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Abstract
This paper provides a survey of recent results concerning the stability

and convergence of viscous approximations, for a strictly hyperbolic system
of conservation laws in one space dimension. In the case of initial data with
small total variation, the vanishing viscosity limit is well defined. It yields
the unique entropy weak solution to the corresponding hyperbolic system.

1. Introduction

Consider the Cauchy problem for a quasilinear system in one space dimension:

ut + A(u)ux = 0, u(0, x) = ū(x). (1)

We assume that the system is strictly hyperbolic, so that each n × n matrix A(u)
has real distinct eigenvalues

λ1(u) < λ2(u) < · · · < λn(u)

and a basis of eigenvectors r1(u), . . . , rn(u) with unit length. Due to the nonlinearity
of the equations, even for smooth initial data it is well known that the solution can
lose regularity within finite time. Therefore, to obtain global existence of solutions,
one has to work in a space of discontinuous functions and interpret the equation (1)
in some relaxed sense.

In the conservative case where A(u) = Df(u) is the Jacobian matrix of some
flux function f , one can look for a weak solution of the system of conservation laws

ut + f(u)x = 0, u(0, x) = ū(x). (2)

More generally, one can consider the limit of solutions to the parabolic system

uε
t + A(uε)uε

x = ε uxx, uε(0, x) = ū(x), (3)
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letting the viscosity coefficient ε → 0. A natural conjecture is that this limit exists,
depends continuously on the initial data ū, and coincides with the entropy weak
solution of (2) whenever the system is in conservation form. In the scalar case, this
result has been known for a long time [O], also in several space dimensions [K].
In the case of systems of conservation laws, partial results in this direction were
obtained by singular perturbations [GX] or compensated compactness [DP].

We consider here the case of general solutions of n × n systems, possibly not
in conservation form. For initial data with small total variation, the stability and
convergence of vanishing viscosity limits was recently proved in [BB]. On the other
hand, for initial data ū ∈ L∞, a counterexample given in [BS] shows the possible
non-uniqueness of vanishing viscosity limits.

If the initial data has bounded but possibly large total variation, an example
of Jenssen [J] shows that the solution of the system of conservation laws (2) can
blow up in finite time. In such cases, it is expected (but not yet proved) that the
vanishing viscosity limit is well posed only on an initial time interval, as long as the
total variation remains bounded.

In the present note we shall outline the main ideas in the estimates [BB] on
viscous approximations, and discuss the example in [BS]. For all details we refer to
the original papers. In connection with the Cauchy problem for hyperbolic systems
of conservation laws, a comprehensive presentation of existence, uniqueness and
stability results can be found in [B3].

2. Small BV data

For strictly hyperbolic systems and initial data with small total variation, the fol-
lowing general well posedness result on vanishing viscosity limits was proved in [BB].

Theorem 1 Consider the Cauchy problem for the hyperbolic system with viscosity

uε
t + A(uε)uε

x = ε uε
xx, uε(0, x) = ū(x). (4)

Assume that the matrices A(u) are strictly hyperbolic, smoothly depending on u in
a neighborhood of a given state u∗ ∈ Rn. Then there exist constants C, L and δ > 0
such that the following holds. If

Tot. Var.{ū} < δ, and
∣∣u∗ − lim

x→−∞
ū(x)

∣∣ < δ, (5)

then for each ε > 0 the Cauchy problem (4) has a unique solution uε, defined for all
t ≥ 0. Adopting a semigroup notation, this will be written as t 7→ uε(t, ·) .

= Sε
t ū. In

addition, one has the following uniform bounds on the total variation and Lipschitz
stability estimates:

Tot. Var.
{
Sε

t ū
}
≤ C Tot. Var.{ū} (6)∥∥Sε

t ū− Sε
t v̄

∥∥
L1 ≤ L ‖ū− v̄‖L1 . (7)

As ε → 0+, the solutions uε converge to the trajectories of a continuous semigroup
S such that ∥∥Stū− Stv̄

∥∥
L1 ≤ L ‖ū− v̄‖L1 . (8)
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These vanishing viscosity limits can be regarded as the unique vanishing viscosity
solutions of the hyperbolic Cauchy problem

ut + A(u)ux = 0, u(0, x) = ū(x). (9)

In the conservative case A(u) = Df(u), every vanishing viscosity solution is a weak
solution of

ut + f(u)x = 0, u(0, x) = ū(x), (10)

satisfying the Liu admissibility conditions [L].

In the remainder of this section, we shall outline the main ideas involved in the
proof.

As a preliminary, observe that a function uε is a solution of (4) if and only if

uε(t, x) = u(t/ε, x/ε),

where u is a solution of
ut + A(u)ux = uxx (11)

with initial data u(0, x) = ū(εx). Clearly, the total variation is not affected by this
rescaling. It thus suffices to prove uniform BV bounds on a solution to the parabolic
problem (11) with unit viscosity. Our basic approach is the following.

(i) At each point (t, x) the gradient ux is decomposed along a suitable basis of
unit vectors, say

ux =
∑

vir̃i. (12)

(ii) From (11) we then derive an equation describing the evolution of these gradient
components

vi,t + (λ̃ivi)x − vi,xx = φi. (13)

(iii) Since the left hand side of (13) is in conservation form, by showing that all
source terms φi = φi(t, x) are integrable, we can conclude

‖vi(t, ·)‖L1 ≤ ‖vi(0, ·)‖L1 +

∫ ∞

0

∫
R
|φi(s, x)| dx ds < ∞ (14)

for all t > 0. In turn, this implies

‖ux(t, ·)‖L1 ≤
∑

‖vi(t, ·)‖L1 < ∞ .

The choice of the basis {r̃1, . . . , r̃n} is of fundamental importance. A decompo-
sition of the gradient ux along the eigenvectors ri(u) of the hyperbolic matrix A(u)
would seem quite natural. However, it does NOT work. Indeed, in the case where
the solution u is a travelling shock profile, we would obtain source terms which
are not identically zero. Hence they are certainly not integrable over the domain
t ∈ [0,∞[ .
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An alternative approach, proposed by S. Bianchini, is to decompose ux as a sum
of gradients of viscous travelling waves. By a viscous travelling i-wave we mean a
solution having the form

w(t, x) = U(x− σt), (15)

where the speed σ is close to the i-th eigenvalue λi of the hyperbolic matrix A.
Clearly, the function U must provide a solution to the second order O.D.E.

U ′′ =
(
A(U)− σ

)
U ′. (16)

The basic idea for the decomposition is as follows. At each point (t, x), given
(u, ux, uxx), we seek travelling wave profiles U1, . . . , Un such that

Ui(x) = u(x) i = 1, . . . , n, (17)∑
i

U ′
i(x) = ux(x),

∑
i

U ′′
i (x) = uxx(x). (18)

In general, the system of algebraic equations (17)-(18) is under-determined, i.e. it
admits infinitely many solutions. Indeed, for a given state u, one can assign ar-
bitrarily a speed σ ≈ λi(u) and a vector v ∈ Rn. Then the O.D.E. (16) can be
uniquely solved with initial data

U(x) = u(x), U ′(x) = v.

As a result, for each i = 1, . . . , n, there exists a family of viscous travelling i-waves
satisfying (17), depending on n + 1 scalar parameters. In all, this gives us n(n + 1)
free parameters, far more then the data (ux, uxx) ∈ Rn+n in (18). To single out
a unique solution, the first thing we need to do is to select a special subfamily of
viscous travelling waves depending on the right number of parameters to fit the
data. This is achieved by means of the center manifold theorem.

We start by writing the second order O.D.E. in (16) as a first order system:

u̇ = v, v̇ =
(
A(u)− σ

)
v, σ̇ = 0. (19)

Linearizing at a point P ∗ =
(
u∗, 0, λi(u

∗)
)

we obtain the linear system with constant
coefficients

u̇ = v, v̇ =
(
A(u∗)− λi(u

∗)
)
v, σ̇ = 0.

This system has a null space Ni of dimension n+2. By the center manifold theorem
there exists a manifold Mi, tangent to Ni at the point P ∗, locally invariant for the
flow of the nonlinear system (19). Instead of looking at all viscous travelling profiles,
we can now restrict ourselves to only those profiles corresponding to a trajectory
on the center manifold Mi. Since this manifold is (n + 2)-dimensional, through
each state u ∈ Rn there is a 2-parameter family of such profiles, say Ui(u, vi, σi).
Here vi denotes the scalar amplitude of the wave, and σi is the speed. Calling
r̃i = r̃i(u, vi, σi) the unit vector parallel to U ′

i , this profile Ui is characterized by the
equations

U ′′
i =

(
A(Ui)− σi

)
U ′

i , Ui(0) = u, U ′
i(0) = vir̃i. (20)
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In terms of these special travelling profiles lying on the center manifold, it can be
shown that the decomposition (17)-(18) can be performed uniquely.

We stress the substantial differences between the two decompositions

ux =
∑

i

viri(u), ux =
∑

i

vir̃i(u, vi, σi),

which are used in the hyperbolic and in the parabolic case, respectively.

(i) In the hyperbolic case, the unit vectors ri(u) are the eigenvectors of the matrix
A(u), hence they depend only on the state u. On the other hand, the viscous
eigenvectors r̃i(u, vi, σi) which are introduced in (20) in terms of a center man-
ifold, depend not only on u but also on two additional scalar parameters: the
amplitude vi and the speed σi of a viscous travelling profile through u. These
can be determined implicitly as functions of ux, uxx.

(ii) For i = 1, . . . , n, in addition to the eigenvalue λi of the matrix A(u), we can
define the viscous eigenvalue λ̃i(u, vi, σi) by setting

λ̃i
.
=

〈
r̃i, A(u)r̃i

〉
. (21)

Instead of the standard relation(
A(u)− λi

)
ri = 0,

one can show that these viscous eigenvectors satisfy(
A(u)− λ̃i

)
r̃i = vi

[∂r̃i

∂u
r̃i + (λ̃i − σi)

∂r̃i

∂vi

]
. (22)

The presence of non-zero terms on the right hand side of (22) is of fundamental
importance. Indeed, in the evolution equation (13) for the component vi, these
terms achieve a crucial cancellation with other terms that would otherwise not
be integrable.

By differentiating (11), we obtain a system of evolution equations for the com-
ponents vi, of the form (13). To achieve a proof of the BV estimates, one needs
to show that the source terms φi = φi(t, x) on the right hand side of (13) are in-
tegrable on the domain {t > 0, x ∈ R}. The key idea is that these source terms
are due to different types of wave interactions. They can be controlled by suitable
interaction functionals, similar to the one introduced by Glimm [G] in connection
with hyperbolic systems. We describe below the three basic ones. Consider first
two independent, scalar diffusion equations with strictly different drifts:{

zt +
[
λ(t, x)z

]
x
− zxx = 0,

z∗t +
[
λ∗(t, x)z∗

]
x
− z∗xx = 0,

assuming that
inf
t,x

λ∗(t, x)− sup
t,x

λ(t, x) ≥ c > 0.
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We regard z as the density of waves with a slow speed λ and z∗ as the density of
waves with a fast speed λ∗. A transversal interaction potential is defined as

Q(z, z∗)
.
=

1

c

∫∫
R2

K(x2 − x1)|z(x1)||z∗(x2)| dx1 dx2,

K(y)
.
=

{
e−cy/2 if y > 0,
1 if y ≤ 0.

One can show that this functional Q is monotonically decreasing along every couple
of solutions z, z∗. The total amount of interaction between fast and slow waves can
now be estimated as∫ ∞

0

∫
R
|z(t, x)||z∗(t, x)| dx dt ≤ −

∫ ∞

0

[ d

dt
Q

(
z(t), z∗(t)

)]
dt

≤ Q
(
z(0), z∗(0)

)
≤ 1

c

∫
R
|z(0, x)| dx ·

∫
R
|z∗(0, x)| dx.

By means of Lyapunov functionals of this type we can control all source terms due
to the interaction of waves of different families.

Next, to control the interactions between waves of the same family, we seek func-
tionals which are decreasing along every solution of the scalar viscous conservation
law

ut + f(u)x = uxx. (23)

For this purpose, to a scalar function x 7→ u(x) we associate the curve in the plane

γ
.
=

(
u

f(u)− ux

)
=

(
conserved quantity

flux

)
. (24)

In connection with a solution u = u(t, x) of (23), the curve γ evolves according to

γt + f ′(u)γx = γxx. (25)

Notice that the vector f ′(u)γx is parallel to γ, hence the presence of this term in (25)
only amounts to a reparametrization of the curve, and does not affect its shape. The
curve thus evolves in the direction of curvature. An obvious Lyapunov functional is
the length of the curve. In terms of the variables

γx =

(
v
w

)
.
=

(
ux

−ut

)
, (26)

this length is given by

L(γ)
.
=

∫
|γx| dx =

∫ √
v2 + w2 dx. (27)

We can estimate the rate of decrease in the length as

− d

dt
L

(
γ(t)

)
=

∫
R

|v|
[
(w/v)x

]2(
1 + (w/v)2

)3/2
dx ≥ 1

(1 + δ2)3/2

∫
|w/v|≤δ

|v|
[
(w/v)x

]2
dx, (28)
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for any given constant δ > 0. This yields a useful a priori estimate on the integral
on the right hand side of (28):∫ ∞

0

∫
|w/v|≤δ

|v|
[
(w/v)x

]2
dx dt = O(1) ·

∫ ∞

0

∣∣∣ d

dt
L

(
γ(t)

)∣∣∣ dt = O(1) · L
(
γ(0)

)
.

In connection with the same curve γ in (24), we now introduce a second func-
tional, defined in terms of a wedge product.

Q(γ)
.
=

1

2

∫∫
x<x′

|γx(x) ∧ γx(x
′)| dx dx′. (29)

For any curve that moves in the plane in the direction of curvature, one can show
that this functional is monotone decreasing and its decrease bounds the area swept
by the curve: |dA| ≤ −dQ.

Using (25)-(26) we now compute

−dQ

dt
≥

∣∣∣dA

dt

∣∣∣ =

∫
|γt ∧ γx| dx =

∫
|γxx ∧ γx| dx =

∫
|vxw − vwx| dx.

Integrating w.r.t. time, we thus obtain onother useful a priori bound:∫ ∞

0

∫
|vxw − vwx| dx dt ≤

∫ ∞

0

|
dQ

(
γ(t)

)
dt

| dt ≤ Q
(
γ(0)

)
.

Together, the functionals in (27) and (29) allow us to estimate all source terms in
(13) due to the interaction of waves of the same family.

This yields the L1 estimates on the source terms φi, in (29), proving the uniform
bounds on the total variation of a solution u of (11). See [BB] for details.

To prove the uniform stability of all solutions of the parabolic system (11) having
small total variation, we consider the linearized system describing the evolution of
a first order variation. Inserting the formal expansion u = u0 + εz + O(ε2) in (11),
we obtain

zt +
[
DA(u) · z

]
ux + A(u)zx = zxx. (30)

Our basic goal is to prove the bound

‖z(t)‖L1 ≤ L‖z(0)‖L1 , (31)

for some constant L and all t ≥ 0 and every solution z of (30). By a standard
homotopy argument, from (31) one easily deduces the Lipschitz continuity of the
solution of (11) on the initial data. Namely, for every couple of solutions u, ũ with
small total variation one has

‖u(t)− ũ(t)‖L1 ≤ L‖u(0)− ũ(0)‖L1 . (32)

To prove (31) we decompose the vector z as a sum of scalar components: z =
∑

i hir̃i,
write an evolution equation for these components:

hi,t + (λ̃ihi)x − hi,xx = φ̂i,
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and show that the source terms φ̂i are integrable on the domain {t > 0, x ∈ R}. For
all details we always refer to [BB].

For every initial data u(0, ·) = ū with small total variation, the previous argu-
ments yield the existence of a unique global solution to the parabolic system (11),
depending Lipschitz continuously on the initial data, in the L1 norm. Perform-
ing the rescaling t 7→ t/ε, x 7→ x/ε, we immediately obtain the same results for the
Cauchy problem (4). Adopting a semigroup notation, this solution can be written as
uε(t, ·) = Sε

t ū. Thanks to the uniform bounds on the total variation, a compactness
argument yields the existence of a strong limit in L1

loc

u = lim
εm→0

uεm (33)

at least for some subsequence εm → 0. Since the uε depend continuously on the
initial data, with a uniform Lipschitz constant, the same is true of the limit solution
u(t, ·) = Stū. In the conservative case where A(u) = Df(u), it is not difficult to
show that this limit u actually provides a weak solution to the Cauchy problem (2).

The only remaining issue is to show that the limit in (33) is unique, i.e. it does
not depend on the subsequence {εm}. In the standard conservative case, this fact
can already be deduced from the uniqueness result in [BG]. In the general case,
uniqueness is proved in two steps. First we show that, in the special case of a
Riemann problem, the solution obtained as vanishing viscosity limit is unique and
can be completely characterized. To conclude the proof, we then rely on the same
general argument as in [B2]: if two Lipschitz semigroups S, S ′ provide the same
solutions to all Riemann problems, then they must coincide.

3. Initial data with unbounded variation

We discuss here an example, first appeared in [BS], showing that the vanishing
viscosity limit may not be unique, for strictly hyperbolic systems with L∞ data.
Consider the 3× 3 system

ut + ux = 0, vt − vx = 0, wt +
1− uv

6
· wx = 0, (34)

with initial data having unbounded variation:

u(0, x) = v(0, x) = ϕ(x)
.
=

{
1 if 2−2n−1 < |x| < 2−2n,
−1 if 2−2n < |x| < 2−2n+1,

w(0, x) =

{
0 if x < 0,
1 if x > 0.

Observe that the system is strictly hyperbolic as long as u, v ∈ [−1, 1]. Indeed, in
this case the characteristic speeds are

λ1 = −1, λ2 =
1− uv

6
∈ [0, 1/3], and λ3 = 1.
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Figure 1: multiple solutions.

Of course, the first two components of the solution are given by

u(t, x) = ϕ(x− t), v(t, x) = ϕ(x + t).

The non-uniqueness stems from the fact that the O.D.E. for characteristics of the
second family

ẋ =
1− uv

6
(35)

has a discontinuous right hand side. By strict hyperbolicity, these discontinuities are
transversal to all trajectories of (35). If the total variation of u, v were bounded, one
could apply the uniqueness theorem in [B1] and deduce the uniqueness and Lipschitz
continuous dependence of solutions to this O.D.E.. In the present case, however,
the total variation of u, v is infinite, and multiple solutions appear. In particular
(fig. 1), the trajectories x1(t) = 0 and x2(t) = t/3 are both Caratheodory solutions.
Since all three characteristic fields are linearly degenerate, the two solutions

w1(t, x) =

{
0 if x < 0,
1 if x > 0,

w2(t, x) =

{
0 if x < t/3,
1 if x > t/3,

can both be obtained as limits of smooth solutions. Therefore, they can also be
obtained as limits of viscous approximations.
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