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Recent Results on Lieb-Thirring Inequalities

Ari LAPTEV Timo WEIDL

Abstract
We give a survey of results on the Lieb-Thirring inequalities for the eigen-
value moments of Schrodinger operators. In particular, we discuss the optimal
values of the constants therein for higher dimensions. We elaborate on certain
generalisations and some open problems as well.

1. Introduction
1. Let H = H(V; k) be the Schrédinger operator

H(V;h) = —h*A ~V(z) on L*R%).

For suitable real-valued potential wells V' the negative spectrum {\,(V; )} of H is
semi-bounded from below and discrete. Put ¢ > 0 and h > 0. The Lieb-Thirring
inequalities

SoalVih) < R(0,d)S5u(Vi ) (1)

give, for appropriate pairs of ¢ and d, bounds on the moments of the negative
eigenvalues!

Sea(Vih) = tr HO(Vih) = > (= Aa(Vi H))°

in terms of averages of phase space volume

dzxd
stuvin) = [ [me g )
N F(U’f’l) —d ,0+%
T / Vot (3)

of the classical system with the correlated Hamilton function h(&, z) = |£]2 — V(z).
The numerical factor in (3) is called the classical constant

cd _ I'(o+1)
7 9dnd/2T (o 4 ¢ 4 1)

'Here and in the sequel 4+ = (|z] £ z)/2 denote the positive and negative part of numbers,
functions and hermitian matrices or operators.
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and the so-called Lieb-Thirring constants L, 4 in the inequality

> (=M(Vik) < La,dh‘d/Vf+%da¢

n

evaluate as L, 4 = R(0,d) Lg}d.

2. The intrinsic link between spectral quantities and their counterparts in (1)
distinguishes these bounds from other variants of spectral estimates. In particlar, the
r.h.s. of (1) captures the correct order of the semi-classical Weyl type asymptotics?

Sea(Vih) = (1+0(1))SS,(V;h) as h—0. (4)

But in contrast to (4) the inequalities (1) are uniform in h > 0 . This allows one
to extract information on the negative spectrum of Schrédinger operators from the
classical systems in the non-asymptotical regime as well.

3. The parameter £ can be scaled out from the bound (1). Up to a few asymp-
totical arguments we put in the sequel A = 1 and drop it from the notation.

2. On the validity of the inequalities (1)

1. In the dimensions d = 1,2 any arbitrary small attractive potential well will
couple at least one bound state, see e.g. [4]. Hence, the quantity Spq(V'), being
the counting function of the negative spectrum, is a positive integer for any non-
trivial V' > 0, while the phase space quantity Sg}d(V) can be arbitrary small. This
contradicts to (1) forc =0 and d =1, 2.

Moreover, in the dimension d = 1 the unique weakly coupled negative bound
state behaves as® [27]

(=M (V)2 = (27! +o(1))n~1/de for Fi — oo. (5)
Hence S, ;(V;h) = O(A~%7) for large A, while Sg}l(V; h) = O(h~'). This excludes
(1) ford =1and 0 < 0 < 1/2. We conclude that
Fact. The inequality (1) fails for 0 <o <1/2 ifd =1 and foro =0 if d = 2.
2. On the other hand it is known that

Fact. The inequality (1) holds true for o > 1/2 ifd =1, for o > 0 if d = 2 and for
o>0:fd>3.

Estimates for Riesz means of eigenvalues have first been studied in [22]. There
the cases 0 > 1/2 for d = 1 and 0 > 0 for d > 2 were settled. The methods of
[22] do not cover the minimal admissible values of 0. In particular, for 0 = 0 and

2This formula can be deduced for all V" € Co(R¢). If for given o and d the bound (1) holds,
then (4) can be extended to all 1" € L7+ (R?). If on the other hand (1) fails, formula (4) does
not apply to all 1V € L°+% (R?) in general [5).

3The potential V' should have a positive mean value and (1 + |z|)V"(z) should be integrable.
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d > 3 (1) turns into the celebrated Cwikel-Lieb-Rosenblum estimate on the number
of bound states

Soa(V) < Loa / V#2dz = R(0,d)SS4(V), d>3, (6)

which has been shown in [8, 20, 24]. This bound on its turn implies (1) for ¢ > 0
and d > 3. Indeed,

e ¢} o—1 [es} o—1
SoalV) = / #0wV) < 2 = /0 SoaV — 1)

< Od/ S tf’—ldt ’
- #oa) [ {/ / e
= R(0,d)SZ, "

This is a special case of an argument by Aizenman and Lieb [1], who show that

Fact. If R(o,d) is finite for some d and some o > 0 then
R(o',d) < R(0,d) for all o' >o. (7)

The other remaining case o0 = 1/2 and d = 1 has been settled in [28]. Here one
finds in fact a two-sided estimate

cl
Sl

1
2

(V) < 8,1(V) <2S0u(V), V20,V eL(R) (8)

The sharp lower bound in (8) was probably first observed in [12] and the sharp
constant in the upper bound has been found in [15]. Comparing weak and strong
coupling behaviours it is easy to see, that o = 1/2 and d = 1 is the only case in the
Lieb-Thirring scale, where such a two-sided estimate by the classical phase space
average is possible.

3. Let us mention that the bound from below in (8) induces a lower estimate
[12]

So2(V) > 55}2("’) (9)

for non-negative spherical symmetric V' in the dimension two. Moreover, for d =
2 the negative spectrum of H(V') is infinite for any non-negative potential V €

L, (R*)\L'(R?), that is whenever S§L(V) is infinite, see [29]. It seems to be an
interesting problem to clarify, in what way (9) can be extended to larger classes of
potentials.

3. On the sharp values of the constants R(o,d).

1. While the validity of the bounds (1) is completely settled, the problem on the
optimal values of the constants R(o,d) still posts some tantalising riddles. Namely,
the inequality (7) shows that the functions R(o, d) are non-increasing in o for fixed
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d. This corresponds to the understanding, that the eigenvalue moments S, 4(V)
should behave more regular and the constants R(o, d) should actually improve for
higher values of o.

On the other hand, all previously known methods of proofs of (1) rely on some
initial estimates for S 4(V —t), which are then modified and integrated to bounds for
higher moments. These intermediate bounds for the counting functions do inevitably
spoil the final estimates on R(o, d) for higher o. Therefore, sharp results on R(o,d)
require a direct approach to the eigenvalue moments. But the Birman-Schwinger
principle, that is the technical key element for estimates on counting functions, does
not extend to eigenvalue moments. The search for an appropriate detour is the core

of the mathematical difficulties in the determination of the values of the constants
R(o,d).

2. Below we summarise the available information on this topic and begin with
the case d = 1. Sharp constants in the dimension one appear already in [22] and
[1]. There it has been shown that

R(o,1) =1 for all o> 3/2. (10)
Since the asymptotical behaviour (4) implies that
R(o,d) >1

for all admissible o and d, the constants (10) are clearly best possible. The original
deduction of (10) uses a trace identity for o = 3/2 and the monotonicity argument
(7). We discussed this more in detail in section 5.

Another case in the dimension d = 1 has been settled in [15] with

R(1/2,1) = 2. (11)

This constant reflects the weak coupling limit behaviour (5). Moreover, if V(z) =
8(z) then H(4) has the unique negative eigenvalue A\;(d) = —1/4. Up to translation
and scaling this is the only potential for which the constant (11) is achieved [15].
The result (11) is based on a monotonicity principle for partial eigenvalue moments
of a modified Birman-Schwinger operator.

The optimal values of R(c,1) for 1/2 < o0 < 3/2 are unknown. An analysis of
the lowest bound state shows that here

S, (V (V) _1N\%"3

R(o,1) = sup cil( ,)Z sup 2T Cll( s (O 2) . (12)
VeL‘”‘% Sa,l(v) \v'EL‘H'% Sa,l(v)

The maximising potential is

V(z) = (0 —1/4) cosh ™2 z.

Lieb and Thirring conjectured in [22] that R(o, 1) is actually equal to the term in the
r.h.s. of (12). The result (11) in conjunction with (7) implies at least R(o,1) < 2.

3. Until recently only sparse knowledge was available on sharp constants R(o, d)
in higher dimensions. The first related result concerns the special case of the eigen-
values {u} of the Dirichlet Laplacian HY = —A in an open domain 2 C R¢. In
1972 Berezin [3] showed that
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Fact. Forallo > 1, A >0, d € N and any open domain Q it holds
1
S = A < o [ d [ de(el - A = 1hol@at ()
* @2m)? Jo  Jra ’

Remark. Choosing a potential Vo(z) = A for z € Q and Vp(z) = —oo for z ¢ Q
the bound (13) can be rewritten as

Sa,d(‘ ) S (VQ) o2 17 de Na (14)

and is a special case of (1). Note that for this class of potentials the constant in
(14) is the semi-classical one.

We outline a short proof of (13) from [16]. Let {¢¢} be an ortho-normed eigen-
functions of HY, which we continue by 0 on R?\Q2. Let {¢;} be the Fourier trans-
formed of {@x}, which form an ortho-normed system in L?(R¢). Applying Jensen’s

inequality with respect to the measures |y (€)|2d€ on R4 we find

S = ([ 6P - Viduerra) (15

k k

< / (6l = 27 D IBue) . (16)

On the other hand, ¢;(¢)are the complex conjugates of the Fourier coefficients of
(2m)~%/2¢%¢ on Q) with respect to {¢x} in L?(2). Hence,

7 2 _ (97)~d %120y = (97) 4 _
SIIGe = 2n) /Ql dz = (2m) /de (17)

If we insert (17) into (16) we obtain (13) . O

Let us consider the Legendre transformation * of the inequality (13) for o = 1.
It is easy to see that

p
O (e — 7)) (p) = (0= [P o + Y e

k k=1
while ‘
A 2
(Leavol(@)a™4) " (p) = p (Lelvol()

2
Since f(z) < g(z) for all z > 0 implies g"(p) < f*(p) for all p
z = A for p =n € N one recovers a result by Li and Yau [19]

" : 2 d
;Hk >nlta (Lg}dvol(Q)) ‘ e d

4We recall that the Legendre transformation f"(p) of a convex, non-negative function f(z) on
Ry is given by f"(p) = sup,>, (pz — f(x)), p > 0.

, from (13) with
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4. The harmonic oscillator is another example which has been studied in con-
nection with Lieb-Thirring inequalities. Put m = (my,...,my) and

d
Vin(z) = A — Zmixi, A>0, mg>0. (18)
k=1

Then the operator H(V,,,) has the eigenvalues

d
Ar(Vim) = —A + Emk(l +27), T=(7T1,..-,74),

k=1
with 7, = 0,1,2,... In the dimension d = 1 for ¢ = 1 the classical phase space
average equals to

S5 (Vin) = A%/ (4my). (19)

On the other hand,

S10(Vm) = Y _(ma(1+2k) — A)_

k>0

= my (A2(2m1) "% — 1) < ST (Vi)

where t = 1 + [thl — %] — 2hm . With the Lieb-Aizenman argument we conclude
that
Sy1(Vin) < S (Vi) for all o > 1. (20)

A similar evaluation in the d-dimensional case is more involved and has been
carried out by De la Breteche [9]. We present an alternative generalisation to higher
dimensions, see [17]. Put 2’ = (z1,...,24-1) and V(z) = W (2') —mZz?2. Integration
in the dth coordinates of z and & gives

s(v) = / / (€12 + m3a3 — W(z'))°

1

= WSJ—HGZ L (W).

dzde
(2m)d

Separation of variables implies that A, ., (V) = A (W) + my(1 + 2my). Carrying
out the sum over 75 > 0 first, from (20) for o > 1 it follows that

Sed(V) = D (V) + ma(l +274))°

T sTd
= ZSUI(A V[’ mdxd <ZSCI mZng)
dxgyd€
3 | [ e+ mizi+ xoovye (é})d
1
<

m}:( A (W ))GH msaﬂ,d-l-

7,I
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Hence, we have

Sea(V) < Se+1,d-1(W)

< : (21)
Sea(V) ~ Sk an (W)
This induction procedure gives
Fact. For the harmonic oscillator V = A — S°¢_, m3a? it holds
Sua(V) < SEL(V) for all o>1 and all deN. (22)

Remark. From Theorem 1 in section 4 it will follow that in fact (22) holds true for
all 0 > 1, all d € N and all potentials of the type V(z) = W(zy,...,z4-1) + m3z3
for which Sg’ld(V) is finite.

5. The harmonic oscillator provides also certain counterexamples. In particular,
one can show that if o < 1 then for certain parameter A and m the strict inequality
Swd(Vim) > S(Vin) holds [13], and thus

R(o,d) >1 forall o<1, deN (23)

An analysis of the lowest eigenvalue via the respective Sobolev embedding constant
shows, that for d = 2 the bound (23) extends to all o < g with oy ~ 1.16 [22].
The methods of [22, 20] give certain explicite upper bounds on the constants
R(o,d). In particular, the best known estimates on R(0,d) can be found in [20].
There have been minor improvements for certain cases of higher moments, see e.g.

[6].
In [22] Lieb and Thirring posed the

Conjecture 1. In any dimension d there ezists a finite critical value ocr(d), such
that R(o,d) =1 for all 0 > o¢r(d). It is expected that ocr(d) = 1 for d > 3.

In the sequel we state our results towards the solution of these conjectures.

4. Lieb-Thirring Inequalities for Operator Valued Potentials

1. Our results are based on the following generalisation of the Lieb-Thirring
inequalities (1). Namely, let G be a separable Hilbert space, let 15 be the identity
operator on G and let V be a function on R? which takes a.e. compact self-adjoint op-
erators V(z) on G as its values. We shall study the negative eigenvalues {\,(V’; h)}
of the operator

H(V;h) = -h’A®1g - V(z) on L*RY)Q®G.
We shall find bounds ‘
Soa(Vih) < (0,d)S5y(V: h) (24)
of the eigenvalue moments

Sed(Vih) = trpagayecH (Vi) =) (=Aa(ViR))?

n

XX-7



in terms of the classical counterparts

dzxd§

SEWm = [ [ trohe (€.2)-22% _ pd p-d Vot (2)d
a,d( ’ ) I'c —(é,x)(Q']rﬁ,)d o,d trgV_ (I) Z,

where h(€,z) = |£]* ® 1¢ — V(z). The constants r(o,d) should not depend on G
and (24) should hold whenever the r.h.s. is finite. It is obvious that (1) is a special
case of (24) and

1 < R(o,d) < r(o,d).
If not needed we put & = 1 and omit it from the notation.

2. In [18] we prove the following result, which confirms the first part of the
conjecture by Lieb and Thirring with o¢r < 3/2.

Theorem 1. [A. Laptev, T. Weidl] The identity
R(o,d) =r(0,d) =1
holds true for all 0 > 3/2 and all d € N.

One of the most interesting case for applications is 0 = 1 and d = 3. Here the
best know estimate was R(1,3) < 5.24 [6]. In [14] we show

Theorem 2. [D. Hundertmark, A. Laptev, T. Weidl] The bounds
R(0,d) < r(o,d) < {

hold true in all dimensions d € N. In particular, if d =1 then

R(1/2,1) =r(1/2,1) =2 for o=1/2, (25)
R(0,1) <r(0,1) <2 for 1/2<0 < 3/2. (26)

Remark. The method of [22] extends to systems and shows (24) for o > 0 if d > 2
and for 0 > 1/2 if d = 1 with the same upper bounds on the constants r(o,d) as
are given there for R(o,d). The validity of (24) in the case d > 3, 0 = 0 has not
been settled yet.

It turns out that R(o,d) = r(o,d) in all cases, where the sharp values of these
constants are known. We formulate

Conjecture 2. The bound (24) holds for all pairs o,d for which (1) holds, and the
optimal values of the constants R(o,d) and r(o,d) coincide.

3. We sketch now the proof of Theorem 1. First we establish the bound (24)
with the identity r(o,1) = 1 for d = 1 and ¢ > 3/2. By [1] it suffices to study
the case 0 = 3/2. Moreover, by a density argument one can reduce the problem
to finite-dimensional Hilbert spaces G and smooth, compactly supported matrix
functions V. We apply then a generalisation of trace formulae [7, 11] to matrix
valued potentials [18]. Some more details will be given in section 5.

XX-8



Recently Benguria and Loss found an independent proof of this special case
based on the Darboux transformation [2].

4. In the second stage of the proof we apply an iteration with respect to the
spatial dimension d. Namely, a standard variational argument implies that

82
62

d2
S Upem)ed (_d_x?i ®lg - W—(f'?d)> ,

where ' = (z1,...,24-1), A’ is the Laplacian in the coordinates =’ and W(z,) is
the operator W(z4) = —A’' ® 1g — V(2';z4) on G = L*(R4"!) ® G with the frozen
coordinate parameter z4. Put o > 1. We apply (24) for d = 1 with r(0,1) = 1 and
the internal Hilbert space G and find

Sed(V) = trizmeec ( ®1lc — (A" + V(< xd)))

1
Sea(V) < Lgl/tréwt_ﬁz(xd)dxd

L [ SpupunV(s20)dza

We continue this induction and find in the final step with = (zo,...,z4)

IA

a'+1

< HLCl / ter‘”?( )dz.
k=0

d

Since L, = TT¢; LC1+,c , and s(v) = LgldftrGV:+2dm, we find that S, 4(V) <
k) o 51 ) ) k)

Seh(v). O

SealV) < LC‘ / Syt (V(52))dz

5. Trace formulae and further estimates
1. Put G = C" and consider the system of ordinary differential equations

- (dQ/dz2 ® 1g) y(z) — V(2)y(z) = k’y(z), zeR (27)

Here V' is a compactly supported, smooth (not necessary sign definite) Hermitian
matrix-valued function. Define z;, = minsuppV and z,,x = maxsupp V. Then
for any k € C\{0} there exist unique n x n matrix-solutions y(z) = F(x,k) and
y(z) = G(z, k) of (27) satisfving

F(z,k) =e*1g as > Tma, G(z,k)=e*15 as z < zmpn.

The pairs of matrices F(z,k), F(x,—k) and G(z, k), G(z, —k) form complete sys-
tems of independent solutions of (27). Hence the matrix F(z,k) can be expressed
as a linear combination of G(z, k) and G(x, —k)

F(z.k) = G(z,k)B(k) + G(z, —k) A(k). (28)
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The matrix functions A(k) and B(k) are uniquely defined by (28).

2. The Buslaev-Faddeev-Zakharov [7] trace formulae can be generalised to
matrix-valued potentials [18]. The first three identities read as follows

2

L?}l/trGVdm = S1,(V)—-1, (29)

g, / V2 = Sy,(V)+3L (30)

Il

g, / trgVds —J = Sy, (V) 51y (31)

where J = 1LY [ trg (dV/dz)? dz and

L= (27r)‘1/kjln|detA(k)|dk, j=0,2,4.

For k € R it holds A(k)A*(k) = 1¢+ B(—k)B*(—k) and | det A(k)] > 1. Hence I; >
0. If we drop the term 31, from (30) we immediately find (24) with r(3/2,1) = 1.
Similarly (29) and (25) lead to the lower bound in

L‘;l / trgV (z)de < Sy, (V) < 2L°%171 / trg V. (z)dz. (32)

3. We put now V > 0. The upper bound in (32) and (29) imply
Ip=S1,(V) - L‘;l / trgVdz < LC%IJ / trgVdz.
Moreover, from (24) for d =1, vy =5/2, r(5/2,1) = 1 and (31) it follows that
5y = S5 (V) - L%ll /trGV3da: +J < J
, 5,

For the scalar case the last inequalities was found in [22].

We apply now Holder’s inequality I? < Iyl; and insert the resulting estimate
on I back into (30). In view of (24) for d = 1, 0 = 3/2 and r(3/2,1) = 1, after
rescaling A back into the estimate we find that

0< Sg{l(v; h) = S3,(Vih) < R(V) (33)

W)= feras | [ ol

The term on the r.h.s. of (33) does not depend on A, while the quantities
sl (V;h) and Ss ,(V; h) show the asymptotical order O(h~') as i — 0. Hence, the

inequality (33) provides an uniform estimate on the remainder term to the Weyl
asymptotics for S 3 1(V5 k) for sign-defined perturbations. By continuity it extends

to sign-defined operator-valued potentials on infinite-dimensional Hilbert spaces G,
for which the terms R(1") and Ss, (V) are finite.

with

2dm
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6. Polyharmonic operators

1. Another natural generalisation of (1) are Lieb-Thirring inequalities for the
operators

H(V)=(-A)-V(z), l€eN

on L%(R%). Let {\,(V)}. be the negative eigenvalues of H;(V). We study the
inequalities
Ssa1(V) < R(o,d, l)Sadl(V) (34)

where Sy 4:(V) =3 (=M (V))? and

- dzd
adl // hl ga :L‘)g ’_Ladl/v—i—h{dﬂj

Mo+ 1)I'(k+1)
247427 (lk + 1) Mk + 0 + 1)

with

La'dl

and k = d/2l.
2. The validity of (34) is settled by

Fact. The inequality (34) holds true if and only if

c>0 for k>1,
oc>0 for k=1,
c>1—-—k for k<1

The case 0 = 0 for k > 1 has been settled in [8, 24]. In particular, the techniques
of [8] apply to non-integer [ as well. Using the Lieb-Aizenman trick we can then
raise (34) to all 0 > 0. For ¢ > 1 — k with k < 1 one can easily adapt the approach
of Lieb and Thirring [22], see also [10]. These methods do also extend to non-integer
values of /.

The critical case for integer values of | has been solved in [23]. By analogy with
o =1/2for l =d =1 we have a two-sided estimate

Ly parh™® / Vdr < S)_wa)(Vih) < Ly aih ™ f Vidz (35)

with appropriate positive, finite constants fll_md,l and Li_,q;. For non-integer
values of [ the validity of (35) has not been settled yet. Comparing the asymptotical
behaviour for S, 4,(V; k) as b = 0, 00, we see that 0 =1 — k > 0 is the only power,
for which a two-sided bound by the phase space average might exist.

Counterexamples to (34) in the corresponding cases can be found in the limit
h — oo. Now one might have a family of weak coupling states, but the contribution
of the lowest one is leading. This analysis leads to the

Conjecture 3. We have

¥ l K cl
Li—war=L% and Li_.q1 = — Ly for k< 1.
K.d, 1—k,dyl rdl = o Bk

XX-11 .



3. Constants in Lieb-Thirring inequalities for higher order operators are much
less studied than their counterparts for [ = 1. No sharp values of the constants are
known, not even in the dimension d = 1. It is also not clear, whether the bounds
(34) extend to operator-valued potentials. A more detailed investigation of Lieb-
Thirring bounds for general | might pay off with new insights for the special but
most interesting case [ = 1.

4. Acknowledgement: The second author acknowledges support by GAAS
1048801 and expresses his gratefulness to P. Exner for his hospitality during Prague
Quantum Spring 2000, where a substantial part of this text has been written.
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