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Nonlinear Pulse Propagation
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Abstract
This talk gives a brief review of some recent progress in the asymptotic

analysis of short pulse solutions of nonlinear hyperbolic partial differential
equations. This includes descriptions on the scales of geometric optics and
diffractive geometric optics, and also studies of special situations where pulses
passing through focal points can be analysed.

1. Linear plane waves.

Suppose that L is an N ×N system of partial differential operators

L(∂) = ∂t +
d∑

i=1

Aj∂xj
.

Here the spacetime variable is

y = (t, x) ∈ R1+d with dual variables η = (τ, ξ) .

L is assumed to be a symmetric hyperbolic operator in the sense that the N × N
matrices Aj are hermitian symmetric.

If f : R → CN is smooth then the chain rule yields

L f(y.η) = L(η)f ′(y.η) .

Thus L(f(y.η)) = 0 when f takes values in the nullspace of L(η).
In this way the characteristic variety, the set of η so that this nullspace is non-

trivial, makes an appearance. For η ∈ Char L one has the orthogonal decomposition

CN = ker L(η) ⊕⊥ rangeL(η) .

Introduce
π(η) = ortogonal projection onto ker L(η) .

Then u = f(y.η) is a plane wave solution of L u = 0 when η ∈ Char L and f satisfies
the polarization

π(η) f = f .
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2. Plane pulses and group velocity.

If in addition,
f(s) → 0 as s → ±∞ ,

then the family of solutions
uε := f

(y.η

ε

)
describe pulses with planar wave fronts. If f has compact support, then the pulse
uε is supported in an O(ε) neighborhood of the hyperplane y.η = 0. The pulse cross
section is given by the function f(s/ε) . The function f is called the profile of this
pulse family.

At t = 0 (resp. t = 1) the pulse is supported near the planes x.ξ = 0 (resp.
x.ξ = τ).

t=0

t=1

Wave locations in x space

Three phase velocities indicated

The phase
τt + ξ.x = (x− vt).ξ

for any velocity vector v satisfying

v.ξ = −τ .

For any such v, the pulse family is given by

f ε(x− vt) , f ε(s) := f(s/ε) .

The pulse family can be viewed as moving with any one of these phase velocities.
Three such velocities are sketched in the figure above. The phase velocity is not
uniquely determined. This nonuniqueness is usually removed by choosing the unique
v so that v ⊥ {x.ξ = 0}. This introduction of the euclidean scalar product in x
space is not natural. For example, when studying the operator

utt = 2ux1x1 + ux2x2

there is a more natural scalar product. The velocity orthogonal in the natural
scalar product is the right one and the velocity based on the euclidean convention is
irrelevant. Summary. In dimensions d > 1 the phase velocity is not well defined.

In contrast, the group velocity is well defined at smooth points (y, η) of the
characteristic variety. To see this, denote by V ⊂ T ∗

y the characteristic variety at
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y. Since the operator L is hyperbolic, V is a conic codimension one real algebraic
subvariety of the cotangent space T ∗

y . At smooth points the conormal variety N∗(V)
is therefore a one dimension subspace of T ∗∗

y ≡ Ty ≡ R1+d. Thus the line N∗(V) =
R(a,b) has a well defined velocity v = b/a which is, by definition, the group velocity.

If the characteristic variety is given locally by the equation τ = τ(t, x, ξ) then
this recipe reduces to the standard physics book formula

group velocity := v(t, x, ξ) = −∇ξτ(t, x, ξ) .

The vector field ∂t +v.∂x is then equal to the space time part of the hamilton vector
field with hamiltonian τ − τ(t, x, ξ).

Since τ is homogeneous of degree 1 in ξ, the Euler homogeneity relation implies
that

ξ.∇ξτ(t, x, ξ) = τ(t, x, ξ) .

This implies that the group velocity satisfies v.ξ = −τ , the equation defining phase
velocities. The group velocity is the right phase velocity.

At points of the characteristic variety which are not smooth, neither the group
nor the phase velocity is well defined.

The group velocity enters the approximations of geometric optics though the
algebraic identity (see [DJMR])

π(y, η) L(y, ∂) π(y, η) = π(y, η)

[(
∂t + v(y, η).∂x

)
+

∑
j

Aj(y)
∂π(y, η)

∂xj

]
π(y, η) .

In our work the projectors π replace the left and right eigenvectors that one finds
in traditional treatments.

3. Wave trains versus pulses.

wavetrain short pulse

The geometric optics approximations which are most familiar concern the short
wavelength limit of wave trains. The usual methods yield equations for the envelope
and go under the name of the slowly varying envelope approximation (svea) in
science journals. A rule of thumb is that the amplitude should not change more
than 10% per wavelength. This criterion is just barely violated in the figure at the
left. The rule of thumb suggest that one must have about twenty wavelengths per
pulse length before the svea is appropriate.

For much shorter pulses like the one on the right in the figure the svea is clearly
inapplicable (see [R], [AR1]).
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Typical analytic expressions for the waveforms above are

wavetrain : a(x) eix1/ε with Fourier transform â(ξ − (1/ε), 0))

pulse : a(x1/ε)b(x
′) with Fourier transform εâ(εξ1) b̂(ξ′) .

The Fourier transform of the wave train is localized near (1/ε, 0) which is called
the carrier frequency in applications.

The Fourier transform of the pulse is spread over a box of dimensions 1/ε × 1
in (ξ1, ξ

′) space. There is no carrier frequency. There is no exponential prefactor
which renders the quotient slowly varying.

The approximations take the form

wave train : U(y, φ(y)/ε) with U(y, θ) periodic in θ
pulse : U(y, φ(y)/ε) with U(y, z) → 0 as z → 0.

In both cases the phase function φ satisfies an eikonal equation.
In the latter case the function U(y, ·) represents the profile of the pulse. The

surfaces φ = const are wavefronts. The pulse approximation can be called the slowly
varying profile approximation since the profiles vary on the scale O(1) which is much
longer than the wavelength ε

4. Overview

The recent work that I will mention can be organized into four categories.

I. Geometric optics scaling before focusing, (Alterman-Rauch).
II. Focus crossing for radial 1+3, (Carles-Rauch).
III. Diffractive optics scaling, (Alterman-Rauch).
IV. Solutions with large spectrum, (Barrailh-Lannes).

Preprints of the articles for the first two are available from my home page. The
third should make it shortly.

Overview I. The results concern solutions uε of

L(y, ∂) uε + Φ(uε) = 0 , uε(0, x) = f
(
x,

φ(0, x)

ε

)
, f(x, z) = π(η)f .

which are of size O(1) so the nonlinear term is of size O(1) and its effects are felt
at time t = O(1).

The analysis is carried out for variable coefficient operators and for pulses which
may have curved wavefronts which can degenerate at focal points. The analysis is
valid before the focal points.

The equations defining the approximate pulse solutions are similar to the equa-
tions of geometric optics which govern wave trains.

Sketches of the wavefronts are presented in the figure below. The figure on the
left evokes an expanding wavefront. The amplitudes will decrease correspondingly.
The figure on the right evokes a planar pulse with transverse dimension O(1), parallel
rays and no geometric decay.
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Overview II. The passage of a pulse through a focal point has a chance of being
easier to analyse than the corresponding problem for wave trains, because the pulse
spends only O(ε) units of time near the focal point. This simple idea has been born
out by a number of successfully analysed problems. We hope that this is just the
beginning.

The results that have been proved concern radial solutions of equations of the
form 1+3u+ f(∇t,ru) = 0. Begin by recalling that in the linear case, f = 0, a pulse
emerges from a spherical focus with its amplitude multiplied by -1. The same is
true of all incoming spherical solutions of the linear wave equation, not just pulses.

To avoid long lists of possibilities I discuss here only

f = a ut|ut|h−1 , h = order of nonlinearity > 1 , a ∈ C .

When


a > 0 the problem is dissipative
a < 0 it is accretive
a ∈ iR it is conservative.

Consider pulses focusing along the incoming light cone r = 1 − t. For t < 1
the description of pulses with ∇u = O(1) is given by the geometric optics from the
previous subsection. As the pulses approach the origin the size of the gradient grows
so the behavior of the nonlinear function at infinity becomes important.

There is a critical power hc.
In the subcritical case 1 < h < hc, classical solutions exist beyond the focus

provided the initial profiles are sufficiently small (independent of ε). There is a
region of size εα with 0 < α < 1 which is large compared to the wavelength, small
compared to 1, and centered at the focal point so that in that region the exact
solution is well approximated by a wavelength ε pulse solution of the linear wave
equation. Beyond that region nonlinear geometric optics takes over again. Crossing
the focus multiplies the pulse by -1 as in the linear case.

subcritical yields linear passage

critical yields nl scattering 

supercritical dissip yields absorbtion

RADIAL 1+3 D SEMILINEAR WAVE EQN
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In the supercritical case hc < h with a > 0 so that the nonlinearity is dissipative,
the pulse is absorbed at the focus in the sense that the outgoing wave has gradient
o(1) as ε → 0.

The most interesting case is the critical case for which the crossing of the focus
is described by a nonlinear scattering operator. For more details and more cases
including propagations which are linear before the focus and can be subcritical,
critical, or supercritical at the focus, invite Remi Carles.

Overview III. These results are the ones which I will describe in more detail in
part because the authors are from across the Atlantic and therefore less easy to hear.
The principal part of the differential equation must have constant coefficients and
the phase is chosen linear. Then the wavefronts are planar and the rays are parallel
so stay close together for long time scale t = O(1/ε) of interest. The case of nearly
planar wave trains is treated in the thesis of Eric Dumas [Du]. The approximate
solutions have the form

uε
approx = εpU0(εt, t, x,

τ t + ξ.x

ε
) , lim

|z|→∞
U0(T, t, x, z) = 0 .

The power p satisfies
p = 1/(J − 1)

where the leading Taylor polynomial at u = 0 of the nonlinear term is of order J .
Then, the nonlinear term is of size εpJ and pJ = p + 1. The geometric effects of
diffraction for planar wavefronts take place at times t = O(1/ε) (see [DJMR]) so the
accumulated effect of the nonlinear term is crudely estimated as

1

ε
εp+1 = εp .

The amplitude is tuned so that time of nonlinear interaction is comparable to the
diffraction time.

The slowly varying profile U0 is polarized as usual, π(η)U = U , and is determined
from its initial data by the pair of evolution equations(

∂t + v.∂x

)
U0 = 0 , ∂TzU0 +

1

2
τ ′′ξξ(∂x, ∂x)U0 + π(η)∂zΦJ(U0) = 0 ,

where ΦJ is the leading Taylor polynomial of Φ. This evolution equation for which
T = 0 is characteristic, is the pulse version of the nonlinear Schrödinger equation.

To see that the last equation is in fact a nice evolution equation write it formally
as

∂T U0 +
1

2
∂z

−1τ ′′ξξ(∂x, ∂x)U0 + π(η)ΦJ(U0) = 0 .

The operator ∂−1
z τ ′′ξξ(∂x, ∂x) is antisymmetric on the Hs which for s large are in-

variant under ΦJ and Picard’s method yields local solvability. One must be a little
careful to take care of the translation invariance required by the first of the equa-
tions.

Overview IV. These results are on the scale of geometric optics and diffractive
optics and meld the pulse like solutions, whose spectrum is very broad, with other
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solutions with rich spectrum constructed in the thesis of D. Lannes. The authors
have introduced a variety of efficient analytic techniques. One of the principal
interests of these results is to quantify the interactions between these waves. One
result is that since pulses occupy such a small region of space time they tend to
interact only for times O(ε) which tends to make the interaction negligible. For
more details invite the authors from Bordeaux.

5. Ideas from the proof of III. 1. The singular system.

A handle on the exact solution is obtained by expressing that solution in the form

uε(t, x) = εp V
(
ε, t, x,

x.ξ

ε

)
where V(ε, t, x, φ) solves the singular initial value problem

L(∂t, ∂x +
ξ

ε
∂φ) εpV + Φ(εpV) = 0 = 0 , V(ε, 0, x, φ) = f(x, φ) .

The singular part is
1

ε

∑
j

ξj Aj
∂

∂φ

which is an antisymmetric operator on all Hs(Rd+1
x,φ ). The solutions are nicely

bounded in these spaces for t = O(1/ε) since the nonlinear term is O(ε · εp). The
time derivates of solutions are O(1/ε).

Theorem. If the profile equations for U are solvable for 0 ≤ T ≤ T , then the
approximate solution

uε
approx = εpU0(εt, t, x,

τ t + ξ.x

ε
) .

and the exact solution are close for t = O(1/ε) in the sense that for s ∈ R

sup
0≤t≤T/ε

∥∥∥V(t, x, φ)− U0(εt, t, x,
τ t

ε
+ φ)

∥∥∥
Hs(Rd+1

x,φ )
= O(εmin{p , 1/5})

The 1/5 in the exponent is surely not sharp. Our current best guess at the sharp
value is 1.

This singular system is reminiscent of the strong coriolis term in models of geo-
physics and in the incompressible limit in fluid mechanics. In fact, the asymptotic
analysis in a variety of fluids applications (see Schochet, Grenier, Masmoudi, Klain-
erman, Majda, Galagher, Colin, Ghidaglia, Lannes, ....) is parallel too and quite
close in spirit and in detail to what is done in the work on nonlinear geometric
optics. Schochet recognized this from the outset. It is not unreasonable to hope for
a grand unification.
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6. Ideas from the proof III. 2. Small divisors and infrared
cutoff.

As in virtually all problems of this type, if the approximate solution is plugged into
the differential equation, the residual is too large. In this case the residual is O(εp+1)
which on a time interval O(1/ε) is expected to accumulate to O(εp) which is the
same size as the exact and the approximate solutions.

To overcome this, attempt to construct correctors

U(ε, T, y, z) = U0(T, y, z) + εU1(T, y, z) + ε2U2(T, y, z)

Then uε
approx would be an exact solution if

L
(
(ε∂T , 0) + ∂y +

η

ε
∂z

)
εpU(ε, T, y, z) + Φ(εpU(ε, T, y, z)) = 0 .

What we do is expand the left hand side in powers of ε and try to kill as many terms
as possible. A somewhat clever computation leads to the profile equations for U0

which have already been cited. A key is the algebraic identity cited at the end of
section 3.

For the first corrector U1 one finds

π(η) U1 = 0 , and (I − π(η)) ∂zU1 = −Q(η)L(∂y)U0 .

Here Q(η) is the partial inverse of the singular hermitian matrix L(η). These equa-
tions are not in general solvable. The solution if it exists is given by

(FU1)(t, x, ζ) =
−1

iζ
Q(η)L(∂y)(FU0)(t, x, ζ) .

For the right hand side to make sense requires that

Q(η)L(∂y)(FU0)(t, x, 0) = 0

(
l.h.s. =

∫
QL U0(t, x, z) dz

)
.

This condition of vanishing mean is neither generic, nor natural in the physical
applications. The formula for (I − π(η))U1 has zero (resp. small) divisors at ζ = 0
(resp. ζ ≈ 0). These represent small divisor problems in a setting of continuous
spectrum.

To overcome this difficulty we introduce an infrared cutoff in the equation defin-
ing U . Choose a cutoff function χ(ζ) ∈ C∞(R) which vanishes on |ζ| ≤ 1 and is
identically equal to 1 for |ζ| ≥ 2. Define

χδ(Dz) = F∗χ(ζ/δ)F ,

where F denotes the Fourier Transform in z. Seek

U δ(ε, T, y, z) = U δ
0 (T, y, z) + εU δ

1 (T, y, z) + ε2U δ
2 (T, y, z)

as an approximate solution of the cutoff equation

L
(
(ε∂T , 0) + ∂y +

η

ε
∂z

)
εpU δ(ε, T, y, z) + χδ(Dz) Φ(εpU δ(ε, T, y, z)) = O(ε2p+1) .

Having removed the frequencies near 0, this can be achieved. The correctors U δ
j

grow like 1/δj as δ → 0.
The proof proceeds by estimating errors, then choosing δ = ε2/5 to optimize.
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7. Ideas from the proof III. 3. Cutoff errors and the Wiener
algebra.

A key element in the proof is to estimate the cutoff error

(1− χδ(Dz)) U0(T, y, z) .

We know that (∂t + v.∂x)U0 = 0 so write

U0 = U0(T, x− vt, z)

and we need to estimate
(1− χδ(Dz)) U0(T, x, z) .

If we know that U0 ∈ ∩sH
s(Rd+1

x,z ) this error is O(
√

δ) as one proves by applying the
Cauchy-Schwartz inequality to the integral over |ζ| < δ.

In contrast to the nonlinear Schrödinger equation from the wave train case, the
equation satisfied by U0 does not leave the Schwartz space S(Rd+1) invariant. To
improve the error estimate from O(

√
δ) to O(δ) one needs L∞ control on the Fourier

Transform of U0 Normally that would be done by proving decay estimates for U0.
The decay of U0 is both subtle and not rapid. Instead, we work directly in Fourier.

The equation satisfied by U0 is semilinear with constant coefficient leading part
and polynomial nonlinear term. The linear propagator is the Fourier multiplier

e
itτ ′′(ξ,ξ)

2ζ

which has modulus one. It defines an isometry on the Sobolev spaces Hs and also on
the Wiener algebra defined by F̂ ∈ L1 and also the spaces of distributions defined
by F̂ ∈ L∞. Working directly in Fourier we are able to bound

〈ξ, ζ〉sÛ0(T, ξ, ζ) ∈ L∞(Rd+1
ξ,ζ )

for all s.
That (FU0) ∈ L1 is a natural condition is easy to appreciate. The linear prop-

agation is an isometry, and the space is an algebra so invariant under the poly-
nomial linearity. From there, it is not hard to show that the space defined by
〈ξ, ζ〉sÛ0 ∈ L∞(Rd+1) is propagated by the profile equation.

References

[1] D. Alterman, Diffractive nonlinear geometric optics for short pulses,
Ph.D. Thesis, University of Michigan, May 1999.

[2] D. Alterman and J. Rauch, Diffractive short pulse asymptotics for non-
linear wave equations, Phys. Lett. A. 264(5)2000, pp. 390-395.

[3] D. Alterman and J. Rauch, Nonlinear geometric optics for short pulses,
Journal of Differential Equations, to appear.

XI–9



[4] D. Alterman and J. Rauch, The linear diffractive pulse equation, Methods
and Applications of Analysis 7(2001), to appear.

[5] Baraill and D. Lannes, In preparation.

[6] R. Carles, Geometric optics with caustic crossing for some nonlinear
Schrödinger equations, Indiana Univ. Math. J. 49(2000) 475-551.

[7] R. Carles, Focusing on a line for nonlinear Schrödinger equations in R2,
Asymptotic Analysis 24(2000) 255-276.

[8] R. Carles and J. Rauch, Focusing of spherical nonlinear pulses in R1+3,
Proc. AMS (2001), to appear

[9] R. Carles and J. Rauch, Absorption d’impulsions non-linéaires radiales
focalisantes dans R1+3, Note CRAS, to appear.

[10] R. Carles and J. Rauch, Diffusion d’impulsions non-linéaires radiales fo-
calisantes dans R1+3, Note CRAS to appear.

[11] P. Donnat, J.-L. Joly, G. Métivier, and J. Rauch, Diffractive nonlinear ge-
ometric optics, Séminaire Equations aux Dérivées Partielles, Ecole Poly-
technique, Paris, 1995-1996.

[12] E. Dumas, Univ. Rennes I Thesis, Fall 2000.

[13] J.-L. Joly, G. Métivier, and J. Rauch, Diffractive nonlinear geometric
optics with rectification, Indiana Math. J. 47(1998) 1167-1241.

[14] J.-L. Joly, G. Métivier, and J. Rauch, Transparent nonlinear geometric
optics and Maxwell-Bloch equations, J. Diff. Eq. 166(2000), 175-250.

[15] A. Majda, Nonlinear geometric optics for hyperbolic systems of conserva-
tion laws, Oscillation theory, computation, methods of compensated com-
pactness, IMA Vol. Math. Appl. 2, Springer, New York, 1986, pp. 115-165.

[16] A. Majda and R. Rosales, Resonantly interacting weakly nonlinear hy-
perbolic waves I, Stud. Appl. Math., 71(1984), 149-179.

[17] J. E. Rothenberg, Space-time focusing: breakdown of the slowly varying
envelope approximation in the self-focusing of femtosecond pulses, Optics
Letters, 17(1992), 1340-1342.

[18] S. Schochet, Fast singular limits of hyperbolic partial differential equa-
tions, J. Diff. Eq. 114((1994), 474-512

[19] A. Yoshikawa, Solutions containing a large parameter of a quasi-linear
hyperbolic system of equations and their nonlinear geometric optics ap-
proximation, Trans. A.M.S., 340(1993), 103-126.

XI–10



[20] A. Yoshikawa, Asymptotic expansions of the solutions to a class of quasi-
linear hyperbolic initial value problems, J. Math. Soc. Japan, (47)1995,
227-252.

Department of Mathematics
East Hall
University of Michigan
Ann Arbor MI, 48104, USA
rauch@umich.edu
www.math.lsa.umich.edu/~rauch

XI–11

mailto:rauch@umich.edu
http://www.math.lsa.umich.edu/~rauch

	Linear plane waves.
	Plane pulses and group velocity.
	Wave trains versus pulses.
	Overview
	Ideas from the proof of III. 1. The singular system.
	Ideas from the proof III. 2. Small divisors and infrared cutoff.
	Ideas from the proof III. 3. Cutoff errors and the Wiener algebra.

