
2 (R3)

(28)

while the work in [23] yields

∂tM0(t) = 4π2|φ(t, 0)|2 +

∫
2

r
|∇/ 0φ(t, x)|2 dx +

∫
1

r
|φ(t, x)|4 dx (29)

where ∇/ 0 is the angular component of the derivative:

∇/ 0φ := ∇φ− x

|x|
(

x

|x|
· ∇φ).
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Integrating in time, (28) and (29) together give us the standard Morawetz estimates
[23], ∫ T

0

|φ(t, 0)|2 dt . sup0≤t≤T‖φ(t)‖2

Ḣ
1/2
x

(30)∫ T

0

∫
|∇/ φ(t, x)|2

|x|
dtdx . sup0≤t≤T‖φ(t)‖2

Ḣ
1/2
x

(31)∫ T

0

∫
|φ(t, x)|4

|x|
dtdx . sup0≤t≤T‖φ(t)‖2

Ḣ
1/2
x

. (32)

As remarked before, (32) is the bound that has been used the most. Note that this
bound arises from the presence of the nonlinear term in the equation, or equivalently
from the third term on the right side of (29). In contrast, the estimate we use (9)
arises eventually from the linear part of the equation, more specifically from the
presence of the first term on the right side of (29).

Of course, we can translate M0 in space, creating for every point y ∈ R3 a
Morawetz action

My(t) := Im
∫
R3

φ(t, x)

[
x− y

|x− y|
· ∇

]
φ(t, x) dx,

and by translating (29) we obtain

∂tMy(t) = 4π2|φ(t, y)|2 +

∫
2

|x− y|
|∇/ yφ(t, x)|2 dx +

∫
1

|x− y|
|φ(t, x)|4 dx (33)

where
∇/ yφ(x) := ∇φ(x)− x− y

|x− y|
(

x− y

|x− y|
· ∇φ(x))

is the portion of the x-gradient which is orthogonal to x− y. Of course one still has

|My(t)| . ‖φ‖2

Ḣ
1/2
x

.

This can be used to prevent repeated concentration at a single stationary point y
over long times, but it is difficult to preclude the solution’s concentration near a
moving point using these sorts of estimates. Hence, it is difficult to prove scattering
using the above arguments. (In particular, scattering for solutions in Hs, s < 1 was
known only in the radial case.)

The way we take around this is to construct a Morawetz interaction potential

M(t) ≡
∫
|φ(y)|2My(t) dy.

In other words we average all the Morawetz actions together, weighted by the prob-
ability density of φ itself. Clearly we have

|M(t)| . ‖φ‖2
L2

x
‖φ‖2

Ḣ
1/2
x

. (34)
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Notice that M(t) is a double integral in both x and y. A slightly more involved
argument than that behind (29) yields

∂tM(t) ≥ 4π2
∫
|φ(y)|4 dy

+
∫ ∫

|φ(y)|2|φ(x)|4 dxdy
|x−y| .

In particular M(t) is monotone increasing. Combining this with (34) and taking
advantage of L2 norm conservation we obtain in particular the global L4

x,t estimate∫ T

0

∫
|φ(t, x)|4 dxdt . ‖φ(0)‖2

L2
x

sup
0≤t≤T

‖φ(t)‖2

Ḣ
1/2
x

. (35)

The details of this argument will appear elsewhere.

We turn to a more precise statement of Ingredient 2, the almost conservation
law, and give some indication of its proof.

Proposition 3.1 (Almost Conservation Law). Assume we have s > 4
7
, N � 1,

initial data φ0 ∈ C∞
0 (R3), and a solution of (1)-(2) on a time interval [0, T ] for

which

‖φ‖L4
x,t([0,T ]×R3) . ε. (36)

Assume in addition that E(Iφ0) . 1.
We conclude that for all t ∈ [0, T ],

E(Iφ)(t) = E(Iφ)(0) + O(N−1+). (37)

Equation (37) asserts that Iφ, though not a solution of the nonlinear problem (1),
enjoys something akin to energy conservation. If one could replace the increment
N−1+ in E(Iφ) on the right side of (37) with N−α for some α > 0, one could
repeat the argument we give below to prove global well-posedness of (1)-(2) for all
s > 3+α

3+2α
. In particular, if E(Iφ)(t) is conserved (i.e. α = ∞), one could show that

(1)-(2) is globally well-posed when s > 1
2
. Recall that the scale-invariant Sobolev

space is Ḣ
1
2 (R3).

The proof of Proposition 3.1 proceeds by pretending that Iφ is a solution of (1)
and using the usual proof of energy conservation. We look at the resulting space-
time integral in Fourier space, where we estimate various frequency interactions
separately. In doing so, we’ll need control of local-in-time norms similar to those
that are usually handled by the local existence theorem. Here the norms will include
the operator I, and so you might call the following bootstrap argument a modified
local theory. The argument is a straightforward analog of the one we gave for (20).

We aim for,

ZI(t) ≡ sup
q,r admissible‖∇Iφ‖Lq

t Lr
x([0,t]×R3) (38)

. C(‖φ0‖Hs(R3)). (39)
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Apply I∇ to both sides of (1). Choosing q̃, r̃ = 10
7

, (19) and a Leibnitz rule give us
that for all 0 ≤ t ≤ T ,

ZI(t) . ‖∇Iφ0‖L2(R3) + ‖(∇Iφ)φφ‖
L

10
7

x,t([0,t]×R3)
.

We apply Hölder’s inequality to the last term on the right, taking the factors here
in L

10
3 , L5, and L5, respectively. The factor ending up in L

10
3 is bounded by ZI(t).

Roughly speaking, the remaining L5
x,t factors are bounded using interpolation in-

volving the small L4
x,t([0, T ]×R3) norm and the quantity Z(t). (To be more precise:

one decomposes φ dyadically. For dyadic pieces φj supported on |ξ| ≤ N , we inter-
polate between the norms ‖φj‖L4

x,t
and ‖φj‖L10

x,t
. The latter norm here is bounded

by ZI(t) using homogeneous Sobolev embedding and the fact that I is the identity
on |ξ| ≤ N . High frequency components φj are estimated using the norms ‖Iφj‖L10

x,t

and ‖∇Iφj‖
L

10
3

x,t

which are both bounded by ZI(t).) For sufficiently large parameter

N , these observations give

ZI(t) . 1 + εδ1ZI(t)
(1+δ2), (40)

for some constants δ1, δ2 > 0. For sufficiently small choice of ε, the bound (40) yields
(39) for all 0 ≤ t ≤ T , as desired.

We’re now ready to prove the almost conservation law. For sufficiently smooth
solutions, the usual energy (4) is shown to be conserved by differentiating in time,
integrating by parts, and using the equation (1),

∂tE(φ) = Re
∫
R3 φt(|φ|2φ−∆φ)dx

= Re
∫
R3 φt(|φ|2φ−∆φ− iφt)dx

= 0.

We begin to estimate E(Iφ)(t) in precisely the same way. We need to pay attention
when we use the equation (1) since of course Iφ is not a solution of this nonlinear
equation. Repeating our steps above gives,

∂tE(Iφ)(t) = Re
∫
R3 I(φ)t(|Iφ|2Iφ−∆Iφ− iIφt)dx

= Re
∫
R3 I(φ)t(|Iφ|2Iφ− I(|φ|2φ))dx,

where in the last step we’ve applied I to (1). When we integrate in time and apply
the Parseval formula it remains for us to bound

E(Iφ(t))− E(Iφ(0)) =
∫ t

0

∫P4
j=1 ξj=0

(
1− m(ξ2+ξ3+ξ4)

m(ξ2)·m(ξ3)·m(ξ4)

)
Î∂tφ(ξ1)Îφ(ξ2)Îφ(ξ3)Îφ(ξ4).(41)

In what follows we drop the complex conjugates as they don’t affect the analysis. We
may replace the ∂tφ factor here using the equation (1). In the following discussion
we only mention the contribution of ∆φ.

Our goal then is to show that

|right side of (41)| . N−1+ · C(Z(t)). (42)
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This is accomplished by writing φ as a sum of dyadic pieces φi supported in fre-
quency space on 〈ξi〉 ∼ Ni ≡ 2ki where ki ∈ {0, 1, . . .}. Without loss of generality
we may assume N2 ≥ N3 ≥ N4. Also, we may assume each piece has positive
Fourier transform. Depending on which φi are involved, we have different pointwise
estimates for the symbol on the right of (41), which we pull out of the integral in
L∞. The remaining factors are handled by undoing the Parseval formula and us-
ing Hölder’s inequality. We run through two examples of these different frequency
interactions now.
Case 1: N � N2. According to (11), the symbol 1 − m(ξ2+ξ3+ξ4)

m(ξ2)·m(ξ3)·m(ξ4)
on the right

of (41) is in this case identically zero and the bound (42) holds trivially.
Case 2: N2 & N � N3 ≥ N4. Since

∑
i ξi = 0, we have N1 ∼ N2. By the mean

value theorem, ∣∣∣∣m(ξ2)−m(ξ2 + ξ3 + ξ4)

m(ξ2)

∣∣∣∣ . |∇m(ξ2)·(ξ3+ξ4)|
m(ξ2)

. N3

N2
. (43)

After estimating the symbol with (43), we can consider the N3 in the numerator as
resulting from a derivative falling on the Iφ3 factor in the integrand. Hence these
case two interactions can be estimated using Hölder’s inequality and the definition
(20) of Z(t),

|Right Side of (41)| . N3

N2

∣∣∣∫ t

0

∫
R3 ∆Iφ1Iφ2Iφ3Iφ4

∣∣∣
≤ 1

N2
‖∆Iφ1‖

L
10
3

x,t

· ‖Iφ2‖
L

10
3

x,t

· ‖∇Iφ3‖
L

10
3

x,t

· ‖Iφ4‖L10
x,t

≤ N1

N2·N2
· (Z(t))4

≤ 1
N1

(Z(t))4,

which is sufficient since N1 ≥ N . We still need to sum over all such frequency
interactions. This explains why the almost conservation law (3.1) has an increment
in E(Iφ) of N−1+ over the time interval.

The remaining cases are somewhat similar and will be detailed elsewhere.

Finally, we aim to give at least a sketch of the standard continuity argument
one uses to prove that the Morawetz estimate (9) and the almost conservation law
(3.1) imply Proposition 2.2. Recall that we have reduced to the case where we have
a global smooth solution, our aim is to prove the bounds (14), (15).

The first step is to scale the solution: if φ is a solution to (1), then so is

φ(λ)(x, t) ≡ 1
λ
φ(x

λ
, t

λ2 ). (44)

We choose λ so that E(Iφ
(λ)
0 ) ≤ 1

2
. This is possible since we are working with

subcritical s, so long as we choose λ in terms of the parameter8 N . Roughly speaking,

E(Iφ
(λ)
0 ) ≈ ‖∇Iφ

(λ)
0 ‖L2(R3)

. N1−s · ‖φ(λ)
0 ‖Ḣs(R3)

= N1−sλ
1
2
−s · ‖φ0‖Ḣs(R3).

8The parameter N will be chosen at the very end of the argument, where it is shown to depend
only on ‖φ0‖Hs(R3).
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Hence we choose

λ ≈ N
1−s

s− 1
2 . (45)

We now claim that the set W of all times on which we have (14) is all of [0,∞). In
the process of proving this, we will also show (15) holds on W .

For some universal constant C1 to be chosen shortly, define

W ≡
{

T : ‖φ(λ)‖L4([0,T ]×R3) ≤ C1λ
3
8

}
(46)

= [0,∞). (47)

The set W is clearly closed and nonempty. It suffices then to show it is open. For
example, suppose that for some T0 we have

‖φ(λ)‖L4
x,t([0,T0]×R3) ≤ 2C1λ

3
8 . (48)

We claim T0 ∈ W : by (9),

‖φ(λ)‖L4
x,t([0,T ]×R3) . ‖φ(λ)

0 ‖
1
2

L2
x
· sup0≤t≤T0

‖φ(λ)(t)‖
1
2

Ḣ
1
2 (R3)

(49)

≤ C̃1λ
3
8 · sup0≤t≤T0

‖Iφ(λ)(t)‖
1
4

Ḣ1(R3)
(50)

where the first factor on the right of (49) was bounded using scaling, and the second
factor was interpolated between ‖φ(λ)

0 (t)‖L2(R3) and sup0≤t≤T0
‖Iφ(λ)(t)‖Ḣ1(R3). We

conclude T0 ∈ W if we establish

sup
0≤t≤T0

‖Iφ(λ)(t)‖
1
4

Ḣ1(R3)
. 1 (51)

where, as always, the implicit constant is allowed to depend on ‖φ0‖Hs(R3).
By (48) we may divide the time interval [0, T0] into subintervals Ij, j = 1, 2, . . . , L

so that for each j,

‖φ(λ)‖L4
x,t(Ij×R3) ≤ ε. (52)

Apply the almost conservation law in Proposition 3.1 on each of the subintervals Ij

to get

sup
0≤t≤T0

‖∇Iφ(λ)(t)‖L2(R3) . E(Iφ0) + L ·N−1+. (53)

We get (51) from (53) if we can show

L ·N−1+ ≤ 1
4
. (54)

Recall L was defined essentially by (52). Since

‖φ(λ)‖4
L4

x,t([0,T0]×R3) . λ
3
2 ,

we can be certain that L ≈ λ
3
2 . If we put this together with (54) and (45), we see

that we need to be able to choose N so that

(N
1−s

s− 1
2 )

3
2 ·N−1+ . 1

4
.

This is possible since for s > 4
5

the exponent on the left is negative. Notice that
(15) holds on the set W using (51), the definition of I, and L2 conservation.
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