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Journees Equations aux derivees partielles
Nantes, 5-9 juin 2000
GDR 1151 (CNRS)

Polyhomogeneous solutions of wave equations
in the radiation regime

Piotr T. CHRUSCIEL Olivier LENGARD

Abstract
While the physical properties of the gravitational field in the radiation

regime are reasonably well understood, several mathematical questions re-
main unanswered. The question here is that of existence and properties of
gravitational fields with asymptotic behavior compatible with existence of
gravitational radiation. A framework to study those questions has been pro-
posed by R. Penrose [41], and developed by H. Friedrich [25, 27, 28] using
conformal completions techniques. In this conformal approach one has to 1)
construct initial data, which satisfy the general relativistic constraint equa-
tions, with appropriate behavior near the conformal boundary, and 2) show
a local (and perhaps also a global) existence theorem for the associated evo-
lution problem. In this context solutions of the constraint equations can be
found by solving a nonlinear elliptic system of equations, one of which resem-
bles the Yamabe equation (and coincides with this equation in some cases),
with the system degenerating near the conformal boundary. In the first part
of the talk I (PTC) will describe the existence and boundary regularity re-
sults about this system obtained some years ago in collaboration with Helmut
Friedrich and Lars Andersson. Some new applications of those techniques are
also presented. In the second part of the talk I will describe some new re-
sults, obtained in collaboration with Olivier Lengard, concerning the evolution
problem.

1. Introduction
Bondi et al. [9] together with Sachs [42] and Penrose [41], building upon the pi-

oneering work of Trautman [44, 43], have proposed in the sixties a set of boundary
conditions appropriate for the gravitational field in the radiation regime. A some-
what simplified way of introducing the Bondi-Penrose (BP) conditions is to assume
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existence of "asymptotically quasi-Minkowskian coordinates" (x^) = ( t , x , y , z ) in
which the space-time metric Q takes the form

_ _ h ^ ( t - r , e , y ) h^(t-r,9^} ^
y/i^ 'ip.v — ———————— i ————o——— -r ... , (i.i)r r-

where rj^ is the Minkowski metric diag(-l, 1,1,1), u stands for t - r, with r, 0, (p
being the standard spherical coordinates on R3. The expansion above has to hold
at, say, fixed u, with r tending to infinity. Existence of classes of solutions of
the vacuum Einstein equations satisfying the asymptotic conditions (1.1) follows
from the work in [25] together with [2, 24, 3]. As of today it remains an open
problem how general, within the class of radiating solutions of vacuum Einstein
equations, are those solutions which display the behavior (1.1). Indeed, the results
in [2, 1, 23] suggest strongly1 that the correct setup for such gravitational fields is
that of polyhomogeneous asymptotic expansions:

0^ -^ ^ -^phg . (1.2)

In the context of of expansions in terms of a radial coordinate r tending to infinity,
the space of polyhomogeneous functions is defined as the set of smooth functions
which have an asymptotic expansion of the form

^EE^M^' (i-3)
i=0 j=Q

for some sequences n^A^, with n,, / ^ oo. Here the symbol ~ stands for "being
asymptotic to": if the right-hand-side is truncated at some finite %, the remainder
term falls off appropriately faster. Further, the functions f^ are supposed to be
smooth, and the asymptotic expansions should be preserved under differentiation.
The choice of the sequences n^ Ni is not arbitrary, and is dictated by the equations
at hand. For example, the analysis of 3 + 1 dimensional Einstein equations in [23]
suggests that consistent expansions can be obtained with n^ = i. On the other hand,
Theorem 3.2 below gives actually r^ = z/2 for wave-maps on 2 + 1 dimensional
Minkowski space-time. We note that the 2 + 1 dimensional wave map equation
is related to the vacuum Einstein equations with cylindrical symmetry {cf e g
[8,19,20]).

To understand how the polyhomogeneous expansions (1.2) arise in general rel-
ativity, recall that one systematic method of constructing solutions of the vacuum
Einstein equations,

R^=0. (1.4)
proceeds by solving a Cauchy problem. In such a set-up one provides an initial
data set (M, ̂ , A^), where M is a three dimensional manifold, g.j is a Riemannian
metric on M, and K^ is a symmetric tensor field on M. Those data are not arbitrary,
as they have to satisfy the general relativistic constraint equations:

A-(A^-^^^)=0,
R = K^K,, - {g^K^ .

(1.5)
(1.6)

1 Cf. [37] and references therein for some further related results.
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One then constructs a space-time (^,9) using (M,5^,AT^) as Cauchy data for
Equation (1.4). We shall start, in the next section, by a discussion of those aspects
of Equations (1.5)-(1.6) which are relevant to the problem at hand.

2. The constraints
There is no systematic way known of constructing solutions of Equations (1.5)-

(1.6), except in the special case

g^Kki =const (2.1)

(c/., however, [7, 6, 15, 33, 32] for results under various restrictive assumptions).
When (2.1) holds, solutions of (1.5)-(1.6) can be produced using the conformal
method of Choquet-Bruhat — Lichnerowicz — York [17]. In this method one
prescribes "seed fields" (/i^.A^), where hij is a Riemannian metric on M and A^
is a symmetric and traceless tensor field on M. In our context (M.hij) will be a
"smoothly compactifiable" Riemannian manifold, to be defined below, and we can
further use the normalisation g^Kki == 3; in this case the fields (g^, Kij) are obtained
by setting

^ = A., , K13 = (F10 '̂ + g13 , (2.2)

where
B13 = A13 + D'X3 + D^X1 - ̂ D^ , (2.3)

0

and where ( / ) and X1 are solutions of the equations

A {p'X3 + D^X1 - jDhX^ == -DiA13 , (2.4)
8A^ - R{h)(f> + h^h^BijBkic/)-7 - 6^ = 0 . (2.5)

In Equations (2.3)-(2.4) the symbol D denotes the Levi-Civita derivative associated
with the metric hij. Further, in (2.5), A/i is the Laplace-Beltrami operator of the
metric h^, while R{h) is the scalar curvature of that same metric.

In order to obtain initial data corresponding to the gravitational field in the
radiating regime one has to impose suitable boundary conditions. A first guess as
to what class of (/i^, A^)'s to consider, stems from the already mentioned proposal of
Bondi, as geometrised by Penrose [41] using conformal methods: Penrose advocates
the use of conformally compactifiable (M,/^)^. This means that M is the interior
of a compact manifold with boundary M = M U 9M. Further, if x is a defining
function for 9M, then the metric h should be of the form

i ^ i j =: ̂  i ^ i j 5

where hij is a smooth Riemannian metric on M. Finally the tensor field rr"^^
should be a smooth tensor field on M (c/., e.g., [2, Section 2.1] for a detailed dis-
cussion). By analogy with hyperboloids in Minkowski space-time, such initial data
will be called hyperboloidal initial data. The first question that arises here is that of
existence, and of properties, of solutions of Equations (2.4)-(2.5) under such condi-
tions; we note that those equations constitute an elliptic system which degenerates
uniformly at 9M. In [2] a general framework has been developed to handle such
systems, and in particular the following has been shown:
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Theorem 2.1 For any smooth (M./^-.A^) as above there exists a unique polyho-
mogeneous solution of (2.4)-(2.5). Further,

1. For given M and x there exists an open dense set (in the C°°(M) topology)
of (hzj.A13)^ for which the function c/)~2 can be extended to a C2 function
on M, but not to a C3 function on M (the third derivatives of any extension
of (f) will blow up logarithmically as one approaches 9M); in particular for
generic (in the above sense) couples (/^,A^) the initial data set (gi^K13) will
display asymptotic behaviour incompatible with the Bondi-Penrose asymptotic
conditions.

2. There exists a "large set" of non-generic (hi^A13} for which (j) and the B13's
are smooth onM; for initial data resulting from such "seed fields" the Bondi-
Penrose asymptotic conditions will be satisfied.

In the theorem above polyhomogeneity should be understood in terms of asymp-
totic expansions in x at x = 0 , analogous to (1.3) with r there replaced by 1 / x .

As another illustration of the results in [2], we shall consider here two toy equa-
tions which are often encountered in the literature on non-linear2 elliptic equations.
Let, in the remainder of this section, g be a smooth Riemannian metric on a smooth
compact manifold with boundary M, consider the problem

A^=|(^ Q - 1 ^ , a > l , (2.6)

l i m ^ ( p ) = o o , (2.7)
p—>dM

A^ — the Laplace-Beltrami operator on functions. It was shown in [4] that one
then necessarily has (c/. also [45])

[ 2 I /9( rv -4- "n \ Q::-T

lim <^(p) x(p)^] =C^( -{a±-- . (2.8)
p—r9M J ^ ( a — l ) 2 /

Here x{p) denotes the Riemannian distance from p to 9M. It follows from the results
of [2] that the behavior of (p near 9M can be described in a much more precise way.
More precisely, we have the following ([21]; compare [5]):

Theorem 2.2 Let (M^g) be a smooth compact Riemannian manifold with bound-
ary, let a > 1, set M == intM'. Let (p e W^^^M) satisfy

\y -| y Q-1 ̂

^[^(P) ^{P}^} =Ca,
p->QM L J

where x(p) = dist(p, 9M). Define

_ 2{a+l)
^ a- 1

2 We wish to stress that while all the equations considered in this section are semi-linear, the
techniques of [2] apply as well to fully non-linear equations, cf. [2, Section 5.1].
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Let N be a compact submanifold of M forming a neighborhood of 9M such that
V \jr> 0, and x e C°°(N). There exist functions ̂  e C°°(N),i e N, such that the
following hold : For any k € N let I € N be such that I^i+^k. Then

1. iffi+ ^N, then

x^y -Vo- x^ipi - ... - x^+ipi e C^'N).

2. If ̂  e N, then

2

x^tp-^o-x^lnxyi - ...-x^+ln1 xyi e ^(TV).

// ̂ i |aM= 0, then (in both cases)

x^y e C°°(N).

Remarks: 1. Similar results can be established using [2] when (M,g) is only of
finite degree of differentiability, with some finite number of functions ^ of finite
degree of differentiability.
2. For j < Int(^) and j < ̂  the functions 9^o\9M are uniquely determined by
9ij\9M and Q^^gM, for some finite number of transverse derivatives of ?„ at 9M.
Similarly when ^+ 6 N the function ̂  \QM is uniquely determined by the boundary
values of a finite number of derivatives of the metric in directions transverse to 9M.

PROOF: By elliptic regularity on N = intN we have y? e (^(TV). Set

(px^
u=———-l.

UQ

u € C°°{N) and satisfies the equation

Lu = uj 4- F{u}

F^^C^l+u^-l-au} 2xAgX

Lu = x2^ - ̂ g{Du, Dx) - -^[a + 1 + x^x\u .

L is of the form considered in [2] with indicial exponents

1 2 (a+ l )
^- = -1 , ^ = -^-y- . (2.9)

Let zi) = y\9NDM . By the arguments of proof of [2, Proposition 7.3.1] there exists
a solution (p of

-^=iyr-1^,
^laA'nA/ = ̂  ,

^Q-1 - C^ = 0(.r) .
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(The function UQ required in [2, Proposition 7.3.1] can be taken as UQ = 0; cf. also
Remark 2 following [2, Proposition 7.3.1]). By the asymptotic maximum principle
(cf., e.g., [31, Theorem 3.5]) we have y = y which implies

u = 0(x) .

Theorem 7.4.1 of [2] gives

u ^ ^ ( N ) n C ° ( N ) .

By a closer examination of the structure of Equation (2.6) one obtains the claimed
results. 0

Another example of equation to which the results of [2] apply is the equation

A^ = e^ , a > 0 , (2.10)

with the asymptotic condition

lim u(p) = oo . (2.11)P-.QM ' / v /

It has been shown by Bandle and Marcus [M. Marcus, private communication] that
u then necessarily satisfies, for x < e < 1, for some e > 0,

2 1 1 2 1
| ^ - — l n - - - l n — | < Cx\n- .

OL x a a x
We have the following [21]:

Theorem 2.3 Let (M,p) be a smooth Riemannian manifold with boundary, let
a > 0 and let y e C°°{M) satisfy

A^ = e0" .

Suppose that there exists a constant C such that
2 1

\u--\n-\ <C .a x
Let N be a compact submanifold of M forming a neighborhood of 9M such that
x e C°°{M). There exzst functions ̂  e C°°(N), i C N, such that, for all A; e N,

2 1 2 2 _
u--\n---\n-~ (p^x\nx - (/^2 In2 x - ... - y^^ x € C k ( N ) .

Cx JL Cx Cx

yi\9M is proportional to the mean extrinsic curvature of 9M in M. If that mean
extrinsic curvature vanishes, then

u-2-^1 eC°°(AO.
a x

PROOF: Write u in the form u = ^[2 In ^ + In | + cj]. The function u solves the
equation

x2^ = 2^ - l) + 2x^gX.

The proof follows now that of Theorem 2.2 (in the present case we have /2_ = 0,
/^- = 1)- D
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3. The evolution problem
It is natural to enquire what are the asymptotic properties of those solutions

of Einstein equations with essentially polyhomogeneous initial data as in Theo-
rem 2.1, that is, initial data having some non-vanishing logarithmic coefficients in
their asymptotic expansion. Recall that causality of hyperbolic PDE^s allows one
always to construct a solution of such equations in a neighborhood (perhaps very
"small") of the initial data surface. However, standard theory applied to our prob-
lem at hand gives a neighbourhood which is smaller and smaller in time as one
approaches 9M. Supposing, e.g., that 9M corresponds to the set u == 0 in terms
of the coordinates of Equation (1.1), it could occur that the range of u's for which
the solution exists shrinks to {0} as r tends to infinity. This would be quite un-
pleasant from a radiation point of view, because to describe gravitational radiation
one usually requires some open interval of u^s at "r == oo". Inspired by Penrose^s
treatment [41], Friedrich [25] has developed a conformal framework in which the
evolution problem can be reduced to one on a compact manifold. In particular, for
initial data as described in point 2 of Theorem 2.1, Friedrich^s theorems guarantee
existence of a uniform interval of u^s for which the solution exists. This is done by
considering a system of equations for conformally rescaled fields. It turns out that
the generic initial data of Theorem 2.1 are too singular at 9M to be able to use
the theorems of [25], so that some generalizations are needed. In work in progress
[22, 38] we are currently analysing those issues, but no definitive results are avail-
able yet as far as the vacuum Einstein equations are concerned. We have, however,
developed certain techniques to handle such asymptotic problems, and we wish to
report here on the results which we have already obtained in some simpler cases.
Before doing this, let us shortly recall the conformal method.

3.1. Conformal completions
Consider an n + 1 dimensional space-time (^, g) and let

9 = ̂ 8 . (3.1)

Let D/^ denote the wave operator associated with a Lorentzian metric /i,

n^f = 1 , MJ\deth^\h^9^f).
^\dethpff\ v

We recall that the scalar curvature R ==• J?(g) of g is related to the corresponding
scalar curvature R = R{o) of 3 by the formula

R^=R-2n{^+n^^}. (3.2)

It then follows from (3.2) that we have the identity

D^-^/) = 0-^ (nj + ̂ (^O2 - R)f} . (3.3)
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It has been observed by Penrose [41] that the Minkowski space-time (c^, rj) can be
conformally completed to a space-time with boundary ( ^,77), rj = f^"2^ on ^,
by adding to ^ two null hypersurfaces, usually denoted by J^4' and J^~, which
can be thought of as end points (^+) and initial points (J^~) of inextendible null
geodesies [40, 46, 41]. We will only be interested in "the future null infinity" J^4';
an explicit construction (of a subset of J^) which is convenient for our purposes
proceeds as follows: for {x°)2 < ^ ( r r 1 ) 2 we define

i

y'=^ (3.4)
in the coordinate system {y^} the Minkowski metric rj = —(dxo)2+{dxl)2+(dx2)2+
(^dx3)2 = r|a/3dxoidx^ takes the form

r] = ̂ rj^dy^ , Q = Tfo/^V . (3.5)

We note that under (3.4) the exterior of the light cone C^ = {rfap^x0 = 0}
emanating from the origin of the ^-coordinates is mapped to the exterior of the
light cone C^ == [ria^y^ = 0} emanating from the origin of the y^-coordinates.
The conformal completion is obtained by adding C^ to ̂ ,

^=^U(Cf\{0}) ,

with the obvious differential structure arising from the coordinate system y ^ . We
shall use the symbol ^ to denote C^ \ {0}, and J^ to denote C^ \ {0} n {y° > 0}.
As already mentionted, J^ so defined is actually a subset of the usual J^, but this
will be irrelevant for our purposes.

We note that (3.4) is singular at the light cone C^. This is again irrelevant from
our point of view because we are only interested in the behavior of the solutions
near J^, and causality allows us to ignore this.

The above procedure can be adapted for several metrics of interest, such as
the Schwarzschild, Kerr, or Robinson-Trautman metrics, to similarly yield confor-
mal completions of space-time by the addition of null hypersurfaces ^+. This
observation was at the origin of Penrose's proposal to describe systems which are
asymptotically flat in lightlike directions through the use of conformal completions.

It is noteworthy that the conformal technique allows one to reduce global-in-
time existence problems to local ones; this has been exploited by various authors
[12, 18, 14, 13, 11, 16] for wave equations on a fixed background space-time. Further,
Friedrich [27, 30, 28] has used this approach to obtain global existence result for
Einstein equations to the future of a "hyperboloidaP Cauchy surface, with "small"
smoothly compactifiable initial data, cf. also [26, 29].

On a more modest level, the identity (3.3) can be used as a starting point for
the analysis of the asymptotic behavior of solutions of the scalar wave equation
near J^, and we shall describe some such results in the next section. There are
associated identities for fields of any spin [41], which provide a convenient framework
for similar questions for those fields.
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3.2. The semi-linear scalar wave equation
Let / be a solution of the semi-linear wave equation

DJ=^J), (3.6)

here Dg is the d7 Alembertian associated with g. Set

/^n-^/; (3.7)
Letting g = f^g as in (3.1), from (3.3) we obtain

DJ = ̂ (R - ̂ )f + fl-^H^, fl^f) . (3.8)

Let g = r] be the Minkowski metric; under the conformal transformation (3.4) one
obtains from (3.5) that Q is again the Minkowski metric, and (3.8) becomes

Dj = O-^Tif^ ̂ f) . (3.9)

We shall assume that the initial data for / are given on a hypersurface E C .̂ ,
which, in a neighborhood G of J^ is given by the equation

E n ^ = { y ° = | } . (3.10)

This correspond to a hyperboloid in ^ given by the equation x° + 1 == \/1 + x2 .
It is convenient to introduce the following coordinate system (r, x^ v) in a ^-
neighborhood of J^:

r = y ° - l / 2 > 0 ,

^ = (E^)2)' - v° ̂  ° -
y1 = (E^)2)^1^) - (3J1)

n1^) € 6'n--l, with ?; == (?;A) denoting spherical coordinates on 5'n-l. Equation (3.5)
gives

fl=x(2r+x+l) ̂ x . (3.12)

If we let h denote the unit round metric on S'71"1 we then have

j] = 2dxdr +dx2 +{x+r + l/^)2^ , (3.13)

and

^ = (.^r^W^ ((-r + r + l/2rl v/detk 'raj)

= {-^-^^.TT^'^^tT^W^' t3'141
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where A/i is the Laplace-Beltrami operator of the metric h. We set

e_ = ̂  , e+ = 9r - 29^ , e^ = ̂ \^ h.^ , (3.15)

4>, = e-(/) , <^+ - e+(/) , (3.16)
^=^=(^T72)^(/), (3.17)

where HA denotes an /i-orthonormal frame on .S'""1. (The usefulness of introducing
two different objects for /u(/)/(a: + r + 1/2) will become clear shortly.) Equation
(3.9) implies the following set of equations:

e_(^) -Q^ -^^^ = -2(^^--^ ^
-e^) +e^) -(^172)^ = 0 , (3-1^

e-(^) -CA^-) +^r^4>A = 0 ,
-^A +e^-) +,(^^-. = ^I.^^^-^. ( )

e - ( / ) = ^ _ , (3.20)
e+( / )= (^ , (3.21)

G=^-n^H(x^fln^f). (3.22)

We note that the partial differential operator standing on the left-hand-side of (3.18)
is symmetric hyperbolic; the same holds true for (3.19), or for the joint system (3.18)-
(3.21). Now, part of our technique consists in deriving weighted energy estimates
for symmetric hyperbolic systems having the structure above; this is described in
more detail in Section 3.4. Each such system comes with his own estimates, so that
for the systems (3.18) and (3.19) we can obtain estimates with different weights.
This allows us to handle a reasonably wide range of non-linearities, giving existence
and blow-up control for initial data in weighted Sobolev spaces (with conormal-type
blow-up at ^+). Before proceeding further, some terminology is needed. As is well
known, the Cauchy data for the wave equation consist of the values f\M of / on the
initial data hypersurface M and of a transverse derivative there — e.g., (9f/9r)\M-
Given such data all the derivatives (Q'f/Qr^M of a solution can be calculated on
M in terms of f\M, (9f/9r)\M, and of space-derivatives thereof. For example, from
Equation (3.14) we have

^ „ - MW + {^7^ + ̂ ^} /1,» . (3.23)

For general polyhomogeneous f\M and {9f/9r)\M the resulting (Q'f/Qr^M will be
polyhomogeneous at 9M but not necessarily bounded; e.g., the occurrence o f r r l n r r
terms in / IM or in {Of/QT)\M will cause — unless cancellations occur — a logaritmic
singularity of (<92 f/QT^M, with a further 1 / x singularity in [Q^f/Qr^M, etc. We
say that polyhomogeneous initial data are k-compatible if (9^//(9T^)|^/ are bounded
by some power of In x for 0 < i < k. We say that the initial data are compat-
ible polyhomogeneous if {O'f/Qr'^M are bounded by some (perhaps z-dependent)
powers of In x for all i. This condition is clearly necessary for propagation of poly ho-
mogeneity — it follows from Theorem 3.1 below that it is also sufficient. It should
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be clear from Equation (3.23) that the condition of ^-compatibility imposes a finite
number of algebraic conditions on the coefficients which appear in the polyhomo-
geneous expansions (1.3) of and (9f /9r)\M^ and that those conditions are easy to
satisfy. Similarly, the condition of compatibility for all k imposes an infinite num-
ber of conditions relating those coefficients, with a large set of initial data satisfying
those conditions. {E.g.^ if f\^ and (9f/3r)\M are compatible poly homogeneous,
then for any functions g,h € C°°{M) the new initial data f\M —^ J\M + 9 and
(9f/9r)\M —> {9f/9r)\M +h will also be compatible polyhomogeneous.) In [22] we
prove the following:

Theorem 3.1 Consider Equation (3.6) on W111, n > 2, with polyhomogeneous
bounded initial data /[{^o}? 9f/Qr\^Q}' Suppose further that H^x^^ f) is bounded
and polyhomogeneous in x^ at constant f, and has a zero of order i at f = 0, with

f 4 , n = 2 ,
i>\3, n = 3 ,

l2 , n > 4 .

Then:

1. There exists T+ > 0 such that f exists on a neighbourhood of J^ containing
{re[0,T+),j;e [0,3:0)}.

2. The solution has the property that D-derivatives (as defined in Equation (3.29)
below) of arbitrary order of /(•,T") are continuous up-to-boundary on each
neighbourhood ^/ of J^ of the form ̂  = {r C [O.r^^x C [O.rci)} on which
f exists.

3. If the initial data are compatible polyhomogeneous, then the solution is poly-
homogeneous on each neighbourhood ^/ of J^^ on which f exists, where ̂  is
as in point 2. above.

We note that the results of Joshi [35] (in the special case of H — smooth in both
variables) on propagation of polyhomogeneity do not apply to the problem at hand
when n is even, due to the occurence of non-integer powers of Q in (3.22) in such a
case.

3.3. Wave maps
Let (e/^, h) be a smooth Riemannian manifold, and let / : (,^, g) —^ (c/^, h)

solve the wave map equation. We will be interested in maps / which have the
property that / approaches a constant map /o as r tends to infinity along lightlike
directions, fo{x) = po € jY for all x £ ^f. Introducing normal coordinates around
PQ we can write / == (/G), a = 1 , . . . , N = dinic/r, with the functions fa satisfying
the set of equations

QfbQfc
aor+ra(/)^^=0, (3.24)
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where the F^'s are the Christoffel symbols of the metric h. Setting as before /a =
fl,~^fa,Q= ̂ 0, we then have from (3.3),

o-.f- = -n-^TO^/)'y> ̂ "y ̂ (R-m-^r. (3.25)
In particular if (^, g) is the Minkowski space-time (and if we use the same conformal
transformation as in Section 3.1) we obtain a system of Equations (3.19)-(3.21) with
the obvious replacements associated with / —> /a, and with G there replaced by

G- = -rw^f) {^(-<^_ + ̂ ^)
- (n - l)^.r \(x(t)\ - (1 + x + 2r)^_) - (n - I)/6] I . (3.26)

As before, for even space-dimensions n the occurence of non-integer powers of Q
above does not allow the use of the standard conformal method except for special
target manifolds (^, /i), cf. [14]. This can be handled in our approach, and in [22]
we show:

Theorem 3.2 The conclusions of Theorem 3.1 remain true for Equation (3.24)
on R71'1, n > 2, with arbitrary polyhomogeneous bounded initial data fa\^Q^
9fa/9r\{^-=o} if ̂  > 3, and with 2-compatible polyhomogeneous initial data ifn == 2.

single compatibility condition involving
The restriction to Minkowski space-time in Theorem 3.2 is not necessary, and is

only made for simplicity of presentation of the results; the same remark applies to
Theorem 3.1. Similarly the choice of the initial data hypersurface as the standard
unit hyperboloid is not necessary.

3.4. A weighted energy inequality for a class of symmetric
hyperbolic systems

The first step of the proof of existence of solutions, and propagation of polyho-
mogeneity, consists in deriving weighted energy inequalities. We do this in [22] for
a class of symmetric hyperbolic systems which can be written in the form3

/ E^^ +L^ \ ( Bn Bi2 V V \_ ( a \ . .
V -L^ +E^^ ) + [ B^ B^ ) [ zp ) - \ b ) ? ^^

where y and ^ are sections of M and .¥2 dimensional Riemannian bundles; L is a
first order differential operator involving only derivatives tangential to the spheres
r =const, x ==const, and L^ denotes the formal adjoint of L on those spheres; we
use the generic symbol V to denote a covariant derivative on the relevant bundle.
The matrices E^ are assumed to satisfy

E^>eld, E^<-eld. |E!| < C^x , (3.28)
3 Some somewhat more general systems are also considered in [38].
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for some e > 0. We note that Equations (3.18)-(3.19) (which follow from the
scalar wave equation) are of this form, with E^ == e^ ® Id. Moreover, several other
equations of interest can be written in this form, including the Maxwell or Yang-
Mills equations, as well as the Bianchi identities for the Weyl tensor. (This allows
us to derive energy inequalities, as well as propagation of poly homogeneity, for the
Maxwell equations, or for the Weyl equations on Minkowski space-time. See also
[36] for some results in the Maxwell case.)

We use spaces J^ of conormal-type distributions, defined as follows: Let M be
the (conformal completion of) the initial data hypersurface r == 0. We set y1 = re,
a defining function for 9M. We cover 9M by a finite number of coordinate charts
ffi with coordinates vA, and in each of the coordinate charts Q^ = [O.rro] x ^ the
operators D{ are defined as

9 9 9 9
D^XW=X^ ^W^a^' (3•29>

We define the spaces J^^i) as the spaces of those functions in H^^i) for which
the norms [| • [[^(Q,) are finite, where

\\f\\W)- E / (^DW^ri"-^ • (3.30)
o<W<k fli

The spaces ^^(M) are defined as the spaces of those fonctions in {{^(M) for
which the norm squared

ll/llj^(M) :=: y ^ \\f\\^(^i) + \\f\\Hk(M\{x<xo/2}) (3.31)
i

is finite. Weighted energy inequalities in j^0 spaces with arbitrary values of k may
be proved under various hypotheses on the objects which appear in (3.27); assuming
for simplicity that all the coefficients are bounded and poly homogeneous4, in [22]
we show, for a < — an inequality5 of the form:

\\f{t)\\^<.c(\\f(0)\\^ect+ fe^-^dla^ll^+ll^)!!2 ^_^)ds\ . (3.32)
\ JQ ^k /

Here f(t) stands for / restricted to the hypersurface {r = t}, etc. For linear
systems (3.27) the existence of solutions on domains of dependence with initial
data in J^ spaces follows immediately from the standard theorems using causality
arguments. The inequality (3.32) shows then preservation of the J^0 character of
solutions of Equations (3.27) when a C ̂ a and b G j%^° 2 . Similarly, the inequality
(3.32) together with appropriate weighted generalizations of Moser-type non-linear
inequalities in Sobolev spaces, allows one to derive existence, as well as preservation
of the J^° character, of solutions of Equations (3.6) or (3.24). (Compare [10, 39].)
To obtain polyhomogeneity of solutions, for compatible polyhomogeneous initial

4 More general results can be found in [22].
5 A similar inequality for the scalar wave equation has been independently derived in [34].
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data, for systems of the form (3.27) we need the further restriction (satisfied by
(3.18)-(3.21)) that

E^ = 0(x2) , E^ = 0(x) .

The result follows then by a rather simple boot-strap argument, based on a more
careful examination of the structure of Equations (3.27).

Acknowledgements: We are grateful to G. Laschon and G. Metivier for biblio-
graphical advice.

References

[1] L. Andersson and P.T. Chrusciel, On "hyperboloidal" Cauchy data for vacuum
Einstein equations and obstructions to smoothness of Scri, Commun. Math.
Phys. 161 (1994), 533-568.

[2] ____, On asymptotic behaviour of solutions of the constraint equations in
general relativity with "hyperboloidal boundary conditions^, Dissert. Math. 355
(1996), 1-100.

[3] L. Andersson, P.T. Chrusciel, and H. Friedrich, On the regularity of solutions
to the Yamabe equation and the existence of smooth hyperboloidal initial data
for Einsteins field equations, Comm. Math. Phys. 149 (1992), 587-612.

[4] C. Bandle and M. Marcus, Asymptotic behaviour of solutions and their deriva-
tives, for semilinear elliptic problems with blowup on the boundary, Ann. Inst.
H. Poincare Anal. Non Lineaire 12 (1995), 155-171.

[5] ____, On second-order effects in the boundary behaviour of large solutions of
semilinear elliptic problems, Diff. Integral Equations 11 (1998), 23-34.

[6] R. Bartnik, Quasi-spherical metrics and prescribed scalar curvature, Jour. Diff.
Geom. 37 (1993), 31-71.

[7] R. Bartnik and G. Fodor, On the restricted validity of the thin sandwich con-
jecture, Phys. Rev. D 48 (1993), 3596-3599.

[8] B. Berger, P.T. Chrusciel, and V. Moncrief, On asymptotically/lot space-times
with C?2 invariant Cauchy surfaces, Annals of Phys. 237 (1995), 322-354, gr-
qc/9404005.

[9] H. Bondi, M.G.J. van der Burg, and A.W.K. Metzner, Gravitational waves in
general relativity VII: Waves from axi-symmetric isolated systems, Proc. Roy.
Soc. London A 269 (1962), 21-52.

[10] J.-M. Bony, Interaction des singularites pour les equations aux derivees par-
tielles non lineaires, Goulaouic-Meyer-Schwartz Seminar, 1981/1982, Ecole
Polytech., Palaiseau, 1982, pp. Exp. No. II, 12.

III-14



[11] Y. Choquet-Bruhat, Global existence of wave maps, Proceedings of the IX Inter-
national Conference on Waves and Stability in Continuous Media (Bari, 1997),
vol. 1998, pp. 143-152.

[12] ____, Global existence theorems by the conformal method, Recent develop-
ments in hyperbolic equations (Pisa, 1987), Longman Sci. Tech., Harlow, 1988,
pp. 16-37.

[13] ____, Global solutions of Yang-Mills equations on anti-de Sitter spacetime,
Classical Quantum Gravity 6 (1989), 1781-1789.

[14] Y. Choquet-Bruhat and Chao Hao Gu, Existence globale d'applications har-
moniques sur I'espace-temps de Minkowski M^, C. R. Acad. Sci. Paris Ser. I
Math. 308 (1989), 167-170.

[15] Y. Choquet-Bruhat, J. Isenberg, and V. Moncrief, Solutions of constraints for
Einstein equations, C. R. Acad. Sci. Paris Ser. I Math. 315 (1992), 349-355.

[16] Y. Choquet-Bruhat and N. Noutchegueme, Solutions globales du systeme de
Yang-Mills- Vlasov (masse nulle), C. R. Acad. Sci. Paris Ser. I Math. 311
(1990), 785-788.

[17] Y. Choquet-Bruhat and J. York, The Cauchy problem, General Relativity
(A. Held, ed.), Plenum Press, New York, 1980, pp. 99-172.

[18] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small
initial data, Comm. Pure Appl. Math. 39 (1986), 267-282.

[19] D. Christodoulou and A. Tahvildar-Zadeh, On the regularity of spherically sym-
metric wave maps, Commun. Pure Appl. Math 46 (1993), 1041-1091.

[20] D. Christodoulou and Z.S. Tahvildar-Zadeh, On the asymptotic behavior of
spherically symmetric wave maps, Duke Math. Jour. 71 (1993), 31-69.

[21] P.T. Chrusciel, Polyhomogeneous expansions at the boundary for some blowing-
up solutions of a class of semi-linear elliptic equations, Tours preprint 136/96,
ULR http://www.phys.univ-tours.fr/^piotr/papers/preprintl36/ls.html,
1996.

[22] P.T. Chrusciel and 0. Lengard, Solutions of wave equations in the radiating
regime, in preparation.

[23] P.T. Chrusciel, M.A.H. MacCallum, and D.B. Singleton, Gravitational waves in
general relativity: XIV. Bondi expansions and the "polyhomogeneity" of Scri,
Phil. Trans. Roy. Soc. A 350 (1995), 113-141.

[24] J. Cor vino and R. Schoen, Vacuum spacetimes which are identically
Schwarzschild near spatial infinity, talk given at the Santa Barbara Con-
ference on Strong Gravitational Fields, June 22-26, 1999, http://doug-
pc.itp.ucsb.edu/online/gravity-c99/schoen/.

III-15



[25] H. Friedrich, Cauchy problem for the conformed vacuum field equations in gen-
eral relativity, Commun. Math. Phys. 91 (1983), 445-472.

[26] H. Friedrich, Existence and structure of past asymptotically simple solutions
of Einstein's field equations with positive cosmological constant, Jour. Geom.
Phys. 3 (1986), 101-117.

[27] H. Friedrich, On the existence of n-geodesically complete or future complete so-
lutions of Einstein's field equations with smooth asymptotic structure, Commun.
Math. Phys. 107 (1986), 587-609.

[28] ____, On the global existence and the asymptotic behavior of solutions to the
Einstein — Maxwell — Yang-Mills equations, Jour. Diff. Geom. 34 (1991),
275-345.

[29] H. Friedrich, Einstein equations and conformal structure: Existence of anti-de-
Sitter-type space-times, Jour. Geom. and Phys. 17 (1995), 125-184.

[30] H. Friedrich and B.G. Schmidt, Conformal geodesies in general relativity, Proc.
Roy. Soc. London Ser. A 414 (1987), 171-195.

[31] C.R. Graham and J.M. Lee, Einstein metrics with prescribed conformal infinity
on the ball, Adv. Math. 87 (1991), 186-225.

[32] J. Isenberg and V. Moncrief, A set of nonconstant mean curvature solutions
of the Einstein constraint equations on closed manifolds, Classical Quantum
Grav. 13 (1996), 1819-1847.

[33] J. Isenberg and J. Park, Asymptotically hyperbolic non-constant mean curvature
solutions of the Einstein constraint equations, Classical Quantum Grav. 14
(1997), A189-A201.

[34] J.-L. Joly, G. Metivier, and J. Rauch, Nonlinear hyperbolic smooth-
ing at a focal point, preprint 12 on URL http://www.maths.univ-
rennesl.fr/~metivier/preprints.html.

[35] M.S. Joshi, A commutator proof of the propagation of polyhomogeneity for semi-
linear equations, Commun. Partial Diff. Eq. 22 (1997), 435-463.

[36] J.A.V. Kroon, On the existence and convergence of poly homogeneous expansions
of zero-rest-mass fields, gr-qc/0005087 (2000).

[37] ____^ Polyhomogeneity and zero-rest-mass fields with applications to
Newman-Penrose constants, Class. Quantum Grav. 17 (2000), no. 3, 605-621.

[38] 0. Lengard, The gravitational field in the radiation regime, Ph.D. thesis, Uni-
versite de Tours, in preparation.

[39] R. Melrose and N. Ritter, Interaction of nonlinear progressing waves for semi-
linear wave equations, Ann. of Math. (2) 121 (1985), 187-213.

III-16



[40] R.P.A.C. Newman, The global structure of simple space-times, Commun. Math.
Phys. 123 (1989), 17-52.

[41] R. Penrose, Zero rest-mass fields including gravitation^ Proc. Roy. Soc. London
A284 (1965), 159-203.

[42] R. Sachs, Gravitational waves in general relativity V I I I . Waves in asymptoti-
cally flat space-time, Proc. Roy. Soc. London A 270 (1962), 103-126.

[43] A. Trautman, King's College lecture notes on general relativity, May-June 1958,
mimeographed notes; to be reprinted in Gen. Rel. Grav.

[44] ____, Radiation and boundary conditions in the theory of gravitation^ Bull.
Acad. Pol. Sci., Serie sci. math., astr. et phys. VI (1958), 407-412.

[45] L. Veron, Semilinear elliptic equations with uniform blow-up on the boundary^
Jour. Anal. Math. 59 (1992), 231-250, Festschrift on the occasion of the 70th
birthday of Shmuel Agmon.

[46] R.M. Wald, General relativity^ University of Chicago Press, Chicago, 1984.

DEPARTEMENT DE MATHEMATIQUES, FACULTE DES SCIENCES,
PARC DE GRANDMONT, F37200 TOURS, FRANCE
chruscielQuniv-tours.fr
www.phys.univ-tours.fr/~piotr

DEPARTEMENT DE MATHEMATIQUES, FACULTE DES SCIENCES,
PARC DE GRANDMONT, F37200 TOURS, FRANCE
lengard@gargan.math.univ-tours.fr

III-17


