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On exponential convergence to a stationary
measure for a class of random dynamical systems
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Abstract
For a class of random dynamical systems which describe dissipative non-
linear PDEs perturbed by a bounded random kick-force, I propose a “direct
proof” of the uniqueness of the stationary measure and exponential conver-
gence of solutions to this measure, by showing that the transfer-operator,
acting in the space of probability measures given the Kantorovich metric,
defines a contraction of this space.

0. Introduction

In the papers [3, 4, 5] my collaborators and I considered a special class of random
dynamical systems (RDSs) which describes dissipative nonlinear PDEs (e.g., the
2D Navier-Stokes equations), perturbed by a bounded random kick-force. In [3] we
proved that these systems have unique stationary measure, by reducing this problem
to the problem of uniqueness of a Gibbs measure for a class of 1D Gibbs systems.
In [4, 5] we developed a coupling approach to study the systems under discussion.
This approach gives a shorter proof of the uniqueness and implies that any solution
of the system exponentially fast converges in distribution to the stationary measure.

The goal of this work is to present a “direct proof” of the uniqueness and of
the exponential convergence by showing that the transfer-operator, corresponding
to an RDS as above and acting in the space of probability measures, given the
Kantorovich(-~Wasserstein) metric, defines a contraction of this space.

The proof presented in this work can be treated as re-interpreting of the ar-
guments from [, 5]: it is based on the coupling-approach and uses essentially
Lemma 3.2 from [!] (which is the heart of the proof of [1]). In addition to the
coupling techniques, we now use some ideas, originated in the works of Kantorovich
on the mass-transfer problem in 1940’s, see [2, 1].

Due to short size of this paper, we practically do not discuss applications of the
results obtained, as well as their relation to works of other mathematicians. For
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all this information readers are referred to rather detailed introductions to [3, 4]

(post-script files of these works, as well as of [5], can be obtained from the author’s
web-page www.ma.hw.ac.uk/” kuksin).
We keep notations of [1, 5] and for convenience repeat them now:

Notations. We denote by (£, F,P) and (', F', ") different probability spaces,
and abbreviate them to €2 and €', respectively. All metric spaces are given Borel
sigma-algebras. D(-) signifies the distribution of a random variable.

A Hilbert space H with a norm || - || is fixed in this work. We use the following
notations for objects, related to H:

B = B(H) — sigma-algebra of Borel subsets of H;

Cy — the space of bounded continuous functions on H, given the sup-norm;
P — the space of probability Borel measures on H;

P(A) — measures from P, supported by a subset A C H;

B(R) — the closed ball of radius R in H, centred at the origin.

Acknowledgements. This paper is based on my talk at the conference in Plestin—
les—Greves (June 2001); I am thankful to the organisers for inviting me there. It
was written during my visit to IHES in June, 2001 and was typed there; I sincerely
thank the institute for hospitality.

1. A class of random dynamical systems

Let H be a Hilbert space with a norm || - || and an orthonormal basis {e;}, and let
S : H — H be a continuous map such that S(0) = 0 and S satisfies some conditions,
specified below.

Let {nk, k € Z} be a sequence of i.i.d. random variables  — H of the form

Ne = 1) = Z bi&jre;, (1.1)
j=1

where b; > 0 are constants and ) b5 < oo. It is assumed that {£;; = &5} are
independent random variables such that || <1 for all j, k, w, and

D(&r) = py(r)dr — Vj, k.

Here py, po, . . . are functions of bounded variation, supported by the segment [—1, 1],
and

/E pi(r)dr >0 Vi>1, e>0. (1.2)
We consider the following random dynamical system (RDS) in H:
u(k) = S(u(k — 1)) +np =: F(u(k — 1)) kE>1. (1.3)
This RDS defines a family of Markov chains in H with the transition function

P(k,v,T) =P{u(k) € T}, I' e B(H),
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where u(+) = u(+;v) is a solution for (1.3) such that u(0) = v. Let {&;} and {&}} be
the corresponding Markov semigroups, acting in the space C, of bounded continuous
functions on H, and in the space P of probability Borel measures, respectively:

&rf(v) = Ef (u(k;v)), ey,
siu(T) = /H P{u(k:v) € T} u(dv),  peP,

where w is the solution for (1.3) as above.
For any v € H and k = 0,1, ... we abbreviate

:U’v(k) = P(kvv’ ) = D(u(k’,v))

Now we impose some assumptions on the map S. The“right” ones are given
in [1], see there conditions A-C. Below we replace them by shorter and stronger
conditions A’) and B’). The new conditions hold for the RDS which corresponds
to the 2D Navier-Stokes equations (see the example below). The proof of the Main
Theorem which we present below works under the conditions A-C but becomes
somewhat longer, and the notations become more cumbersome.

A’) The map S is Lipschitz uniformly on bounded subsets of H, and there exists a
positive constant vy < 1 such that

ISl < yollull - Vu e H. (1.4)

B’) For any R > 0 there is a sequence yy(R) > 0 (N > 1) which converges to zero
as N — oo, such that

HQN(S(ul) — S(uy)) H < n(R) w1 — us||  for all wuy,us € B(R).

Here @)y stands for the orthogonal projector H — Span{ey, en1,-- -}

Example. Let us consider the 2D Navier-Stokes equations, perturbed by a random
kick-force n:

= vAu+ (u-V)u+ Vp=nt,z) = > nu(x)s(t — k), (1.5)

kEZ

divu = 0, /udmz/ndeO; r € T

Let H be the L?-space of divergence-free vector fields on T? with zero space-average,
and let {e;} be the usual trigonometric basis of H. Let us assume that the kicks n
are random variables in H having the form (1.1) and satisfying (1.2). Normalising
solutions u(t) € H of (1.5) to be continuous from the right, we observe that the
equation can be written in the form (1.3), where u(k) = u(k,-) € H, k € Z, and the
operator S is the time-one shift along trajectories of the free Navier-Stokes system.
The condition A’) obviously holds with vy = e~*, where ) is the minimal eigenvalue
of —vA in H. It is also well known that S satisfies B'), see e.g. [3].

IX-3



A measure p € P is called a stationary measure for the RDS (1.3) if &5 p = p
for all k. The goal of this work is to prove the following result:

Theorem 1. There exists a constant N > 1 such that if
bj#0  Vj<N, (1.6)

then the RDS (1.3) has a unique stationary measure . Moreover, there exists a
constant k € (0,1) such that

(al®), f) = () < CHE for £=1,2,.... (L.7)

for every Lipschitz function f on H such that |f| <1 and Lip f < 1. The constant
C' depends only on ||ul|.

2. Preliminaries

2.1. Estimates for solutions.
Since |;x] < 1, then
[ne]] < Ky = (b2 + b2+ ..)"? < oo forall k and w. (2.1)
S0
17 ()l < ollull + K,
and any ball B(R) with R > K;/(1 — 7) is invariant for the RDS (1.3) (a set

A C B(H) is said to be invariant for (1.3) if P(k,u, A) =1 for k > 0 and u € A).
The same estimate above implies that

Ky
1 —")/0’

lu(k:; )| < Aglloll + Ki(L+ -+ 957" < gllvll + (2.2)

forall K > 0, v € H and all w.

2.2. The coupling.

Let pq, 0 € P.
Definition. A pair of random variables &1, &, defined on the same probability space

and valued in H, is called a coupling for (u1, ) if D& = py and DEy = puo.

For basic results on the coupling see [6] and Appendix in [1].
The following lemma, proved in [1], Lemma 3.2, claims that measures p,, (1),
[y, (1) admit a coupling which possesses some special properties if [|u; — us|| < 1.
Let us take any R > 1.
Lemma 1. There is a probability space (Q,F,P), an integer N = N(R) > 1 and
a constant C, = C.(R) > 0 such that if (1.6) holds, then for any ui,us € B(R)
the measures fu,, (1), pu, (1) admit a coupling (V1,Va), V; = Vi(u1,ug;w), with the
following properties:
(i) the maps Vy,Va : B(R)?> x Q — H are measurable;
(i1) denoting d = ||u; — us||, we have

PEIVL = V3 = d/2} < Cid. (2.3)
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2.3. A metric on P.

Let us take any number
RI > K1/<1 — ’}/0)
We fix it from now on and abbreviate B(R’) = B. Due to the results of section 2.1,

the set B is invariant for the RDS (1.3). Next we take any v, € (70,1) and any

positive dy such that

. I 1-—m
< _ .
do_mln{40*, 2 ,1}, (2.4)

where C, = C,(R') (see Lemma 1). For k € Z we set dj, = v¥dy, . We may assume
that dy and R’ are chosen such that d_; = R’ for some L > 1 . Below we consider
the numbers dj, with £ > —L only.

Let us introduce in the space H equivalent metric d:

d(u1, uz) = [|[ur — uz|| A do,
and consider the set O C (%, formed by all functions f such that

|f(ur) = flu2)] < d(uq,us) for all uy, us.

Clearly,
1
édofeo if |f| <1andLipf <1. (2.5)
For any two measures p1, s € P we define the Kantorovich distance dg (i, f1o)
as
di (p1; p2) = sup{(p1 — p2, 9)}- (2.6)
geo
It is known that the space P is complete with respect to this distance (see [2], [1]),

and it is easy to see that P(B) is a closed subset of P.
We remind that the set B = B(R’) is invariant for (1.3).

Lemma 2. Suppose that there exists a sequence (, — 0 such that for k > 1 and
u,v € B we have dg(p,(k), y(k)) < (. Then there exists a unique measure j €
P(B), such that

A (g (k), p) < G fork>1 andu € B. (2.7)

Proof. Let us take any function f € 0. Using the Chapman-Kolmogorov relation
and the assumption of the lemma, for £ > k£ > 0 and u,v € B we have:

(10(0) — pa(k), f) = /

B

Pl —Fk,v,dz) / (P(k,z,dw) — P(k,u,dw)) f(w)

B

< gk/BP(e— kv, dz) = Go. (2.8)

Hence, dg(p1u(€), pu(k)) < (i Since the space (P, dk) is complete, then there exists
a unique measure pu € P such that dg(p.(k), u) — 0 as k — oo, for every u € B.
Passing to limit in (2.8) as £ — oo we recover (2.7). It is clear that supp u C B. So
p € P(B) and the lemma is proved. O

IX-5



3. A Kantorovich-type functional

First we shall construct a special bounded measurable function fx on B x B, van-
ishing on the diagonal. To define the function, we consider partition of B x B to
sets QQp, —L < ¢ < oo. Here (), is the diagonal of B x B,

Q, = {(ul,uQ) € Bx B | dri1 < |lug —usl] < dr}

if 0 <r < oo, and
1 1
Qr = {(u, 1) € Bx B | lur — sl > do, 51 < lur]] V ual] < 5, }

if —L <r<0.
Now we define the function f:
d, if (ug,uz) € @, 0 <1 <00

fK(UDUQ) B {C/lvg, if (ul,ug) € Q@, g <0

where do, = 0 and the numbers {d,} such that
do<d_,<..<dyp (3.1)
are constructed below. Clearly,

d_r > fr(ui,uz) > d(uy, uz) (3.2)

for all uq, us.
For any pair of measures p1, o € P(B) we define a Kantorovich-type functional
K(p1, o) as follows:

K(p, p2) = inf{E fx (U1, U2)}, (3.3)
where the infimum is taken over all couplings (Uy, Us) for (u1, pa).
Everywhere below (and in Theorem 1) N = N(R') is the constant from Lemma 1.

Theorem 2. Let us assume that the assumption (1.06) holds. Then there ezists
Kk <1 such that

(87 (m), & (12)) < KK (1. ) (3.4)

for all py, uy € P(B) (provided that the numbers glv_l, . ’J_L are chosen accord-
ingly).

The theorem is proved in the next section. Now we continue to study the RDS
(1.3), taking the theorem for granted.
Let (U, Us) be a coupling for (u, p2). Using (3.2), for any g € O we get:

(11 — p2, 9) = E(g(Ur) — g(Uz)) < Ed(Uy,Us) < Ef(Us, Us).
Comparing this estimate with the definitions (2.6 ) and (3.3) we find that'

dic(pa, pr2) < K, pra)- (3.5)

LA celebrated theorem of Kantorovich says that the inequality (3.5) transforms to the equality
if in (3.3) we replace f(Uy,Uz) by d(Uy,Uz). See in [1, 2].
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Let us take any wy,us € B. Then p,, (k), pu, (k) € P(B) for all k& > 0. Iterating
(3.4) and using (3.5) together with the first inequality in (3.2), we obtain

dK(,um (k)a Houy (k)) < ]C(,Um (k)a Houy (k))
< KK (1 (0), 41, (0))

= k" fr (w1, ug) < Ky,

Applying Lemma 2 we get that there exists a unique measure p € P(B) such that
di(pa(k), p) < KFd_p for all k > 0, u € B.
Let us take a measure v € P(B). For a function f € O we have:

(&1(0) — . ) = / (k) — 1, f) () < ¥y,

Hence,

di(&5(v),p) < kPd_,  Vk>0, veP(B). (3.6)

Now let us take any u € H. Due to (2.2) there exists ¢ = £(||lu]|) such that
pu(€) € P(B). Since pu,(k+£) = &5pyu(€), then denoting k+ ¢ = t we get from (3.6)
that

dic (pa(t), 1) < K4y, (3.7)
for any u € H, where ¢ = ((||ul|). Due to (2.5) and (2.6) with g = +%f, (3.7)
implies (1.7) with C' = d_prx~".
The estimate (1.7) easily implies that p is the unique stationary measure. Indeed,
if 71 is another one, then for any function f as in (1.7) we have

0) = D1 = [ o) ) = [ Dt
< 1) = Pl ). (38)

The integrand is bounded by two and goes to zero as k — oo due to (1.7). So the
integral goes to zero as k — oo as well and (1, f) = (p, f) for all functions as above.
Hence, u = p.

Theorem 1 is proved.

4. Proof of Theorem 2

Let us take any A" > KC(p1, u2). Then there exists a coupling (U;, Us) for (1, po)
such that Efx(U],U5) < A’. The random variables Uj, U are defined on some
probability space (€', F',P"). Since supports of p1, 1o belong to B, we may assume
that U], US € B for all w'. Now applying Lemma 1 with R = R/, we find measurable
maps Vi, Vs : B?2 x Q — H such that

D(Vj (s, uzi ) = 1y (1) = P(L,;, ) (4.1)
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for j = 1,2. Let us consider the following random variables Uy, Us,, defined on the
probability space Q2 x ':

Uj(w, o) = Vi(U(w'), Us(w')iw),  j=1,2.
Let us take any f € C,. Using (4.1) and the fact that D(U]) = u1, we get:
B f(U) = B [E° f (Vi (U] (&), Up(w);w))]
B [ POLUW), du)f(w)

- /Ml(dv)/P(l,U,dU)f(U)
= (&1(m), f).

Therefore, D(U;) = &5(p1). Similar D(Us) = &5 (ue), so (Uy, Us) is a coupling for

(67(11), &1 (p2))-
If we can prove that

EY fre(Vi(ur, ug;w), Va(ur, ug; w)) < K fre(ur, uz) (4.2)

for all uq, uy € B, then

Efi (Ui, Uz) = B [E¥ fix (Vi(U}, Uy; w), Va (U}, Ug; w))]
< KEY fi (UL, Uy < KA. (4.3)
So K(&%(u1), 65 (u2)) < kA and (3.4) would follow since A’ is an arbitrary number
bigger than KC(p, p2). It remains to check (4.2).

Let us find k € [—L,o0] such that (uj,us) € Qx. If & = oo, then u; = ug, so
V1 = Vs and (4.2) holds trivially. Now let 0 < k < oo. Then, due to (2.3),

]PJ{O/I? ‘/2) S U']‘Zk—l,—l Qr} Z 1 - C*dk

Since frx < diyq for (V4,Va) € Ur2k+1 Q, and fx < sup fx = glv,L for all (V7,V5),
then B
Efx(Vi,Va) < diy1(1 — Cidy) + d_ 1 C.dy.

As fx(uy,us) = di, then in this case

Efx(Vi,Va)
fK(U17U2)

< (1= Cudy) + Cud_y.

Therefore, (4.2) holds with some k-independent x < 1 if
Cod_p <1—m. (4.4)

If —L <k < —1, then [luy],||uz| < 2di and [|S(u;)|| < ~osdk for j = 1,2. As
di > dy, 70 < 71 and the random variable n with a positive probability is smaller
than any fixed positive constant (see (1.2)), then

1
P{IVi, V2l < §dk+1} >6>0. (4.5)
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If £ < —2, then this means that
]P){(Vla V) € Uer—i—l Qr} > 0.
Since f < glv_L, then we have
Efx(Vi,Va) < Odjsr + (1 — 0)d_p. (4.6)
As fr(u1,us) = dy, then (4.2) holds for —L < k < —2 if
Odyr1 + (1 — 0)d_p = rdy. (4.7)
If k = —1, then for any w from the event in the L.h.s of (4.5) we have || V1|, || V2] <

5do. Therefore |[Vi — V3|l < dy and (V4,V2) € U,50 @ So the relation (4.6) still
holds for £ = —1 if we denote

do = do.

With this choice of dy, (4.2) holds for all negative k if so does (4.7).
The relations (4.7) are equivalent to

~ k+60—1~
d—L-i—l:T -L

and .
dopyr = g(ﬁd—ur—l —(1-0)d_r)

for r > 2. That is,

dpp = ‘77 {(ﬁ)“l <R+e_ o ‘9>) Lt —0>]

0 K —0 Kk—0

for1<r<L-—1.
Let us assume that Kk =1 — ¢, where 0 < ¢ < 1. Then

d_pr = JQL K arl(_f_ 5T 0(52)) + %} : (4.8)

where O(g?) depends on r < L. Choosing ¢ = ¢, sufficiently small, we see that the

numbers d_r,, (0 < r < L) decay when r grow; so they satisfy all relations in (3.1)
(if do = do).

We have seen that a function fx, constructed using the numbers {C?g} as above,
satisfies (4.2) and (3.1) if it satisfies (4.4) and if dy = do. Due to (4.8), d_p = do(1 +
O(e)). Taking dy = dy, we have d_;, = do(1+0(e)). Due to (2.4), dy < (1—1)/2C,.
So (4.4) is satisfied if € is sufficiently small.

We have constructed constants givk such that the corresponding function fy sat-
isfies (3.4) with some kK =1 — ¢ < 1. The theorem is proved.
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