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GDR 1151 (CNRS)

Solvability of second-order left-invariant differential
operators on the Heisenberg group

Fulvio RICCI

Abstract
We present some recent results, obtained jointly with Detlef Muller, on

solvability of operators of the form

2n

^ a^kVjVk^iaU
j.k=i

where the Vj are left-invariant vector fields on the Heisenberg group, such that
[Vj^ Vj-^-n] = U (1 < j< n) are the only nontrivial relations, and A = (ajk) is
a complex symmetric matrix with semi-definite real part.

The presentation also contains references on the work done in the past
few years in this area.

1. Introduction
The Heisenberg group Mn can be viewed as R71 x R" x R with coordinates

(re, y, u) = ( ^ i , . . . , Xn, y i , . . . . yn, u) and product

{x,y,u){xl,yf,ut) = ( x + x',y + y 1 ,u + u1 + _ { x ' y' - y ' x') ) . (1.1)
\ z /

The vector fields

X j -= a .̂ - _y^9u , j = 1, • • • , n ,

Y — r) 4- -r c) i — 1 • . • n ^'^1 3 ~~ ^Vj ' ^^J^U ^ J ~ 1 ? 7 l v 52
U= 9U •)

span the Lie algebra t)n of left-invariant vector fields, with the relations:

______[X^Yk]=6^U . [X,. Xk] = [Y,, Yk] = [X^ U] = [Y^ U] = 0 .
MSC 2000 : 35A05, 43A80
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The analysis of differential operators on H^ involving quadratic expressions in the
Xj and Yj present many interesting aspects and applications to different problems
in complex and harmonic analysis. The most relevant operators in this class are the
sublaplacian

^D^^2)- (1-3)
j-i

together with the Folland-Stein operators

C^=C+iaU , (1.4)

with a € C. It is well-known that properties of C^ such as hypoellipticity and
local solvability, depend on the value of a. This is coherent with the fact that C is
not principal type. The "singular values" of a, i.e. those for which Ca is neither
hypoelliptic nor locally solvable, are

a=±n,±(n+2),...,±(n+2A;),... (1.5)

(see [FS]). Observe that the Xj and Yj generate the full Lie algebra t)n, so that
hypoellipticity for C itself, and for Ca when a is purely imaginary, follows from
Hormander5 classical theorem [Hoi].

Basically, the pattern is the same if C is replaced by any real positive definite
quadratic combination of the Xj and Yj (see [BG]). One can then suitably change
coordinates and reduce to

^-Ew^2)- (L6)j-i
with \j > 0. The singular values for C^ = C! + iaU now become

n

a=±]^(2^-4-l )A, . (1.7)
j'^i

Some attention to indefinite quadratic expression was initially given in [P], where
operators of the form (1.6) with Xj = ±1 were considered.

A more systematic study of local solvability for second order left-invariant oper-
ators on the Heisenberg group was initiated by Detlef Miiller and myself in [MR2].
A description of these results requires some changes in the notation, and some con-
siderations on the symplectic invariance which is intrinsic to the structure of the
Heisenberg group.

Hence we denote the vector fields X i , . . . ,A^ , Y i , . . . , y ^ (in this order) by
^ i - - - ^ 2 n - Consistently, we set v = (x , y ) G R271. Given a 2n x 2n symmetric
matrix A == (o^), set

2n

c^ = E ̂ jVk - (1.8)
j^=i
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and CA,Q = CA + ̂ U. These operators can be characterized as the second order
operators on Wn that are left-invariant and homogeneous of degree 2 under the
dilations (v^u) ̂  ^v^S^u).

We recall that Sp(n,R), resp. Sp(n,C), is the group of 2n x 2n real, resp.

complex, matrices g such that g J ^ = J, with J = ( n ) . The Lie algebras
\—ln U y

sp(n,]R) and sp(n,C) consist of the -real or complex- matrices S such that SJ +
J^=0.

I f ^ G Sp(n,R), the linear transformation (v,u) i-̂  {gv^u) preserves the product
(1.1) (i.e. this transformation is a group isomorphism); hence the operators C^a
and jCpA^o must share the same properties.

When A is real, such properties are conveniently described in terms of the matrix
S = —AJ 6 sp(n, R) defining the Hamilton map associated to A. A simplified, even
if not complete, presentation of the main result of [MR2] can be given as follows. We
refer to [MR2] for the precise statement, where the cases where solvability occurs
are completely determined.

Theorem 1.1 Suppose that A is real. The operator CAO == ^A + i^U is locally
solvable/or all values of a, unless S = —AJ is semisimple and with purely imaginary
eigenvalues. In this case, we can assume, modulo a symplectic change of variables,
that CA ^ ̂  in (1.6), with \j G R. Then the values of a such that CA,O is not
locally solvable are those described by (1.7), plus, possibly, limits of sequences of
such values.

We point out what the situation is when A is real and positive semidefinite.
Then the eigenvalues of S = —AJ are always purely imaginary, but there are two
cases: either 5 is semisimple, in which case CA can be put in the form (1.6) with
A j > 0, or S is not, and then CA can be reduced to

CA^W^Y^+ E ^ - (L9)
J=l J=A-H

with 0 < k < k' < n and \j > 0 for j < k.
In the first case, we have the singular values (1.7); in the second case there are

no singular values.
The analysis of the operators CA,O tor A complex is much more involved, at least

for two reasons: one is that the classification of the conjugacy classes of matrices S €
5p(n,C) under the action of the group Sp(n,R) (which determines the admissible
changes of coordinates) is not as well understood as for real matrices, and apparently
it is very complicated; the other reason is that one of the main tools that are used
in the real case, i.e. the so called oscillator semigroup, is not available, unless one
assumes that the real part of A is positive semidefinite.

More recently, DetlefMiiller and I have attacked the case of a complex symmetric
matrix A with positive semidefinite real part, using the oscillator semigroup. In the
rest of these notes we give a description of these results, which are still unpublished.
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2. Twisted convolution and the oscillator semigroup
If / is a reasonable function on Mn and ^ e R \ {0}, define

/ -I-00

ftl(v)= f{v,u)e-2villudu. (2.1)
-00

It is then easy to see that

(/ * 9Y{v} = f r(v- v^^e^^ dv1

JR2n (2.2)
^-^x,^),

the so-called p,-twisted convolution of f^ and g^.
For the left-invariant vector fields on H^ we have the following formulas:

(X,fr = {9^ - m^)r =fx, (cVo) '4= X^r

(W - (^ + ̂ W)^ =fx, (cVo) ̂ = Y^r (2.3)
(UfY = 27ri^ .

Hence, if CA is the operator (1.8), we have (CA^ = H\j^, where L\ is obtained
by replacing each Vj with the corresponding V^ in (1.8). If we also set

2n

then

AA = ̂  a,h9^9v, ,
j,k=l

w = r x^ A^o.
We are interested in developing a functional calculus for CA, which will allow us

to construct, whenever possible, fundamental solutions for C^a- In doing do, we
initially assume that the real part of A is positive definite.

The first step is the explicit determination of the semigroup generated by /^
Modulo scaling and complex conjugation, we can assume that ^ = 1. In doing so,
we drop the index fi at all places.

If we naively copy the formula of the "heat kernel" for AA, and set

u(v^t) =fx (de^TT^)-^-^4)"1^ , (2.4)

we have that u(v,0) = f for any test function /, and 9^(^,0) = CAU{I\O). Un-
fortunately, the Gaussian functions in (2.4) do not form a semigroup under twisted
convolution, so that the equation 9fU = CAU is not satisfied for t > 0.

However we are not far from the correct solution, and (2.4) gives a first order
approximation for small values of t. One simply has to understand the "algebra"
underlying twisted convolution of Gaussian functions.

Denote by Gn the Siegel half-space consisting of all 2n x 2n complex symmetric
matrix with positive definite real part.
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Lemma 2.1 ([Hw]) Given two matrices A\,A^ e 6n, we have

e-^^ x e-^^ = det(Ai + A^e-^^ ,

where

As + zJ/2 = (A2 + %J/2)(Ai + A2)- l(Al + zJ/2) e ©^ . (2.5)

So the scalar multiples of these Gaussians form a semigroup, called the oscillator
semigroup (in one of its realizations, see [Hw, Fo]).

If we set Ay = ^ J S j , with Sj e sp(n,C), (2.3) becomes

83 + zl - (^2 + zJ)(^i + ̂ r^i + zJ) .

Therefore, we look for one-parameter families St such that

S^ + il - (^ + z!){St + ̂ Q-^^ + zJ) .

As this condition implies that the St commute among themselves, we obtain the
addition formula for the cotangent:

S t + t ^ { S t S t ' - I ) { S t + S ^ ~ 1 .

The following statement is a modification of Theorem 3.1 in [MR1] (see also
[MPR2]).

Lemma 2.2 Given A C ©n, write A = SJ with S € Sp(n, C). Then

F^s{v) = (det(2sin27^t5))-ie-?wcot(27r^ . (2.6)

is a Schwartz function for every t > 0 (̂ m particular Jcot(27rtS) C ©yj and

fx^s-e^f.

For generic ^ / 0 we then set

r^(y)=H"r,s(/^), (2.7)

in order to have
fx,r^=e^f.

As the r^ become singular for t tending to zero, it will be more convenient to
do computations on their Fourier transforms,

f^)= ( r^Oe-2^^ (det(cos27^(5))4e-^^(tan27^<s)^ . (2.8)
JR2"
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3. Construction of fundamental solutions when SReA > 0
Write the formal identity

/ -(-oo

{CA + icxU)-1 = [C,^ - 27^^)-le2"^ dfi
-00

/4-00 /*00

/ e^-^^e^^dtdp
-oo Jo

/+00 /*00 »

= _ / ^^-2^sgn^27rn^ ̂  ̂

-oo YO 1 /^1 '

In order to give a meaning to it, we must discuss the convergence, in the sense
of distributions, of the integral

/+00 POO ^__^ j

/ r^e-^^^e^^dt-^ .
-oo JQ t1s H

If / is a test function, passing to its Fourier transform, this amounts to requiring
that

/+00 r l i i r°° ^-27ratsgnp. r „

fV -^———-———rdt e-^-^f^^d^ (3.1)
-oo W J o (det(cos27rt5))2 ^2n

is convergent.
This problem involves a careful discussion of the spectral properties of 5: location

of its eigenvalues in the complex plane, symplectic properties of its generalized
eigenspaces (as subspaces of C271 with the symplectic form induced by J). This
analysis is developed in detail in [Ho2] (see also [Sj]).

The first remark is that S does not have real eigenvalues. In fact, if C is the
convex hull of the set {^uAv : v € W1} (so that C is an angle intersecting the
imaginary axis only at the origin) then the eigenvalues of 5 are contained in ±iC.

Let ± A i , . . . . ±\n be the eigenvalues of 5, labeled so that SmA, = v, > 0. Then
i

the quantity (det(cos27rt6'))2 that appears in (3.1) grows exponentially, as t tends
to infinity, like e27^, with v = ^,v^.

One can prove that the integral (3.1) converges for [Stea < i/. The argument
requires two different estimates of the integral in dp,, to be applied for large and for
small values of IJL respectively.

For |^| > 1, the integral can be controlled, uniformly in t. by the decay of the
Fourier transform of /.

For|^| < 1, Holder's inequality gives a bound of the form |/^n[det(tan27^<5)^(v2

for any 8 < 1. It is then convenient to choose 8 < 1/n for t small and 6 = 1/2 for t
large.

The integral (3.1) naturally splits into the sum of two integrals, obtained by
restricting the integration in dp to one of the two half-lines. Let us restrict our at-
tention to IJL > 0. The argument above shows that the integral defines a distribution
K^ for ^ea > -v.

Clearly, K^ depends analytically on a, so it makes sense to look for an analytic
continuation to other values of a.
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What is technically easier is to produce an analytic continuation of each deriva-
tive U^K^ to a larger half-plane, apart from a finite number of isolated poles. As £
varies, these half-planes cover the full plane.

These continuations can be obtained by iterated integration by parts in dt. We
simply sketch how the first step is performed on UK^.

If we set k(t) = e~27^at{det(cos27^tS)>)~~2, it is not hard to see that, for SRea >
—^, k has a primitive that vanishes at infinity and is asymptotic to a constant times
^-2.(o-a)^h A = E, Ar

This denominator will ultimately produce a pole at a = %A, which lies on the
line SRea = —y.

On the other hand, the differentiation of the Gaussian in dt produces a factor

l-t^(cos27^tS)~2J^ ,
P"

which improves the exponential decay in t and allows to take a in a larger half-
plane. The factor 1 / p , that has been introduced is compensated by the fact that the
analogue of (3.1) for UK^ has a dp, instead of f^r.

A similar argument applied to the other half of the integral in (3.1), correspond-
ing to 11 < 0, produces the continuation of UK^ to the symmetric half-plane, with
a pole at a = —zA.

As {CA+ioiU}(UK^-\-UK^} = U6o = 9u6o, this implies, by standard arguments,
that CA + ic^U is locally solvable in the enlarged strip.

The final result reads as follows.

Theorem 3.1 Let A G ©n. 7 /A i , . . . ,A^ are the eigenvalues of S = —AJ with
SmAj > 0, then CA,Q is locally solvable if and only if a ̂  ±z^.(2A:^ + l)Aj.

The proof of the last part of the statement uses some arguments from [Hoi] and
[Sj].

Even though the notation is different, this result matches with what has been said
for the operator (1.6): for that operator the eigenvalues of S are purely imaginary
and equal i times the coefficients \j (see also Theorem 1.1 and the remarks that
follow).

Using [Hoi, Theorem I.I], or [G] one can show that for the non-singular values of
a LA a is hypoelliptic, and this gives a different proof of Theorem 3.1. Our argument
is relatively more elementary, even though its scope is much more limited. As we
shall see next, it also applies to quadratic forms with degenerate real part.

4. Fundamental solutions for SReA semidefinite
Much of the analysis developed in the previous Section can be extended, with

some modifications, to the case of a matrix A with a degenerate, but semidefinite,
real part, provided that we assume what we can call the cone condition: if A =
AI + iA^^ with Aj real, then |A2| < cA\ for some scalar c > 0. This means that
the set {^uAv : v 6 W1} is containing in the angle C defined by the condition
|3mC| < c^eC.
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If such a condition is satisfied, then the eigenvalues of S are again contained in
±iC^ but the eigenvalue 0 will also appear.

The structure of the generalized eigenspace relative to the eigenvalue 0 is, how-
ever, relatively simple (see [Ho2]).

Lemma 4.1 Assume that the cone condition is satisfied. Then, if S = S'i 4- iS^y
with Sj real, then (ker^nR271 = (ker^nR271, andker S is invariant under complex
conjugation. In addition, (ker^nR271 is the direct sum Vo®^i; wth Vo symplectic
andVi isotropic. The generalized 0-eigenspace of S\ in C271 is W = (Vo^Vi^JV^,
and S2 =0 on W.

This means that we can perform a linear symplectic change of coordinates in R271

in such a way that the expression of CA involves a smaller number of vector fields,
say Y i , . . . , Vm, Vn-n , . . . . Vn+rn', with m < m' < n, and m < n. Among the missing
vector fields, K n / + i , . . . , Vn, Vn+m^i, • • • , V2n span JVo and Vm+i,..., Vm' span JVi.

Then CA is in fact a left-invariant operator on a lower-dimensional subgroup,
and solvability can be studied on this subgroup. As the subgroup is isomorphic to
Hy^ x R771'"771, we are so led to study the operator

2m 2m m/-m m'-m2m 2m m —m m—m

V = ̂  a^V, - 2^ ̂  b,W, + ̂  c^9s, , (4.1)
j,k=l j=l A;=l j,k=l

on H^ x R7717"771, where the Vj are as above (passing from Hn to Hm some relabeling
has come out naturally) and the sj are the variables in R771'"771. The matrices A ==
(ajk) and C = (c^) have positive definite real parts, and the bjk are real.

If m ==• m', we are back to the previous case. Assume therefore that m < m1.
We begin by taking partial Fourier transform in the central variable u from Mm

and in the variables Sj. Calling {JL and 77 the respective dual variables, we obtain the
operators

2m 2m m1—m m'—m

1>^ = ̂  a^lf +47r^ ̂  b,^ - 47T2 ̂  c,̂  .
j,A:=l J=l A;=l 3^=1

The mixed terms can be eliminated by conjugating P^ with multiplication by
an exponential function in v.

Ultimately the setting is rather similar to the positive definite case. The new
feature is the presence of a non-trivial quadratic form Q(r]) = ^Crj.

Without going into precise computations, just observe that if we repeat the kind
of integrations by parts that in the positive case produced the factor ^J-^, we obtain
now (Q-iA)H+27rQ(r7) •

This tells us that, for every a in a vertical strip containing ±i\ in its interior, it
is possible to construct a distribution Ha such that

{D + zaU)Ha = (Q(9s) + (A + za)U) (Q(9s) + (A + ia)U)6o .

So we no longer have a pole at a = ±zA, and the same occurs at the other
"singular values^.
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Theorem 4.2 Let A € 96n, and assume that the cone condition is satisfied. If
kerA is not a symplectic subspace ofR211, then C^a is locally solvable for every a.

IfkerA is symplectic, let Ai , . . . , \^ be the eigenvalues of S = -AJ with SmAj >
0. Then C^a is locally solvable if and only if a -=/=- ±i ̂  .(2^ + l)\j.

5. Other cases
If SReA > 0, but the cone condition is not satisfied, many different situations

may occur. Surely the case of a purely imaginary A is included in this discussion,
so that Theorem 1.1 gives the answer (replacing A with iA and a with za).

There are cases where the set of singular values is not symmetric. We take the
following example from [MPR1].

Theorem 5.1 Let A == ( . j . Then CA,O is locally solvable on Hi if and only if
V 1 /

a ^ 2 N + l .

This example can be generalized to higher dimensions (see [MPR1, MPR2, MZ]).
In a series of articles, [DPR, MPR1, MPR2, KM], the problem of local solvability

has been studied under the assumption that S2 is scalar, but it seems that each case
requires some ad hoc argument.

It would be desirable to have a classification of complex quadratic forms on R271,
i.e. complex Hamiltonians, modulo symplectic changes of variables, or, equivalently,
a description of the orbits of the adjoint action of Sp(n, R) on sp(n, C). Under the
restriction S2 = cJ, such a classification was obtained by [MT].
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