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measure for a class of random dynamical systems
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Abstract
For a class of random dynamical systems which describe dissipative non-

linear PDEs perturbed by a bounded random kick-force, I propose a “direct
proof” of the uniqueness of the stationary measure and exponential conver-
gence of solutions to this measure, by showing that the transfer-operator,
acting in the space of probability measures given the Kantorovich metric,
defines a contraction of this space.

0. Introduction

In the papers [3, 4, 5] my collaborators and I considered a special class of random
dynamical systems (RDSs) which describes dissipative nonlinear PDEs (e.g., the
2D Navier-Stokes equations), perturbed by a bounded random kick-force. In [3] we
proved that these systems have unique stationary measure, by reducing this problem
to the problem of uniqueness of a Gibbs measure for a class of 1D Gibbs systems.
In [4, 5] we developed a coupling approach to study the systems under discussion.
This approach gives a shorter proof of the uniqueness and implies that any solution
of the system exponentially fast converges in distribution to the stationary measure.

The goal of this work is to present a “direct proof” of the uniqueness and of
the exponential convergence by showing that the transfer-operator, corresponding
to an RDS as above and acting in the space of probability measures, given the
Kantorovich(–Wasserstein) metric, defines a contraction of this space.

The proof presented in this work can be treated as re-interpreting of the ar-
guments from [4, 5]: it is based on the coupling-approach and uses essentially
Lemma 3.2 from [4] (which is the heart of the proof of [4]). In addition to the
coupling techniques, we now use some ideas, originated in the works of Kantorovich
on the mass-transfer problem in 1940’s, see [2, 1].

Due to short size of this paper, we practically do not discuss applications of the
results obtained, as well as their relation to works of other mathematicians. For
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all this information readers are referred to rather detailed introductions to [3, 4]
(post-script files of these works, as well as of [5], can be obtained from the author’s
web-page www.ma.hw.ac.uk/~kuksin).

We keep notations of [4, 5] and for convenience repeat them now:

Notations. We denote by (Ω,F , P) and (Ω′,F ′, P′) different probability spaces,
and abbreviate them to Ω and Ω′, respectively. All metric spaces are given Borel
sigma-algebras. D(·) signifies the distribution of a random variable.

A Hilbert space H with a norm ‖ · ‖ is fixed in this work. We use the following
notations for objects, related to H:

B = B(H) – sigma-algebra of Borel subsets of H;

Cb – the space of bounded continuous functions on H, given the sup-norm;

P – the space of probability Borel measures on H;

P(A) – measures from P , supported by a subset A ⊂ H;

B(R) – the closed ball of radius R in H, centred at the origin.

Acknowledgements. This paper is based on my talk at the conference in Plestin–
les–Grèves (June 2001); I am thankful to the organisers for inviting me there. It
was written during my visit to IHES in June, 2001 and was typed there; I sincerely
thank the institute for hospitality.

1. A class of random dynamical systems

Let H be a Hilbert space with a norm ‖ · ‖ and an orthonormal basis {ej}, and let
S : H → H be a continuous map such that S(0) = 0 and S satisfies some conditions,
specified below.

Let {ηk, k ∈ Z} be a sequence of i.i.d. random variables Ω → H of the form

ηk = ηω
k =

∞∑
j=1

bjξjkej, (1.1)

where bj ≥ 0 are constants and
∑

b2
j < ∞. It is assumed that {ξjk = ξω

jk} are
independent random variables such that |ξjk| ≤ 1 for all j, k, ω, and

D(ξjk) = pj(r) dr ∀j, k.

Here p1, p2, . . . are functions of bounded variation, supported by the segment [−1, 1],
and ∫ ε

−ε

pj(r) dr > 0 ∀j ≥ 1, ε > 0. (1.2)

We consider the following random dynamical system (RDS) in H:

u(k) = S(u(k − 1)) + ηk =: F ω
k (u(k − 1)) k ≥ 1. (1.3)

This RDS defines a family of Markov chains in H with the transition function

P (k, v, Γ) = P{u(k) ∈ Γ}, Γ ∈ B(H),
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where u(·) = u(·; v) is a solution for (1.3) such that u(0) = v. Let {Sk} and {S∗
k} be

the corresponding Markov semigroups, acting in the space Cb of bounded continuous
functions on H, and in the space P of probability Borel measures, respectively:

Skf(v) = Ef(u(k; v)), f ∈ Cb,

S
∗
kµ(Γ) =

∫
H

P{u(k; v) ∈ Γ}µ(dv), µ ∈ P ,

where u is the solution for (1.3) as above.
For any v ∈ H and k = 0, 1, . . . we abbreviate

µv(k) = P (k, v, ·) = D(u(k; v)).

Now we impose some assumptions on the map S. The“right” ones are given
in [4], see there conditions A-C. Below we replace them by shorter and stronger
conditions A′) and B′). The new conditions hold for the RDS which corresponds
to the 2D Navier-Stokes equations (see the example below). The proof of the Main
Theorem which we present below works under the conditions A-C but becomes
somewhat longer, and the notations become more cumbersome.

A′) The map S is Lipschitz uniformly on bounded subsets of H, and there exists a
positive constant γ0 < 1 such that

‖S(u)‖ ≤ γ0‖u‖ ∀u ∈ H. (1.4)

B′) For any R > 0 there is a sequence γN(R) > 0 (N ≥ 1) which converges to zero
as N →∞, such that∥∥∥QN

(
S(u1)− S(u2)

)∥∥∥ ≤ γN(R) ‖u1 − u2‖ for all u1, u2 ∈ B(R).

Here QN stands for the orthogonal projector H → span{eN , eN+1, . . .}.

Example. Let us consider the 2D Navier-Stokes equations, perturbed by a random
kick-force η:

u̇− ν∆u + (u · ∇)u +∇p = η(t, x) ≡
∑
k∈Z

ηk(x)δ(t− k), (1.5)

divu = 0,

∫
u dx ≡

∫
η dx ≡ 0; x ∈ T2.

Let H be the L2-space of divergence-free vector fields on T2 with zero space-average,
and let {ej} be the usual trigonometric basis of H. Let us assume that the kicks ηk

are random variables in H having the form (1.1) and satisfying (1.2). Normalising
solutions u(t) ∈ H of (1.5) to be continuous from the right, we observe that the
equation can be written in the form (1.3), where u(k) = u(k, ·) ∈ H, k ∈ Z, and the
operator S is the time-one shift along trajectories of the free Navier-Stokes system.
The condition A′) obviously holds with γ0 = e−λ, where λ is the minimal eigenvalue
of −ν∆ in H. It is also well known that S satisfies B′), see e.g. [3].
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A measure µ ∈ P is called a stationary measure for the RDS (1.3) if S∗
kµ = µ

for all k. The goal of this work is to prove the following result:

Theorem 1. There exists a constant N ≥ 1 such that if

bj 6= 0 ∀j ≤ N, (1.6)

then the RDS (1.3) has a unique stationary measure µ. Moreover, there exists a
constant κ ∈ (0, 1) such that

|(µu(t), f)− (µ, f)| ≤ Cκt for t = 1, 2, . . . , (1.7)

for every Lipschitz function f on H such that |f | ≤ 1 and Lip f ≤ 1. The constant
C depends only on ‖u‖.

2. Preliminaries

2.1. Estimates for solutions.

Since |ξjk| ≤ 1, then

‖ηω
k ‖ ≤ K1 = (b2

1 + b2
2 + . . .)1/2 < ∞ for all k and ω. (2.1)

So
‖F ω

k (u)‖ ≤ γ0‖u‖+ K1,

and any ball B(R) with R ≥ K1/(1 − γ0) is invariant for the RDS (1.3) (a set
A ⊂ B(H) is said to be invariant for (1.3) if P (k, u,A) = 1 for k ≥ 0 and u ∈ A).
The same estimate above implies that

‖u(k; v)‖ ≤ γk
0‖v‖+ K1(1 + · · ·+ γk−1

0 ) ≤ γk
0‖v‖+

K1

1− γ0

, (2.2)

for all k ≥ 0, v ∈ H and all ω.

2.2. The coupling.

Let µ1, µ2 ∈ P .

Definition. A pair of random variables ξ1, ξ2, defined on the same probability space
and valued in H, is called a coupling for (µ1, µ2) if Dξ1 = µ1 and Dξ2 = µ2.

For basic results on the coupling see [6] and Appendix in [4].
The following lemma, proved in [4], Lemma 3.2, claims that measures µu1(1),

µu2(1) admit a coupling which possesses some special properties if ‖u1 − u2‖ � 1.
Let us take any R ≥ 1.

Lemma 1. There is a probability space (Ω,F , P), an integer N = N(R) ≥ 1 and
a constant C∗ = C∗(R) > 0 such that if (1.6) holds, then for any u1, u2 ∈ B(R)
the measures µu1(1), µu2(1) admit a coupling (V1, V2), Vj = Vj(u1, u2; ω), with the
following properties:
(i) the maps V1, V2 : B(R)2 × Ω → H are measurable;
(ii) denoting d = ‖u1 − u2‖, we have

P{‖V1 − V2‖ ≥ d/2} ≤ C∗d. (2.3)
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2.3. A metric on P.

Let us take any number
R′ > K1/(1− γ0).

We fix it from now on and abbreviate B(R′) = B. Due to the results of section 2.1,
the set B is invariant for the RDS (1.3). Next we take any γ1 ∈ (γ0, 1) and any
positive d0 such that

d0 ≤ min
{ 1

4C∗
,
1− γ1

2C∗
, 1

}
, (2.4)

where C∗ = C∗(R
′) (see Lemma 1). For k ∈ Z we set dk = γk

1d0 . We may assume
that d0 and R′ are chosen such that d−L = R′ for some L ≥ 1 . Below we consider
the numbers dk with k ≥ −L only.

Let us introduce in the space H equivalent metric d:

d(u1, u2) = ‖u1 − u2‖ ∧ d0,

and consider the set O ⊂ Cb, formed by all functions f such that

|f(u1)− f(u2)| ≤ d(u1, u2) for all u1, u2.

Clearly,
1

2
d0f ∈ O if |f | ≤ 1 and Lip f ≤ 1. (2.5)

For any two measures µ1, µ2 ∈ P we define the Kantorovich distance dK(µ1, µ2)
as

dK(µ1, µ2) = sup
g∈O

{(µ1 − µ2, g)}. (2.6)

It is known that the space P is complete with respect to this distance (see [2], [1]),
and it is easy to see that P(B) is a closed subset of P .

We remind that the set B = B(R′) is invariant for (1.3).

Lemma 2. Suppose that there exists a sequence ζk → 0 such that for k ≥ 1 and
u, v ∈ B we have dK(µu(k), µv(k)) ≤ ζk. Then there exists a unique measure µ ∈
P(B), such that

dK(µu(k), µ) ≤ ζk for k ≥ 1 and u ∈ B. (2.7)

Proof. Let us take any function f ∈ O. Using the Chapman-Kolmogorov relation
and the assumption of the lemma, for ` ≥ k ≥ 0 and u, v ∈ B we have:

(µv(`)− µu(k), f) =

∫
B

P (`− k, v, dz)

∫
B

(P (k, z, dw)− P (k, u, dw))f(w)

≤ ζk

∫
B

P (`− k, v, dz) = ζk. (2.8)

Hence, dK(µv(`), µu(k)) ≤ ζk. Since the space (P , dK) is complete, then there exists
a unique measure µ ∈ P such that dK(µu(k), µ) → 0 as k → ∞, for every u ∈ B.
Passing to limit in (2.8) as ` →∞ we recover (2.7). It is clear that supp µ ⊂ B. So
µ ∈ P(B) and the lemma is proved.
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3. A Kantorovich-type functional

First we shall construct a special bounded measurable function fK on B × B, van-
ishing on the diagonal. To define the function, we consider partition of B × B to
sets Q`, −L ≤ ` ≤ ∞. Here Q∞ is the diagonal of B ×B,

Qr =
{
(u1, u2) ∈ B ×B

∣∣ dr+1 < ‖u1 − u2‖ ≤ dr

}
if 0 ≤ r < ∞, and

Qr =
{

(u1, u2) ∈ B ×B
∣∣∣ ‖u1 − u2‖ > d0,

1

2
γ1dr < ‖u1‖ ∨ ‖u2‖ ≤

1

2
dr

}
if −L ≤ r < 0.

Now we define the function fK :

fK(u1, u2) =

{
dr, if (u1, u2) ∈ Qr, 0 ≤ r ≤ ∞
d̃`, if (u1, u2) ∈ Q`, ` < 0

where d∞ = 0 and the numbers {d̃`} such that

d0 ≤ d̃−1 ≤ . . . ≤ d̃−L (3.1)

are constructed below. Clearly,

d−L ≥ fK(u1, u2) ≥ d(u1, u2) (3.2)

for all u1, u2.
For any pair of measures µ1, µ2 ∈ P(B) we define a Kantorovich-type functional

K(µ1, µ2) as follows:
K(µ1, µ2) = inf{EfK(U1, U2)}, (3.3)

where the infimum is taken over all couplings (U1, U2) for (µ1, µ2).
Everywhere below (and in Theorem 1) N = N(R′) is the constant from Lemma 1.

Theorem 2. Let us assume that the assumption (1.6) holds. Then there exists
κ < 1 such that

K
(
S
∗
1(µ1), S

∗
1(µ2)

)
≤ κK(µ1, µ2) (3.4)

for all µ1, µ2 ∈ P(B) (provided that the numbers d̃−1, . . . , d̃−L are chosen accord-
ingly).

The theorem is proved in the next section. Now we continue to study the RDS
(1.3), taking the theorem for granted.

Let (U1, U2) be a coupling for (µ1, µ2). Using (3.2), for any g ∈ O we get:

(µ1 − µ2, g) = E(g(U1)− g(U2)) ≤ Ed(U1, U2) ≤ EfK(U1, U2).

Comparing this estimate with the definitions (2.6 ) and (3.3) we find that1

dK(µ1, µ2) ≤ K(µ1, µ2). (3.5)
1A celebrated theorem of Kantorovich says that the inequality (3.5) transforms to the equality

if in (3.3) we replace f(U1, U2) by d(U1, U2). See in [1, 2].
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Let us take any u1, u2 ∈ B. Then µu1(k), µu2(k) ∈ P(B) for all k ≥ 0. Iterating
(3.4) and using (3.5) together with the first inequality in (3.2), we obtain

dK(µu1(k), µu2(k)) ≤ K(µu1(k), µu2(k))

≤ κkK(µu1(0), µu2(0))

= κkfK(u1, u2) ≤ κkd̃−L.

Applying Lemma 2 we get that there exists a unique measure µ ∈ P(B) such that
dK(µu(k), µ) ≤ κkd̃−L for all k ≥ 0, u ∈ B.

Let us take a measure ν ∈ P(B). For a function f ∈ O we have:

(S∗
k(ν)− µ, f) =

∫
(µu(k)− µ, f) dν(u) ≤ κkd̃−L.

Hence,
dK(S∗

k(ν), µ) ≤ κkd̃−L ∀k ≥ 0, ν ∈ P(B). (3.6)

Now let us take any u ∈ H. Due to (2.2) there exists ` = `(‖u‖) such that
µu(`) ∈ P(B). Since µu(k + `) = S∗

kµu(`), then denoting k + ` = t we get from (3.6)
that

dK(µu(t), µ) ≤ κt−`d̃−L, (3.7)

for any u ∈ H, where ` = `(‖u‖). Due to (2.5) and (2.6) with g = ±d0

2
f , (3.7)

implies (1.7) with C = d̃−Lκ−`.
The estimate (1.7) easily implies that µ is the unique stationary measure. Indeed,

if µ̃ is another one, then for any function f as in (1.7) we have

|(µ̃, f)− (µ, f)| =
∣∣∣∣∫ (µu(k), f) µ̃(du)−

∫
(µ, f) µ̃(du)

∣∣∣∣
≤

∫
|(µu(k)− µ, f)| µ̃(du). (3.8)

The integrand is bounded by two and goes to zero as k → ∞ due to (1.7). So the
integral goes to zero as k →∞ as well and (µ̃, f) = (µ, f) for all functions as above.
Hence, µ = µ̃.

Theorem 1 is proved.

4. Proof of Theorem 2

Let us take any A′ > K(µ1, µ2). Then there exists a coupling (U ′
1, U

′
2) for (µ1, µ2)

such that EfK(U ′
1, U

′
2) ≤ A′. The random variables U ′

1, U
′
2 are defined on some

probability space (Ω′,F ′, P′). Since supports of µ1, µ2 belong to B, we may assume
that U ′

1, U
′
2 ∈ B for all ω′. Now applying Lemma 1 with R = R′, we find measurable

maps V1, V2 : B2 × Ω → H such that

D(Vj(u1, u2; ·)) = µuj
(1) = P (1, uj, ·) (4.1)
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for j = 1, 2. Let us consider the following random variables U1, U2, defined on the
probability space Ω× Ω′:

Uj(ω, ω′) = Vj(U
′
1(ω

′), U ′
2(ω

′); ω), j = 1, 2.

Let us take any f ∈ Cb. Using (4.1) and the fact that D(U ′
1) = µ1, we get:

Eω,ω′
f(U1) = Eω′[Eωf

(
V1(U

′
1(ω

′), U ′
2(ω

′); ω)
)]

= Eω′
∫

P (1, U ′
1(ω

′), du)f(u)

=

∫
µ1(dv)

∫
P (1, v, du)f(u)

= (S∗
1(µ1), f).

Therefore, D(U1) = S∗
1(µ1). Similar D(U2) = S∗

1(µ2), so (U1, U2) is a coupling for
(S∗

1(µ1), S∗
1(µ2)).

If we can prove that

EωfK(V1(u1, u2; ω), V2(u1, u2; ω)) ≤ κfK(u1, u2) (4.2)

for all u1, u2 ∈ B, then

EfK(U1, U2) = Eω′
[EωfK(V1(U

′
1, U

′
2; ω), V2(U

′
1, U

′
2; ω))]

≤ κEω′
fK(U ′

1, U
′
2) ≤ κA′. (4.3)

So K(S∗
1(µ1), S∗

1(µ2)) ≤ κA′ and (3.4) would follow since A′ is an arbitrary number
bigger than K(µ1, µ2). It remains to check (4.2).

Let us find k ∈ [−L,∞] such that (u1, u2) ∈ Qk. If k = ∞, then u1 = u2, so
V1 = V2 and (4.2) holds trivially. Now let 0 ≤ k < ∞. Then, due to (2.3),

P
{
(V1, V2) ∈

⋃
r≥k+1 Qr

}
≥ 1− C∗dk.

Since fK ≤ dk+1 for (V1, V2) ∈
⋃

r≥k+1 Qr and fK ≤ sup fK = d̃−L for all (V1, V2),
then

EfK(V1, V2) ≤ dk+1(1− C∗dk) + d̃−LC∗dk.

As fK(u1, u2) = dk, then in this case

EfK(V1, V2)

fK(u1, u2)
≤ γ1(1− C∗dk) + C∗d̃−L.

Therefore, (4.2) holds with some k-independent κ < 1 if

C∗d̃−L ≤ 1− γ1. (4.4)

If −L ≤ k ≤ −1, then ‖u1‖, ‖u2‖ ≤ 1
2
dk and ‖S(uj)‖ ≤ γ0

1
2
dk for j = 1, 2. As

dk > d0, γ0 < γ1 and the random variable η with a positive probability is smaller
than any fixed positive constant (see (1.2)), then

P
{
‖V1‖, ‖V2‖ ≤

1

2
dk+1

}
≥ θ > 0. (4.5)
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If k ≤ −2, then this means that

P
{
(V1, V2) ∈

⋃
r≥k+1 Qr

}
≥ θ.

Since f ≤ d̃−L, then we have

EfK(V1, V2) ≤ θd̃k+1 + (1− θ)d̃−L. (4.6)

As fK(u1, u2) = d̃k, then (4.2) holds for −L ≤ k ≤ −2 if

θd̃k+1 + (1− θ)d̃−L = κd̃k. (4.7)

If k = −1, then for any ω from the event in the l.h.s of (4.5) we have ‖V1‖, ‖V2‖ ≤
1
2
d0. Therefore ‖V1 − V2‖ ≤ d0 and (V1, V2) ∈

⋃
r≥0 Qr. So the relation (4.6) still

holds for k = −1 if we denote
d̃0 = d0.

With this choice of d̃0, (4.2) holds for all negative k if so does (4.7).
The relations (4.7) are equivalent to

d̃−L+1 =
κ + θ − 1

θ
d̃−L

and

d̃−L+r =
1

θ
(κd̃−L+r−1 − (1− θ)d̃−L)

for r ≥ 2. That is,

d̃−L+r =
d̃−L

θ

[(κ

θ

)r−1
(

κ + θ − 1− θ(1− θ)

κ− θ

)
+

θ(1− θ)

κ− θ

]
for 1 ≤ r ≤ L− 1.

Let us assume that κ = 1− ε, where 0 < ε � 1. Then

d̃−L+r =
d̃−L

θ

[(
−ε

θr−1(1− θ)
+ O(ε2)

)
+

θ(1− θ)

1− θ − ε

]
, (4.8)

where O(ε2) depends on r ≤ L. Choosing ε = εL sufficiently small, we see that the
numbers d̃−L+r (0 ≤ r ≤ L) decay when r grow; so they satisfy all relations in (3.1)
(if d̃0 = d0).

We have seen that a function fK , constructed using the numbers {d̃`} as above,
satisfies (4.2) and (3.1) if it satisfies (4.4) and if d̃0 = d0. Due to (4.8), d̃−L = d̃0(1+

O(ε)). Taking d̃0 = d0, we have d̃−L = d0(1+O(ε)). Due to (2.4), d0 ≤ (1−γ1)/2C∗.
So (4.4) is satisfied if ε is sufficiently small.

We have constructed constants d̃k such that the corresponding function fK sat-
isfies (3.4) with some κ = 1− ε < 1. The theorem is proved.
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